The mean secondary-particle size was determined with the Zetasizer 3000 Hsa produced by Malvern.
36 kg of fully demineralized water are introduced into a 60 1 stainless steel batch tank. 16.5 kg of type C aluminum oxide (supplied by Degussa AG) are sucked in with the aid of an Ystral dispersion and suction mixer (at 4500 rpm) and coarsely predispersed. A pH of 4.5 is established and maintained by adding 50-percent-strength acetic acid during sucking in. After the powder is introduced, the dispersion is completed using an Ystral Type Z 66 rotor/stator continuous homogenizer having four processing rings, a stator slot width of 1 mm and a rotational speed of 11,500 rpm. During this 15-minute dispersion at 11,500 rpm, the pH is adjusted and maintained at a pH of 4.5 by adding further 50-percent-strength acetic acid. A total of 570 g of 50-percent-strength acetic acid was needed and a solids concentration of 30 wt. % was established by adding 1.43 kg of water.
53 kg of fully demineralized water and 80 g of 30%-strength KOH solution are introduced into a 60 1 stainless-steel batch tank. With the aid of an Ystral dispersion and suction mixer (at 4500 rpm), 8 kg of AEROSIL® 90 powder are sucked in and coarsely predispersed. After introducing the powder, the dispersion is completed using an Ystral Type Z 66 rotor/stator continuous homogenizer having four processing rings, a stator slot width of 1 mm and a rotational speed of 11,500 rpm. During this 15-minute dispersion at 11,500 rpm, the pH is adjusted to and maintained at a pH of 9.5 by adding further KOH solution. In this process, a further 96 g of KOH solution was used and an abrasive-body concentration of 12.5 wt. % was established by adding 2.8 kg of water.
The predispersion is ground using a Model HJP-25050 high-pressure homogenizer Ultimaizer system supplied by Sugino Machine Ltd, but with a three-jet chamber instead of the two-jet chamber incorporated in the Ultimaizer system. (The Ultimaizer system is used only as a high-pressure pump.) The three-jet chamber divides the predispersion, which is at high pressure, into three subflows that are each decompressed via a diamond (alox 1) nozzle or an alox 2 monocrystalline corundum (colourless sapphire) nozzle having a diameter of 0.25 mm. The three dispersion jets emerging at a very high velocity meet at a collision point, in which process the desired dispersion/grinding effect is achieved. The collision point is tetrahedrally surrounded by sapphire balls (three base balls each of 8 mm and an upper ball of 10 mm). Since all three liquid jets are situated on a common imaginary plane, the angle with respect to the adjacent beam is 120° in each case. 250 MPa is chosen as the pressure for the grinding of the aluminum oxide predispersion. The dispersion can then be cooled without difficulty with the aid of a conventional heat exchanger. The mean particle size of the particles in the dispersion is 51 nm.
The example of alox 2 is performed analogously to alox 1,but using sapphire as nozzle and ball material. The mean particle size of the particles in the dispersion is 55 nm.
The predispersion is ground with a Model HJP-25050 Ultimaizer system high-pressure homogenizer supplied by Sugino Machine Limited, but using a three-jet chamber instead of the two-jet chamber incorporated in the Ultimaizer system. (The Ultimaizer system is used only as a high-pressure pump.) The three-jet chamber divides the predispersion, which is at high pressure, into three subflows that are each decompressed via a nozzle having a diameter of 0.25 mm. The three dispersion jets emerging at very high velocity meet at a collision point, in which process the desired dispersion/grinding effect is achieved. The collision point is tetrahedrally surrounded by polycrystalline Si3N4 balls (three base balls each of 8 mm and an upper ball of 10 mm). Since all three liquid jets are situated on a common imaginary plane, the angle with respect to the adjacent jet is 12020 in each case. 250 MPa is chosen as the pressure for grinding the silicon dioxide predispersion. The dispersion can then be cooled without difficulty with the aid of a conventional heat exchanger. The mean particle size of the particles in the dispersion is 163 nm.
The values in the table show that, in the method according to the invention, the dispersion in the flooded grinding chamber results in service lives of the nozzle and ball materials that are comparable to those in a method in which the dispersion is performed in a gas-filled grinding chamber. The particle size achieved is virtually the same.
The wear of the nozzle material can easily be determined from the increasing throughput performance. With as-new nozzles, that is to say an initial nozzle diameter of 0.25 mm and the use of a three-jet chamber, a throughput of approximately 4.3 l/minute is achieved at a pressure of 250 MPa. With progressive wear, the nozzle aperture becomes increasingly greater; the throughput rises. This rise of the throughput performance is, however, limited by the performance of the high-pressure pump. For the same grinding pressure, more predispersion has increasingly to be compressed. Depending on the performance of the high-pressure pump used, the desired pressure cannot, however, be maintained from a certain throughput upwards and the performance limit of the high-pressure pump is reached. In the unit used here, this is the case at approximately 7.3 l/min.
It furthermore also has to be borne in mind that the alignment also does not always remain constant in the case of nozzle apertures that are too considerably expanded since the increase in the nozzle aperture does not occur with radial symmetry. Depending on the alignment of the normally monocrystalline nozzle material, an isotropic dependence of the wear resistance of various crystalline planes may be observed. Thus, in the case of considerably eroded diamond nozzles, hexagonal or even triangular nozzle apertures are obtained.
Since the balls are substantially subjected to stress to a lesser extent than the nozzles since, of course, most of the kinetic energy of the accelerated liquid jets is used up as fragmentation energy and/or transformed into heat at the collision point, it is sufficient for the balls to be inspected when the diamond nozzles are replaced. Incipient wear can easily be detected from a roughening of the ball surface. The balls can then be replaced as a precaution. Since such balls are used to a large extent as, for example, ball-bearing balls in the special ball bearing sector (“chemistry pumps” etc.), a timely replacement is not a large cost factor.
(&)Dispersion pressure 250 MPa;
(#)Degussa pyrogenically produced aluminium oxide;
(*)Degussa pyrogenically produced silicon dioxide;
(§)Service life of nozzle x at least 10: at least 10x the service life of the nozzle material, lines 2 and 3 correspondingly.
Number | Date | Country | Kind |
---|---|---|---|
103 60 766.8 | Dec 2003 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP04/13609 | 12/1/2004 | WO | 00 | 6/22/2006 |