The disclosure relates to a method and device for producing at least one wire blank bent into the shape of a bracket.
Wire blanks bent into the shape of a bracket are required, for example, to produce rotor or stator windings for electric motors. The wire blanks bent into the shape of a bracket are wound into winding mats with winding heads and wire webs. The winding mat produced in this way is drawn into a rotor or stator of an electric motor. In this regard, the wire webs lie in the rotor or stator grooves and the winding heads form the transition of the individual winding wires from one rotor or stator groove to the next.
For processing reasons, it is desirable to process the wire blanks in one piece. Consequently, there is a need to make the individual winding wires continuous and to avoid welded joints on partial pieces. High-power electric motors in particular have extensive coil windings, so long lengths of wire must be provided and processed for a continuous coil winding in order to avoid line losses and keep the required installation space to a minimum. By providing a wire blank bent into the shape of a bracket, the wire length required for producing the coil winding can be halved, since the respective wire blank can be processed into the coil winding in its bracket-shaped form with both wire ends. At the same time, the bracket-shaped form provides a precursor of a first winding head for producing a coil winding. Nevertheless, a not inconsiderable amount of space is required to produce the wire bent into the shape of a bracket, since the entire length of wire must first be processed to produce the wire bent into the shape of a bracket by one or more bending operations.
Accordingly, the object of the present disclosure is to provide a method and a device for producing a wire bent into the shape of a bracket which can be performed and operated in a space-saving manner.
This object is achieved by the disclosure according to claims 1 and 6. Embodiments of the disclosure result from claims 2 to 5 and 7 to 10.
For a method for producing at least one wire blank bent into the shape of a bracket, comprising a first wire section, a second wire section which is parallel to the first wire section, and a bent transition section between the first wire section and the second wire section, comprising the method steps of:
it is provided according to the disclosure that the second wire section is rolled about an axis parallel to the bending axis during the drawing process and remains rolled during the moving and bending steps.
The method according to the disclosure has the advantage that the rolling up of the second wire section requires less space compared to a wire section spread out in a straight line. On the one hand, this concerns the space required for the wire before execution of the moving step and before execution of the bending step. In this case, the rolled wire saves a significant part of the space that would be required by the unrolled and drawn wire length. In addition, the rolled second wire section is easier to handle in the bending step in contrast to an unrolled second wire section. The same applies to the handling and space requirements during the execution of the bending step. The sequence of the method steps is not determined by the sequence reproduced above. It is also conceivable, for example, that the moving step is carried out after the bending step to produce the wire blank bent into the shape of a bracket.
According to a further embodiment of the method, drawing the wire including the first wire section in the pull-out direction from the wire supply is provided. When the first wire section is drawn from the wire supply in the pull-out direction, then it can be straightened during the drawing process. In the pull-out direction, the first wire section is then straightened between the wire store and the transition section. For producing the wire blank bent into the shape of a bracket according to the method, approximately half the length of the wire blank bent into the shape of a bracket is required for the first wire section thus provided, wherein the length required for the transition section must still be taken into account. This also advantageously contributes to achieving the object, since the space required for the method results from the length of the first wire section, the transition section and the spatial extent of the rolled second wire section.
According to a further development of the method, a cutting of the wire is provided after drawing the length of wire required for the wire blank. For this purpose, a cutting device can be provided between the wire supply and the first wire section. In this way, the wire supply can hold a wire for a subsequent moving and bending operation for producing a bent wire blank. It is also conceivable that the wire section(s) for at least one further wire is/are drawn from the wire supply in the interim period in which the moving and bending step takes place.
The method can be further developed in that after the moving and bending steps, the wire of the second wire section is unrolled and straightened so that the second wire section extends parallel to the first wire section over its length. This advantageously contributes to producing a straightened wire blank bent into the shape of a bracket whose space requirement during storage and further handling—for example to produce a coil winding—does not exceed the space requirement during its production. In addition, there is the further advantage that the wire section bent into the shape of a bracket with the second wire section extending parallel to the first wire section over its length is comparatively easy to handle and store as a straight long material. According to a further embodiment, after unrolling, the second wire section can be re-straightened perpendicular to the axis in which the second wire section was rolled up. This promotes the release of any stresses in the wire that may be present after unrolling.
To increase the efficiency of the method, the method can be carried out for two or more wires guided parallel to one another. In particular, the method can be performed for six parallel wires or a plurality of three parallel wires.
According to a further aspect of the disclosure, a device for producing at least one wire blank bent into the shape of a bracket is provided, comprising
the second wire store is a ring store in which the second wire section can be wound.
The provision of the ring store results in a reduction of the space required after the moving and bending device. The second wire store is wound in the ring store. The ring store can be designed in such a way that the second wire section is inserted into the ring store in one winding layer, or is inserted into the ring store wound in a spiral shape in several layers. It is also conceivable that the second wire section is helically inserted in the ring store and thus has an extension in the ring store perpendicular to the pull-out direction of the wire. In a further structurally favorable embodiment of the disclosure, the wire can be supplied from a reel constituting the wire feed.
According to a further embodiment of the device, it is provided that the moving and bending device has a first clamp for fixing the first wire section and has a second clamp for fixing the second wire section arranged on a leg, wherein the leg can be pivoted about a pivot axis lying perpendicular to the pull-out direction and between the clamps and is movable parallel to the pivot axis, and wherein the second wire store can be pivoted about the pivot axis together with the leg. In this way, it is advantageously achieved that the bending of the wire is produced in the transition section without having to fix the wire again or at a further point. The circumstance that the leg and the moving and bending device can be pivoted together also reduces the installation space required for the device. Furthermore, the first leg can be movable or moved in the direction of the second leg during the moving step to avoid elongation of the wire in the transition section.
According to a further development of the device, it is provided that the moving and bending device has a bending blade which can be moved perpendicularly to the pull-out direction and about which the leg of the moving and bending device can be pivoted. The bending blade advantageously bends the wire at a bending edge, thus producing a defined bend and maintaining a defined length of the respective legs of the bent wire blank. In this way, it can be ensured that the bending is performed in an accurately repeatable manner and at exactly the right point with respect to the length of the wire. Furthermore, it can be ensured that the legs of the bent wire blank are of the same length, thus avoiding waste of the wire.
According to a further embodiment of the device, it results that the second wire store is linearly movable against the pull-out direction for removing the second wire section stored therein, wherein a second straightening device for the second wire store is provided for straightening the second wire section removed from the second wire store. In this way, the second wire section can be removed from the second wire store in which the second wire section is stored as bent and straightened at the same time so that the second wire section of the wire of the wire blank bent into a bracket is parallel to the first wire section of the wire of the wire blank bent into a bracket. The drawing or linear movement of the second wire store is performed essentially over the length of the first wire section, so that no additional space is required in relation to the length of the device. Accordingly, it follows from a further development of the disclosure that the second wire store is transferable to a slide linearly movable parallel to the pull-out direction and the second straightening device is arranged on the linearly movable slide.
Further features, details and advantages of the disclosure result from the wording of the claims and from the following description of exemplary embodiments based on the drawings.
In the figures:
In the first wire store 20 and in the second wire store 30, the wires 10 with the respective wire section 11, 12 are inserted in approximately the same length.
All of the features and advantages resulting from the claims, description, and drawing, including constructive details, spatial arrangements, and method steps, may be essential to the disclosure either alone or in various combinations. As such, it is possible for the bending step to be carried out before the moving step. Furthermore, the first wire section can also be inserted in a space-saving ring store while the moving and bending step is being carried out, and can be removed from the store and straightened after the moving and bending step analogously to the second wire section.
Number | Date | Country | Kind |
---|---|---|---|
102021104217.8 | Feb 2021 | DE | national |
This application is the U.S. National Phase of PCT Appln. No. PCT/DE2022/100060, filed Jan. 25, 2022, which claims the benefit of German Patent Appln. No. 102021104217.8, filed Feb. 23, 2021, the entire disclosures of which are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2022/100060 | 1/25/2022 | WO |