The invention relates to a method and a device for producing polyesters, copolyesters and polycarbonates by the esterification of dicarboxylic acids or dicarboxylic acid esters and diols or by the reesterification of dialkylcarbonates or diaryl carbonates with bisphenols in at least one reaction stage, prepolycondensation of the esterification or reesterification products in at least one reaction stage and the polycondensation of the prepolycondensation product in at least one polycondensation stage.
For the continuous production of polyethyleneterephthalate (PET) and its copolyesterd, terephthalic acid (PTA) or dimethylterephthalate (DMT) and ethyleneglycol (EG) as well optionally further comonomers as starting materials are used. PTA is mixed with EG and a catalyst solution to a paste and fed to a first reaction stage for esterification in which the esterification is carried out at atmospheric pressure or subatmospheric pressure by the splitting off of water. When DMT is used, the DMT melt and the catalyst together with the EG are fed to a first reaction stage for esterification and in this stage the reaction is carried out at atmospheric pressures with splitting off of methanol (MeOH). The split-off substances are fed together with distilled EG to a rectification column for the recovery of EG.
The recovered EG is fed anew to the esterification or is used to produce the paste. The product stream of the esterification or reesterification is fed to a reaction stage for prepolycondensation which as a rule is carried out under vacuum. The product stream of the prepolycondensation is supplied to a reaction stage for polycondensation. The obtained polyester melt is processed directly to fibers or to chips. In processes for the production of PET the esterification is carried out in two reaction stages formed by stirred vessels. With a plant capacity up to 400 metric tons per day, the prepolycondensation is carried out in an upright cascade reactor with a stirrer running along the bottom and with plant capacities up to 900 tons per day in two polycondensation stages with the first configured as a stirred vessel and the next as a horizontal cascade reactor. These horizontal cascade reactors are chambered at the sump side and can have a vertical perforated or ring disk on the stirrer on a horizontal shaft whose purpose is to provide a defined surface area.
The two esterification stages, two polycondensation stages and a polycondensation stage are provided in a plant in which the first three reaction stages are formed by stirred vessels and the last two reaction stages are configured as horizontal cascade reactors and provide a high stability and flexibility of PET production offering the best possibility for increasing plant capacity without uncontrolled increase in cost for requirement and structures (Schumann, Heinz-Dieter: Polyester producing plants: principles and technology. Llandsberg/Lech: Verl. ModerneIndusrie, 1996, P. 27 to 33).
In a plant comprised of two stirred vessels for esterification, a staged reactor for prepolycondensation and a horizontal cascade reactor for polycondensation, at relatively low cost one can obtain comparable stability and flexibility of polyester production although with the drawback that the dimensioning of the reactors for polycondensation and the polycondensation stage must be larger because of the increased vapor volume and the permissible transport dimensions are achieved already with average apparatus capacities.
It is the object of the present invention, starting from the afore-described state of the art, to provide a method and an apparatus for carrying out the method, which permits a significant increase in the capacity of an apparatus for producing PET with four reaction stages and a carryover alternatively of apparatus with larger fixed reaction stages to four reaction stages without an increase in the vapor loading and/or an increased danger of product entrainment with the vapors of prepolycondensation or polycondensation. Furthermore, in the production of polybutyleneterephthalate (PBT) from PTA and 1,4 butanediol (BDO) a critical vapor loading should be avoided in the vacuum-driven esterification stages.
These objects are attained in that the product stream supplied to at least one of the reaction stages prior to entering the reaction stage or within the reaction stage is divided into at least two partial streams and the partial streams, either completely separate from one another or partly separate from one another are passed through the reaction stages.
According to a further feature of the invention, the partial streams, preferably in equal volume, run through the reaction stages or sections of the reaction stages parallel to one another until they are combined in a common product outflow whereby the partial streams in the reaction stages are combined at the latest at the outlet and the volume rates of flow into and out of the reaction stages are controlled.
An alternative, in accordance with the invention resides in that the partial streams in the reaction stages for the prepolycondensation or polycondensation are passed in opposite direction and discharged through separate outlets.
In order to carry out the method it is within the scope of the invention to provide a cascade reactor or cage reactor which has two spatially separated segments traversed separately and in succession.
As a horizontal cascade reactor, preferably a disk stirrer reactor with perforated or annular disks is used.
With partial streams which flow toward one another, the inlets for the partial streams are each provided at one end of the disk stirrer reactor and the outlet for the product stream formed by the partial stream is provided in a middle region of the disk stirrer reactor.
In the case of a product line branching or a product differentiation by different viscosities, it is also conceivable to provide the inlet for the partial streams in the central region and the outlets for the partial streams at the ends of the disk stirrer reactor.
Instead of a disk stirrer reactor the use of an upright multistage reactor is possible in which the inlets are provided for the product stream in the head region and the outlet for the product stream resulting from the collection of the partial stream at the bottom and at least in an upper section partial stages are provided for the separate feed of the partial stream and a subsequent stage or a bottom chamber is provided for combining the partial streams.
A multistage reactor can be so provided that inlet and outlet are connected by a duct lying externally of the multistage reactor for the product feedback and in which a feed for the product ahead of the product and elements for dividing the product stream into partial streams are integrated.
In the drawing several embodiments in the form of flow diagrams of the method technology have been illustrated which are described in greater detail below.
A further refinement of the method of the invention is shown in
According to
A further modification of the process of
For the continuous production of polybutylenetere-phthalate (PBT), PTA and butandiol (BDO) are mixed together and the pasty mixture according to
The mixture of water, tetrahydrofuran (THF) and BDO formed in the esterification reaction is treated in a rectifier column. The THF and water as the head product is fed to a THF recovery and BDO as the sump product is supplied anew to the multistage reactor (60). The vapors from the prepolycondensation stage (66) and from the disk reactor (68) are drawn off through the ducts (70, 71) to separate vacuum systems and are subjected to a artial condensation for the purpose of recycling the BDO.
Number | Date | Country | Kind |
---|---|---|---|
102-19-671.0 | Mar 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/03412 | 4/2/2003 | WO | 11/1/2004 |