This application is a 371 of PCT/EP04/00282 filed on Jan. 16, 2004.
The invention concerns a method and a device for producing slabs in a continuous casting installation, with an oscillating casting mold and a downstream strand guide below it, in which the cast strand is bent from the vertical casting direction into the horizontal rolling direction and during this process is supported and conveyed by driver rolls, which are arranged opposite each other in pairs, are adjusted relative to each other with well-defined contact force and can be combined into segments, and is deformed by at least one pair of driver rolls to a thickness that is reduced relative to its cast state, after which the continuous preliminary section or the reduced strand is cut into slabs, which are conveyed to a soaking furnace and then to a rolling mill.
So that the cast strand, which is produced in a continuous casting installation with a thickness of less than 100 mm, can be conveyed out of the continuous casting installation, the driver rolls are pressed against the strand with a certain pressure which prevents the driver rolls from slipping through and produces a sufficiently large tensile force on the strand below the point of complete solidification. In the state of the art, this pressure of the driver rolls in the area of complete solidification or locally sooner is utilized to alter the strand thickness, since the rolling forces to be applied are small due to the fact that the cast strand is still soft.
For example, DE 38 22 939 C1 describes a continuous casting method for the production of slabs with a reduced thickness relative to the cast state, in which a strand whose cross section is partially solidified is deformed by rolls that can be hydraulically adjusted relative to each other. These rolls acts to deform the strand both within the solidification section and in the area of the completely solidified strand, and during this process, the strand is deformed from about 60 mm to a final gage of 20 to 15 mm, and at the same time a product with a high proportion of rolling microstructure is produced. In this regard, at least one pair of rolls that acts on the already completely solidified part of the strand can be adjusted against stops to ensure the final dimension of the strand.
DE 198 17 034 A1 describes a method for the continuous casting of thin metal strip in a continuous casting installation with an oscillating, water-cooled mold, in which, directly after the complete solidification of the cast strand, at least one pair of driver rolls is continuously pressed against the strand with a variably defined pressure to achieve a well-defined thickness reduction of at least 2% and to maintain a desired strand thickness that has been adjusted in advance at a constant level.
Finally, EP 0 804 981 B1 describes a continuous casting method and a continuous casting device, in which cast slabs are fed to a large number of reducing installations, each of the reducing installations is assigned a target rolling reduction or a target pressure, and a deformation of a liquid core of the slabs is carried out, such that cast slabs can be produced with increased or decreased thickness compared to the slabs continuously removed from the mold.
In addition to the effort to reduce the thickness of the cast strand inexpensively and with relatively simple means that are already available by using the drivers that are already present, another objective that needs to be pursued is improvement of the surface quality of the slabs that are produced. In their cast state, continuously cast products may have surface defects, such as oscillation marks and other microstructural inhomogeneities. Subsequent rolling of the slab into a strip then results in defects in the strip surface. The effect of oscillation marks in austenitic steels consists essentially in the fact that, at the base of the oscillation marks (in the notch), there is diminished heat dissipation, which results in coarsening of the microstructure and segregation. These are mainly Cr or Mo concentrations. These concentrations lead to the formation of intermetallic phases, which, as the cause of the specified surface defects, must be removed by grinding before the rolling operation is carried out.
The solidification behavior of austenites is characterized by shrinkage during the transformation from ferrite to austenite, which results in a tendency of the strand shell to contract. This contraction can lead to increased delta ferrite concentrations and to poorer hot workability in the affected places. The nonuniform solidification at the surface then causes so-called scale patterns during direct rolling. These negative phenomena also generally have to be eliminated by grinding.
In ferritic steels as well, oscillation marks cause diminished heat dissipation at their base, which results in coarsening of the microstructure and segregation (Ni concentration, hard spots). To obtain a satisfactory final product, these inhomogeneities must also be eliminated by grinding.
The aforementioned surface defects cannot be eliminated by the previously known deformation of the cast strand while it is still soft, since the practical effect is to “knead” especially the oscillation marks that are present more deeply into the soft cast strand.
Proceeding on the basis of this prior art, the objective of the invention is to specify a simple method and a device based on this method, by means of which the surface working, e.g., grinding, that was previously required can be eliminated.
In accordance with the present invention, which the cast strand, while it is still within the continuous casting installation in the area of the bending or straightening driver rolls after its complete solidification, is deformed by at least one reducing stand at an early point in time, at a temperature that is still so high, and in such a well-defined way with high energy input that
This positive effect of a deformation carried out at an early point in time with high energy input, especially in the surface zone of the cast strand, by which the recrystallization during the subsequent heat treatment in a soaking furnace is favorably influenced and by which the oscillation marks are smoothed down at an early point in time, so that the heat flow over the strand surface can occur uniformly, is preferably obtained at a surface temperature of the cast strand on the order of 1,000° C.
In accordance with the invention, this deformation, by which subsequent surface working, for example, by grinding is reduced to a minimum, is carried out with one or more reducing stands with roll diameters of 600 to 900 mm, and preferably with a roll diameter of 700 mm, for the reduction of a cast strand 50 mm thick by a maximum amount of 7 mm.
To be able to maintain extremely narrow tolerance limits in the hot rolled strip, slabs of very exact geometry are required in the rolling mill. Therefore, to realize an exactly defined slab format, the rolls of the reducing stand are provided with preshaping, and the reducing stand or stands are provided with an automatic gage control system and are connected with the downstream rolling mill for feedback of the rolling parameters to be set. When several reducing stands are used, only a slight reduction of the cast strand with high dimensional accuracy of the desired preliminary section is carried out with the last pair of rolls. These measures then already make it possible to produce a cast strand with exactly adjusted geometric data and improved surface in the continuous casting installation, so that slabs that do not first have to be subjected to expensive surface working can be supplied to the subsequent hot rolling mill.
To carry out the method of the invention, at least one reducing stand is installed within the continuous casting installation in the area of the bending or straightening driver rolls. In this regard, depending on existing spatial conditions, the following items can be provided:
Additional details, features, and advantages of the invention are apparent from the following explanation of the specific embodiments of the invention schematically illustrated in the drawings.
a–2c show the microstructural development of the cast strand or the slab during the various process steps of
The cast strand 12 that has been produced leaves the oscillating mold 11 in the vertical direction, is bent into the horizontal strand conveyance direction 13, and supplied as a continuous cast strand 12 to a reducing stand 30, where the deformation in accordance with the invention occurs, by which a reduced strand 12′ with the desired surface qualities is produced. After separation of the reduced strand 12′ into slabs 12″, the slabs are subjected to a heat treatment in a soaking furnace 40 before being fed into the rolling mill (the rolling mill is not shown). The microstructural forms of the cast strand or slab that are obtained in each of these various process steps of
The cast strand 12 produced in the mold 11 has a cast microstructure 14 (
In
In
In
In
The invention is not limited to the illustrated embodiments. Thus, the number of reducing stands 30a, 30b and converted straightening drivers 24 shown in
Number | Date | Country | Kind |
---|---|---|---|
103 02 265 | Jan 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2004/000282 | 1/16/2004 | WO | 00 | 7/21/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/065030 | 8/5/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3333452 | Sendzimir | Aug 1967 | A |
5657814 | Maebara et al. | Aug 1997 | A |
5904204 | Teraoka et al. | May 1999 | A |
6286354 | Kajiwara et al. | Sep 2001 | B1 |
Number | Date | Country |
---|---|---|
38 22 939 | Oct 1989 | DE |
38 40 812 | Apr 1990 | DE |
0 326 190 | Aug 1989 | EP |
1 059 125 | Dec 2000 | EP |
2000197953 | Jul 2000 | JP |
9954072 | Oct 1999 | WO |
0010741 | Mar 2000 | WO |
0020141 | Apr 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060054297 A1 | Mar 2006 | US |