The present invention relates to a method and a device for stainless steel production without electrical energy supply on the basis of liquid pig-iron and FeCr solids, wherein, after a pretreatment in a blast furnace and a DDD treatment (dephosphorization, desiliconization, desulpherization) in a DDD installation, the liquid pig-iron is subsequently heated, refined or alloyed in an AOD converter, is reduced and finally an adaptation/adjustment of the treated steel melt is carried out in a ladle furnace.
The use of an AOD converter for manufacturing noble steels is already known. Thus WO 02/075003 describes a control method based on a continuous measurement of exhaust gases in combination with a computer and a dynamic model by means of which the necessary blow rates of oxygen and inert gas as well as the material charges are controlled.
EP 1 310 573 A2 discloses a method for manufacturing a metal melt, particularly for quenching a metal melt for manufacturing, for example, alloyed stainless steel or noble steel in an AOD converter, wherein the method is based on a computer technology which takes place in accordance with a process model and which controls the metallurgical installation, the process model describes the behavior for at least one variable process parameter between a first process value, an adjusting value, and a final process value. An example describes the process sequence for manufacturing a steel of the class AISI 304.
Stainless steels of the ferritic steel group AISI 4xx are conventionally always manufactured from scrap of the same type in the EAF and are later additionally alloyed and decarbonized in the AOD converter. In order to utilize the use of pig-iron, pig-iron pretreated in a steel mill with scrap and alloy melted into the pig-iron is mixed in a ladle outside of the furnace and is then charged into the converter.
WO 2006/050963 A2 proposes a method for producing stainless steel of the ferritic steel group AISI 4xx, particularly the steel group AISI 430, on the basis of liquid pig-iron and FeCr solids, with a DDD process line and the AOD converter with successively carried out method steps:
In this known method, the manufacture of the stainless steel is carried out advantageously with the use of the AOD converter without the use of an EAF, i.e., without the supply of electrical energy. However, this known method has the disadvantage that finally because of the lack of energy in this method only the manufacture of ferritic steels is possible.
The object of the invention resides in utilizing the method known from WO 2006/050963 A2 with AOD technology for directly charging the pig-iron and subsequent alloying in the converter for the production of stainless steel of all stainless qualities, for example, AISI 3xx, 4xx, 2xx, in the austenitic as well as in the ferritic range with the use of autogenic chemical energy.
The above object for manufacturing stainless steel of the mentioned steel quality is solved in that, for the stainless steel production of all stainless qualities in the austenitic range as well as in the ferritic range, the slag-free liquid pig-iron quantity pretreated in the blast furnace is separated and introduced into two classic “Twin” AOD-L converters, in which the required chemical process steps (heating, decarbonizing, and alloying) are carried out with the use of autogenic chemical energy in a parallel contrary sequence with the use of autogenic chemical energy, wherein initially the DDD treatment is carried out in the first “Twin” AOD-L converter and decarbonization is initially carried out in the second “Twin” AOD-L converter.
Advantageous embodiments of the invention are mentioned in the dependent claims.
After concluding the DDD treatment, a deslagging of the pig-iron is necessary prior to the subsequent heating in the converter, because the typical AOD process is supposed to start slag-free. This also increases the efficiency of the lance which is used in the second AOD-converter and a free surface of the melt is ensured for soaking the process gases.
Heating of the pig-iron to a desired temperature or a temperature which is required for the subsequent process steps takes place by Si-oxidation. For this purpose, FeSi is charged into the “Twin” AOD-L converter and an oxygen/inert gas mixture is blown through the side nozzles of a top lance into and onto the pig-iron. For this purpose, a three-hole top lance or four-hole top lance is used in the first “Twin” AOD-L converter, and a single-hole top lance for the AOD-L process is used in the second AOD-L converter.
Since heating of the initial metal is carried out according to the invention after the DDD treatment, it is especially possible to charge Ni or Ni-alloys into the “Twin” AOD-L converters. In this manner, the balance energy can be carried out in any chosen manner.
Because of the contrary sequence of the process steps carried out at different times in the two “Twin” AOD-L converters, decarbonization and alloying of the melt takes place in the first “Twin” AOD-L converter after the conclusion of the DDD treatment and the charging and heating of decarbonization at alloying, while in the second “Twin” AOD-L converter, after conclusion of the classical decarbonization and/or treatment steps belonging thereto (such as, for example, desulphurization and alloying including tapping), the pig-iron is heated.
Because of the separation of the pretreated slag-free liquid pig-iron quantity according to the invention into two “Twin” AOD-L converters arranged in parallel in the process line after the blast furnace and the DDD installation, and the process steps are carried out in the converters in a contrary manner, the production of all RST steel qualities is facilitated in an advantageous manner. Simultaneously, a decoupling of the requirement of electrical energy for all qualities takes place because the only energy carrier used is the autogenic chemical energy already present in the pig-iron and introduced through the charged FeSi. Moreover, this separation of the pig-iron quantity and the process pattern, a reliable temperature pattern, reduced process costs as well as reduced investment costs are achieved because always only a small pig-iron quantity has to be treated at a given time.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of the disclosure. For a better understanding of the invention, its operating advantages, specific objects attained by its use, reference should be had to the drawings and descriptive matter in which there are illustrated and described preferred embodiments of the invention.
In the drawing:
In
The selected illustration in
Consequently, the DDD treatment and charging and heating in the converter 2 is synchronized with the AOD-L treatment in the converter 3 and vice versa. The AOD-L treatment in the converter 2 is synchronized with the charging and heating steps in the converter 3.
While specific embodiments of the invention have been shown and described in detail to illustrate the inventive principles, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 056 672 | Nov 2006 | DE | national |
The present application is a Divisional Application of U.S. patent application Ser. No. 12/312,882, filed Jul. 20, 2009, issued on Apr. 30, 2013 as U.S. Pat. No. 8,430,945, which is a 371 of International application PCT/EP2007/010012, filed Nov. 20, 2007, which claims priority of DE 10 2006 056 672.6, filed Nov. 30, 2006, the priority of these applications is hereby claimed and these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7819940 | Reichel | Oct 2010 | B2 |
Number | Date | Country |
---|---|---|
1508284 | May 1970 | DE |
2014339 | Oct 1970 | DE |
1940761 | Feb 1971 | DE |
19621143 | Aug 1997 | DE |
1310573 | May 2003 | EP |
1131944 | Oct 1968 | GB |
1311290 | Mar 1973 | GB |
2141739 | Jan 1985 | GB |
59182909 | Oct 1984 | JP |
59211519 | Nov 1984 | JP |
08092614 | Apr 1996 | JP |
9302405 | Nov 1997 | JP |
02075003 | Sep 2002 | WO |
03106716 | Dec 2003 | WO |
WO 03103716 | Dec 2003 | WO |
2006050963 | May 2006 | WO |
Entry |
---|
Nishimura et al. JP 08092614A. Apr. 9, 1996. Machine translation. |
Meierling et al. WO 03103716. Dec. 24, 2003. Machine translation. |
Number | Date | Country | |
---|---|---|---|
20120175828 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12312882 | US | |
Child | 13428854 | US |