Method and device for producing three-dimensional models using a binding agent system

Information

  • Patent Grant
  • 11541596
  • Patent Number
    11,541,596
  • Date Filed
    Friday, September 11, 2020
    3 years ago
  • Date Issued
    Tuesday, January 3, 2023
    a year ago
Abstract
The invention relates to a method, a device and a binding agent system for producing three-dimensional models.
Description
FIELD OF THE INVENTION

The invention relates to a method and a device as well as a binder system for producing three-dimensional models.


A method for producing three-dimensional objects from computer data is described in the European patent specification EP 0 431 924 B1. In this method, a particulate material is applied in a thin layer to a platform, and a binder material is selectively printed on the particulate material, using a print head. The particle area onto which the binder is printed sticks together and solidifies under the influence of the binder and, if necessary, an additional hardener. The platform is then lowered by a distance of one layer thickness into a build cylinder and provided with a new layer of particulate material, which is also printed as described above. These steps are repeated until a certain, desired height of the object is reached. A three-dimensional object is thereby produced from the printed and solidified areas.


After it is completed, this object produced from solidified particulate material is embedded in loose particulate material and is subsequently removed therefrom. This is done, for example, using an extractor. This leaves the desired objects, from which powder deposits are removed, for example by manual brushing.


Of all the layering techniques, 3D printing based on powdered materials and the supply of liquid binder is the fastest method. This method may be used to process different particulate materials, including natural biological raw materials, polymers, metals, ceramics and sands (not an exhaustive list).


For example, a solid in the particulate material may be used as the binding system. This solid is dissolved by means of a solvent which is expelled from the ink-jet print head. After the solvent evaporates, the particles stick together in the desired locations.


The component may be removed from the remaining loose powder after a certain waiting period. The waiting period is generally long, since the solvent is only slowly released from the dissolved material. The components are often weak after unpacking and can be plastically deformed. The volatilization of the solvent produces a certain deposit buildup on the component, which must be removed manually after unpacking. The solvent may additionally attack the print head. Moreover, the dissolution process and subsequent resolidification causes shrinkage in the component and thus also geometric deviations.


A solvent may also be loaded with molecules or particles and then used. This may reduce shrinkage. The aggressiveness of the solvent may also be decreased while maintaining the same component strength. However, the solvent must be completely removed before unpacking, and the problem of deposit buildup occurs here as well.


Another option is to use a system that chemically results in a solidification of the printed fluid and thereby causes a binding of the particles. The system components are kept separate in the system, if possible. The desired solidification reaction does not occur until the printing process. One example of a system of this type may be a method known as the cold resin process. An acid-encased sand is brought into contact with furfuryl alcohol. This results in a chemical reaction which causes the previously liquid components to be converted to a cross-linked plastic.


These systems significantly reduce the aforementioned shrinkage. The monomers used nevertheless present a danger to the print head. The monomers for processes of this type often have an aggressiveness that is comparable to that of solvents. The more or less latent cross-linked plastics pose a permanent risk to the print head, since they may solidify at any time, due to contaminants or undesirable catalysis reactions, and thus damage the print head.


Due to their high reactivity, both systems are hazardous material systems which may be harmful to the environment and may be used only in industrial environments.


Another way to further minimize the aforementioned problems is to use an initiator system which is not present in the powder. Radiation-hardening systems are frequently described in the literature. They have certain disadvantages, depending on the chemical and physical hardening system. In the case of UV-hardening systems, for example, the complete, layer-by-layer hardening is a disadvantage, since it results in a delay in the build process. Another disadvantage is that no layer bonding occurs with excessively hard irradiation. Pure IR-hardening systems also suffer from this problem.


One object of the invention was therefore to provide a binder system, a method and a device which avoids or at least reduces the disadvantages of the prior art.


BRIEF DESCRIPTION OF THE INVENTION

In one aspect, the invention comprises a method for producing three-dimensional (3D) molded bodies (components) by means of 3D printing.


In another aspect, the invention comprises a device for carrying out the 3D printing method according to the invention.


In one aspect, the invention comprises a binder system which includes at least two components.


DETAILED DESCRIPTION OF THE INVENTION

A number of terms in the invention are explained in greater detail below.


Within the meaning of the invention, “3D printing methods” are all methods known from the prior art which facilitate the construction of components in three-dimensional molds and are compatible with the described method components and devices. In particular, these are powder-based methods, for example SLS (selective laser sintering).


A “binder” or “binder system” within the meaning of the invention is composed of two components and generally relates to a novolak or resol system having a solvent. All known 3D printing-compatible phenols and alcoholic and aqueous solvents may be used which are known to those skilled in the art and therefore do not need to be described in greater detail here. Special components and phenols are indicated in the following description. Acids or bases are required for producing the novolak or resol systems of the invention, it being possible to use all acids and bases known for novolaks and resols which are known to those skilled in the art.


The “prepolymerisates” contained in the binders of the invention may vary depending on the application and are adapted to the other material components, such as particulate materials.


All materials known for powder-based 3D printing, in particular sands, ceramic powders, metal powders, plastics, wood particles, fibrous materials, celluloses and/or lactose powders, may be used as “particulate materials.” The particulate material is preferably a dry, free-flowing and a cohesive, firm powder.


“Temperature regulation” of the particulate material is understood to mean that the powder material applied to the build space is held in its totality within a certain temperature window.


Within the meaning of the invention, a “heating” or “heat treatment” after the application of binder is the selective heating of the material areas provided with binder for building up the component. The temperature is significantly increased compared to the ambient temperature and the temperature-regulated particulate material on the build space.


According to the invention, the selective heating is carried out no earlier than after each second application of particulate material or after a constant or varying number of application steps. Within the meaning of the invention, the particulate material is distributed evenly over the build space and is smoothed off before another application of particulate material takes place.


Within the meaning of the invention, “selective binder application” or “selective binder system application” may take place after each particulate material application or irregularly, depending on the requirements of the molded body and for the purpose of optimizing the production of the molded body, i.e., non-linearly and not in parallel after each particulate material application. “Selective binder application” or “selective binder system application” may thus be set individually and during the course of producing the molded body.


“Finishing treatment steps” or “additional treatment steps” within the meaning of the invention are all methods known to those skilled in the art, to which the molded body obtained by the 3D printing process may be subjected, for example another heat treatment.


“Molded body” or “component” within the meaning of the invention are all three-dimensional objects that are produced with the aid of the method according to the invention and/or the device according to the invention and which have a nondeformability.


Any known 3D printing device that contains the necessary components may be used as the “device” for carrying out the method according to the invention. Common components include a coater, a build space, a means for moving the build space or other components, a dosing device and a heating means and other components which are known to those skilled in the art and therefore do not need to be listed in greater detail here.


“Counting means” for the particle layer application within the meaning of the invention may be a mechanical or other type of means, which is suitable for measuring the number of particle layer applications. It may be coupled with a control unit for other components or functions and/or software.


The invention, along with its preferred specific embodiments, is described in greater detail below.


In particular, the invention relates to a method for producing a component (3D molded body), wherein (a) a particle layer is applied to a building platform (102) in a first step with the aid of a powder coater (101); (b) a binder (400) is selectively applied in a second step with the aid of a binder dosing device (100); (c) the applied layer or layers is/are subjected to a heat treatment in another step with the aid of a heat source (600); (d) the building platform (102) is lowered by the thickness of one layer, or the powder coater (101) and possibly additional device components is/are raised by the thickness of one layer; steps a) through d) are repeated until the component is built up, the heat treatment (c) being carried out after every second or additional layer application step.


The heat treatment is preferably carried out at a temperature of 100° C. to 170° C., preferably 130° C. to 160° C.


The invention also relates to a binder system which is suitable for a 3D printing method, comprising or including at least one adhesive and a solvent and possibly other additives.


The binder system according to the invention preferably contains a thermally secondarily cross-linkable prepolymerisate as the adhesive and one or multiple alcohols and/or water as the solvent. The binder system according to the invention particularly preferably comprises or includes a novolak and/or resol system and a solvent and possibly other additives.


A binder system which includes a novolak and/or resol system, as used in the shell molding method, has proven to be particularly suitable (e.g., Corrodur® from Hüttenes-Albertus Chemische Werke GmbH).


All suitable solvents may be used in the binder system according to the invention, the solvent being an alcohol, preferably ethanol and/or 2-propanol, and/or an aqueous solvent, preferably water and 2-propanol.


The binder system according to the invention preferably contains other additives, which are selected from the group of tensides and antifoaming agents.


In one preferred specific embodiment, the binder system according to the invention is characterized in that the solvent is alcohol-based and preferably contains no more than 30% resin.


On one particularly preferred specific embodiment, the binder system according to the invention furthermore includes up to 5% polyol, preferably glycol, propylene glycol or xylitol.


The binder system according to the invention preferably has one or multiple of the following advantageous characteristics at room temperature: In the preferred specific embodiment, the viscosity is between 5 and 40 mPas, particularly preferably between 8 and 20 mPas; a surface tension of 20 to 40 mN/m is preferred, 25 to 35 mN/m being particularly preferred. In one preferred specific embodiment, the vapor pressure of the binder system is no higher than 55 hPa, particularly preferably no higher than 40 hPa.


The method according to the invention advantageously represents a chemical system comprising a solvent and a binding component, in which it was surprisingly possible to achieve the fact that high unpacking and final strengths were obtained by selecting the special components. A high edge sharpness without deposits is also advantageously achieved, due to the lack of a reaction part in the particulate material. According to the invention, an aggressive solvent is furthermore avoided, and the print head is thus advantageously not subjected to the danger of damage. This guarantees continuous machine runtimes and avoids the need to repair or replace machine parts. On the whole, the avoidance of aggressive solvents, which are required in other methods according to the prior art, has many practical advantages, such as a reduced threat to material and personnel, as well as positive economical consequences, due to continuous machine runtimes and the avoidance of damage to the printing machines.


It has proven to be particularly advantageous if the heat treatment step in the method according to the invention is not carried out after each layer application and binder application but instead is carried out only after every second, preferably after every second to seventh, layer application. The heat treatment step is particularly advantageously carried out after every second, preferably after every fourth to sixth, layer application, most preferably after every fifth layer application.


The hardening operation is thus preferably carried out in layers but not with each consecutive layer. Among other things, this results in a faster workflow and thus an accelerated production speed.


This surprisingly achieves the fact that a better binding of the layers is achieved in the component and thus a frequently occurring “flaking” of the layers is avoided.


It has surprisingly proven to be particularly advantageous if the particulate material is temperature-regulated on the building platform. The component may be thereby produced in an even better quality, depending on the particulate materials (sands) used. It has proven to be advantageous if the particulate material is held at a temperature that is no less than 50° C. to 70° C., preferably no less than 55° C. to 65° C., most preferably no less than 60° C.


The component produced by means of the method according to the invention may be subjected to additional known work steps, such as an additional heat treatment step, preferably at a temperature of 150° C. to 200° C. This heat treatment step preferably takes place after unpacking.


In the method according to the invention, the binder described above or the binder system described above is preferably used. The binder or the binder system is preferably selectively applied with the aid of a binder dosing device and selectively solidifies the particulate material.


In principle, the method has the advantage that nearly all materials known in 3D printing methods may be used. The particulate material is preferably selected from the group comprising sands, ceramic powders, metal powders, plastics, wood particles, fibrous materials, celluloses and/or lactose powders. The particulate material is particularly preferably a dry, free-flowing powder, a cohesive, firm powder or a liquid-based dispersion.


The practical and economical advantages of the method according to the invention are excellent. The method is not bound to specific particulate materials (sands) and may be used practically universally, in contrast to known methods from the prior art. One example is the furan resin method, in which no alkaline sands may be used.


Compared to known methods, the particulate material (the sand) also does not have to be pretreated or premixed. The residual sand, which does not form the component, may be reused and recycled in the method without a great deal of effort. An admixture process, which is otherwise necessary, or complex cleaning steps are dispensed with. The material only has to be sieved. Material costs are thereby saved, while handling effort is reduced and labor costs cut. This has a positive effect on the component costs.


It is also possible to process the components without an additional heat treatment step.


Depending on the geometry, the binder content may furthermore be varied globally as well as selectively by means of the print resolution as well as selectively within the geometry. This is also not possible with known prior-art methods, since possible mixing ratios of the reactants may no longer be in the optimum range during printing, which results in quality problems. One example of this is the furanic system, since the acid causes problems in the sand unless the correct amount of reactant is present.


In another aspect, the invention is a device for 3D printing, which includes (a) a powder coater (101), a building platform (102), at least one binder dosing device (100), at least one heat source (600), preferably an IR emitter (604), preferably a lifting device (605) for lowering and raising the building platform (102) or the powder coater (101) and possibly other components, such as the binder dosing device (100) and the heat source (600), preferably an extraction device (606) and a counting means (607) for counting the particle powder layers applied. The device preferably also has a contact heater (602) or a hot air device (608).


In particular, the binder dosing device (dosing device) may comprise, for example, an ink-jet print head, which selectively doses the binder onto the build space in individually dispensable droplets. The binder dosing device may also comprise a filament dispensing system, the binder being selectively dosed onto the build space in the form of a thin, switchable filament.


The device according to the invention and the method according to the invention may be used in all 3D printing methods, preferably in powder-based 3D printing processes.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 shows a schematic representation of the components of a powder-based 3D printer in a sectional isometric view;



FIG. 2 shows a sequence of a conventional 3D printing process with the use of a layered radiation hardening technique;



FIG. 3 shows a sequence of a building process, using a radiation hardening technique, which does not take place with each layer;



FIG. 4 shows a diagram of the binder diffusion process;



FIG. 5 shows combined energy supplies via an IR emitter and convective heating of the powder;



FIG. 6 shows a chemical reaction equation for solidifying a novolak system, using a formaldehyde source with the introduction of heat;



FIG. 7 shows details of the reaction.





Additional details, preferred specific embodiments and advantages of the invention are discussed below.


According to the invention, a system is essentially used for building models in layers with the aid of ink-jet printing. The sequence according to the prior art is as follows: a layer of powder is applied to a building platform and leveled. A fluid is then printed onto the layer according to the layer data of the 3D model. The printed areas change one or multiple properties (strength, water solubility, etc.). The material usually solidifies due to a binding component in the liquid binder (e.g., an adhesive). The building platform is subsequently lowered, and the process begins all over again.


A very low viscosity is generally needed for the ability to print a liquid with the aid of an ink-jet print head. To do this, the liquid binding components (binder) usually have to be diluted. Solvents are generally used for this purpose. If each layer is heated, e.g., with the aid of radiation, the surface temperature of the layer to be printed is also very high. As a result, the solvent very quickly evaporates. The binder cannot penetrate deeply enough into the layer and thereby bind the layers together. The structural body will flake apart. In many cases, the strategy of heating less does not work, since the solidification sets in only above the evaporation temperature of the solvent. A positive process window cannot be found in known methods.


The device may include a powder coater (101) and a dosing device (100) that move over a build space, such as illustrated in FIG. 1. The powder coater may deposit a powder material (112) in layers (107, 111). The powder coater may move in a linear direction (106). The powder coater (101) may apply a quantity of the powder material (110) downstream of the coater and then smooth the powder material to form a top layer (111), such as illustrated in FIG. 1. The powder coater (101) may have an elongated container (113) for holding the powder material. The dosing device (102) may selectively apply a fluid (109) for forming a part (103). The dosing device may move in a path (105) over a build space (112). The device may include a build platform (102) that moves in a direction (108), preferably by a distance of the layer thickness.


By means of the method according to the invention and the device according to the invention, a stable, firm-edged and well defined structural body may be advantageously produced, for example if hardening takes place only after every fifth layer application. The solidification is thus completed only after adequate diffusion of the binding component (binder/binder system). The evaporation of the solvent of the fifth layer surprisingly does not impair the structural body.


In test series, it was possible to document that the number of exposures can increase, while no relationship between the layering time, liquid supply and IR radiation power resulting in satisfactory structural bodies was found when exposing every layer.


The system according to the invention draws heavily on powder-based 3D printing. The mechanical engineering of the device according to the invention has been expanded according to the requirements of the method according to the invention.


The device according to the invention includes a power coater. Particulate material is applied thereby to a building platform and smoothed (FIG. 2(a)). The applied particulate material may comprise a wide range of materials. For example, sands, ceramic powders, metal powders, plastic, wood particles, fibrous materials, celluloses, lactose powders, etc. may be used. The flow characteristics of these materials may vary enormously. Different coater techniques permit layering from dry, free-flowing powders and cohesive, firm powders to liquid-based dispersions. The height of powder layers is determined by the building platform. It is lowered after one layer has been applied. During the next coating operation, the resulting volume is filled and the excess smoothed. The result is a nearly perfectly parallel and smooth layer of a defined height.


After a coating process, a liquid is printed on the layer with the aid of an ink jet print head (FIG. 2(b)). The print image corresponds to the section of the component at the present build height of the device. The fluid strikes and slowly diffuses into the particulate material.


After the binder, preferably the binder system according to the invention, is printed, the layer is solidified using the method according to the invention (FIG. 2 (c)). For this purpose, an IR emitter may be passed over the build space. This emitter may be coupled with the axis of the coating system. The solvent evaporates during heating. In the case of liquids that present a fire hazard, the evaporating material is extracted immediately.


The controller of a machine according to the invention may count the layers and change the sequence only after, for example, every second layer and trigger a solidification run (FIG. 3). However, the energy supply may be estimated based on measured data, and the frequency of the solidification runs may be adapted. Examples include solidification runs after three, four, five or six layers of the particulate material and preferably the binder. The printed liquid quantities, which fluctuate depending on the layer image, are essentially an interference variable of a control of this type. Instead of control based on sensor data, the information may also be linked within the controller.



FIG. 4 shows an example of a droplet which penetrates the powder (particulate material). After steps (a) through (d), the penetration is deep enough to bind the layers. The diffusion quickly slows down, since the droplet has disappeared as a reservoir. If printing takes place on an excessively preheated layer, the solvent abruptly boils, and the binder becomes highly viscous. As a result, it remains in the state shown in FIG. 4(b). It therefore does not form a layer bond.


In addition to IR irradiation, the powder may also be preheated. Contact heaters, hot air or IR emitters are suitable for this purpose. This preheating makes it possible to effectively control the IR solidification process at low lamp powers and to achieve high process speeds.


After the solidification step, the building platform is lowered by the thickness of one layer (FIG. 2(d)). The complete component is created by repeating the aforementioned steps.


An exemplary representation of a chemical system which may be used according to the invention, based on a formaldehyde-hardenable novolak system, is as follows: novolaks are known from their use as a shell of sand having the designation Croning resin. Finished solutions of such resins and hardening additives, which are used for coating sand, may be purchased, for example, from Hüttenes-Albertus Chemische Werke GmbH. In preliminary tests, alcohol-based solutions have proven to be easily processed with the aid of ink-jet printing systems, due to their viscosity as well as their compatibility with the novolak system, the resin content preferably being less than 30%. Other additives, such as tensides and antifoaming agents, may be added to optimize printability, and up to 5% polyols, such as glycol, propylene glycol or xylitol, may be added to finely adjust the viscosity. The thermal hardening of the novolak after the selective introduction of the liquid into the particulate material takes place by the breakdown, e.g., of urotropine as the hardening additive in ammonia and formaldehyde and ultimately by a reaction with formaldehyde with the novolak according to the reaction equation in FIG. 7. The starting temperature of the hardening additive must be well removed from room temperature so that no undesirable reactions begin. The print solution set in this manner is then selectively introduced in layers into the particulate material with the aid of a print head, the particulate material having a temperature of preferably at least 60° C. during the entire build process. The evaporation speed of the excess solvent is increased, due to the temperature of the sand, and is continuously removed in the continuous extraction flow. The actual hardening process takes place by further supply of heat to the printed particulate material, preferably with the aid of an IR lamp, the temperature temporarily rising above 160° C. The exposure operation is preferably repeated every five layers, the build process always terminating with an exposure operation. During an exposure operation, a significant change in color of the printed areas, from ocher hues to brown, indicates the polymerization. Due to the formaldehyde and ammonia released at high temperature as a catalyst, the existing prepolymerisate is cross-linked in another condensation reaction to form a duroplast. After the final exposure step, the components are preferably left in the unprinted particulate material for another hour. To further increase the strength, the unpacked components may be preferably stored in the oven for another hour at a temperature between 150° C. and 200° C. The system is particularly characterized in that the components may be effortlessly removed from the unprinted sand and have a very high edge sharpness.


LIST OF REFERENCE NUMERALS




  • 100 Binder dosing device (dosing device)


  • 101 Powder coater


  • 102 Building platform


  • 103 Component (3D molded part)


  • 104 Build space boundary


  • 107 Powder layers


  • 200 Solidifying unit


  • 400 Binder


  • 401 Powder particles


  • 500 Heat effect


  • 502 Storage device


  • 503 Extraction system


Claims
  • 1. A method for producing a component comprising the steps of: (a) applying a particle layer including a particulate material to a building platform in a first step with the aid of a powder coater; (b) applying a binder system in a second step with the aid of a dosing device; (c) subjecting the applied layer or layers to a heat treatment in another step with the aid of a heat source; and (d) lowering the building platform by the thickness of one layer, or raising the powder coater and possibly additional device components by thickness of one layer; wherein steps a) through d) are repeated until the component is built up wherein the binder system includes i) a novolak and/or a resol; and ii) a solvent; wherein the dosing device includes a print head, and the applied particulate material has a temperature of at least 60° C. during an entire build process until the component is built up.
  • 2. A method according to claim 1, wherein the heat treatment is carried out at a temperature of 100° C. to 170° C.
  • 3. A method according to claim 1, wherein the particulate material is selected from the group consisting of sands, ceramic powders, metal powers, plastics, wood particles, fibrous materials, celluloses and lactose powders.
  • 4. The method of claim 1, wherein the binder system has a viscosity of 5 to 40 mPas.
  • 5. The method of claim 4, wherein the binder system has a vapor pressure at room temperature of 55 hPa or less.
  • 6. The method of claim 5, wherein the binder system has a surface tension of 20 to 40 mN/m.
  • 7. The method of claim 1, wherein the particulate material is preheated.
  • 8. The method of claim 1, wherein the binder is applied as droplets, and penetrates the particulate material deep enough to bind the layers.
  • 9. The method of claim 1, wherein the particulate material includes a sand.
  • 10. The method of claim 9, wherein the penetration of the binder into the particulate material is stopped by evaporation of the solvent.
  • 11. The method of claim 10, wherein the heat treatment polymerizes and/or cross-links the binder.
  • 12. The method of claim 9, wherein a resin content of the binder system is less than 30 percent.
  • 13. The method of claim 9, wherein the binder system has a vapor pressure at room temperature of 55 hPa or less.
  • 14. The method of claim 13, wherein the binder system has a viscosity of 5 to 40 mPas and/or the solvent has a surface tension of 20 to 40 mN/m.
  • 15. A method for producing a component comprising the steps of: (a) applying a particle layer including a particulate material to a building platform in a first step with the aid of a powder coater; (b) applying a binder system in a second step with the aid of a dosing device; (c) subjecting the applied layer or layers to a heat treatment in another step with the aid of a heat source; and (d) lowering the building platform by the thickness of one layer, or raising the powder coater and possibly additional device components by thickness of one layer; wherein steps a) through d) are repeated until the component is built up wherein the binder system includes i) a novolak and/or a resol; and ii) a solvent; wherein the dosing device includes a print head, and the applied particulate material has a temperature of at least 60° C. during an entire build process until the component is built up; wherein a resin content of the binder system is less than 30 percent; and wherein boiling of the solvent is avoided so that the binder system penetrates deep enough to bind the layers.
  • 16. The method of claim 15, wherein the binder system is applied with a print head.
  • 17. The method of claim 16, wherein the binder system includes the novolak.
  • 18. The method of claim 17, wherein the solvent includes an alcohol.
  • 19. The method of claim 18, wherein the solvent includes ethanol, propanol-2, or water.
  • 20. The method of claim of claim 16, wherein the binder system includes the resol.
Priority Claims (1)
Number Date Country Kind
10 2013 018 182.8 Oct 2013 DE national
CLAIM OF PRIORITY

This patent application is a continuation of U.S. patent application Ser. No. 15/029,759 filed on Apr. 15, 2016, which claims priority to International Patent Application PCT/DE2014/000546, filed on Oct. 29, 2014, and to German Patent Application DE 10 2013 018 182.8 filed on Oct. 30, 2013. This patent application claims priority to U.S. patent application Ser. No. 15/029,759 (published as US 2016/0263828 A10), International Patent Application PCT/DE2014/000546 (published as WO 2015/062569 A1) and German Patent Application DE 10 2013 018 182.8, each incorporated herein by reference in its entirety.

US Referenced Citations (385)
Number Name Date Kind
3913503 Becker Oct 1975 A
4247508 Housholder Jan 1981 A
4575330 Hull Mar 1986 A
4591402 Evans et al. May 1986 A
4600733 Ohashi et al. Jul 1986 A
4665492 Masters May 1987 A
4669634 Leroux Jun 1987 A
4711669 Paul et al. Dec 1987 A
4752352 Feygin Jun 1988 A
4752498 Fudim Jun 1988 A
4863538 Deckard Sep 1989 A
4938816 Beaman et al. Jul 1990 A
4944817 Bourell et al. Jul 1990 A
5017753 Deckard May 1991 A
5031120 Pomerantz et al. Jul 1991 A
5047182 Sundback et al. Sep 1991 A
5053090 Beaman et al. Oct 1991 A
5059266 Yamane et al. Oct 1991 A
5076869 Bourell et al. Dec 1991 A
5120476 Scholz Jun 1992 A
5126529 Weiss et al. Jun 1992 A
5127037 Bynum Jun 1992 A
5132143 Deckard Jul 1992 A
5134569 Masters Jul 1992 A
5136515 Helinski Aug 1992 A
5140937 Yamane et al. Aug 1992 A
5147587 Marcus et al. Sep 1992 A
5149548 Yamane et al. Sep 1992 A
5155324 Deckard et al. Oct 1992 A
5156697 Bourell et al. Oct 1992 A
5182170 Marcus et al. Jan 1993 A
5204055 Sachs Apr 1993 A
5216616 Masters Jun 1993 A
5229209 Gharapetian et al. Jul 1993 A
5248456 Evans, Jr. et al. Aug 1993 A
5252264 Forderhase et al. Oct 1993 A
5263130 Pomerantz et al. Nov 1993 A
5269982 Brotz Dec 1993 A
5284695 Barlow et al. Feb 1994 A
5296062 Bourell et al. Mar 1994 A
5316580 Deckard May 1994 A
5324617 Majima et al. Jun 1994 A
5340656 Sachs et al. Aug 1994 A
5342919 Dickens, Jr. et al. Aug 1994 A
5352405 Beaman et al. Oct 1994 A
5354414 Feygin Oct 1994 A
5382308 Bourell et al. Jan 1995 A
5387380 Cima et al. Feb 1995 A
5398193 deAngelis Mar 1995 A
5418112 Mirle et al. May 1995 A
5427722 Fouts et al. Jun 1995 A
5431967 Manthiram et al. Jul 1995 A
5433261 Hinton Jul 1995 A
5482659 Sauerhoefer Jan 1996 A
5490962 Cima et al. Feb 1996 A
5503785 Crump et al. Apr 1996 A
5506607 Sanders, Jr. et al. Apr 1996 A
5518060 Cleary et al. May 1996 A
5518680 Cima et al. May 1996 A
5555176 Menhennett et al. Sep 1996 A
5573721 Gillette Nov 1996 A
5589222 Thometzek et al. Dec 1996 A
5597589 Deckard Jan 1997 A
5616294 Deckard Apr 1997 A
5616631 Kiuchi et al. Apr 1997 A
5637175 Feygin et al. Jun 1997 A
5639070 Deckard Jun 1997 A
5639402 Barlow et al. Jun 1997 A
5647931 Retallick et al. Jul 1997 A
5658412 Retallick et al. Aug 1997 A
5665401 Serbin et al. Sep 1997 A
5717599 Menhennett et al. Feb 1998 A
5730925 Mattes et al. Mar 1998 A
5740051 Sanders, Jr. et al. Apr 1998 A
5747105 Haubert May 1998 A
5749041 Lakshminarayan et al. May 1998 A
5753274 Wilkening et al. May 1998 A
5807437 Sachs et al. Sep 1998 A
5824250 Whalen Oct 1998 A
5837960 Lewis et al. Nov 1998 A
5851465 Bredt Dec 1998 A
5884688 Hinton et al. Mar 1999 A
5902441 Bredt et al. May 1999 A
5902537 Almquist et al. May 1999 A
5904889 Serbin et al. May 1999 A
5934343 Gaylo et al. Aug 1999 A
5940674 Sachs et al. Aug 1999 A
5943235 Earl et al. Aug 1999 A
5989476 Lockard et al. Nov 1999 A
5997795 Danforth Dec 1999 A
6007318 Russell et al. Dec 1999 A
6036777 Sachs Mar 2000 A
6042774 Wilkening et al. Mar 2000 A
6048188 Hull et al. Apr 2000 A
6048954 Barlow et al. Apr 2000 A
6133353 Bui et al. Oct 2000 A
6146567 Sachs et al. Nov 2000 A
6147138 Hochsmann et al. Nov 2000 A
6155331 Langer Dec 2000 A
6164850 Speakman Dec 2000 A
6165406 Jang et al. Dec 2000 A
6169605 Penn et al. Jan 2001 B1
6175422 Penn et al. Jan 2001 B1
6193922 Ederer Feb 2001 B1
6210625 Matsushita Apr 2001 B1
6216508 Matsubara et al. Apr 2001 B1
6217816 Tang Apr 2001 B1
6259962 Gothait Jul 2001 B1
6270335 Leyden et al. Aug 2001 B2
6305769 Thayer et al. Oct 2001 B1
6316060 Elvidge et al. Nov 2001 B1
6318418 Grossmann et al. Nov 2001 B1
6335052 Suzuki et al. Jan 2002 B1
6335097 Otsuka et al. Jan 2002 B1
6350495 Schriener et al. Feb 2002 B1
6355196 Kotnis et al. Mar 2002 B1
6363606 Johnson Apr 2002 B1
6375874 Russell et al. Apr 2002 B1
6395811 Nguyen et al. May 2002 B1
6401001 Jang et al. Jun 2002 B1
6403002 Van Der Geest Jun 2002 B1
6405095 Jang et al. Jun 2002 B1
6416850 Bredt Jul 2002 B1
6423255 Hoechsmann et al. Jul 2002 B1
6460979 Heinzl et al. Oct 2002 B1
6476122 Leyden Nov 2002 B1
6485831 Fukushima et al. Nov 2002 B1
6500378 Smith Dec 2002 B1
6554600 Hofmann et al. Apr 2003 B1
6596224 Sachs et al. Jul 2003 B1
6610429 Bredt et al. Aug 2003 B2
6616030 Miller Sep 2003 B2
6658314 Gothait Dec 2003 B1
6672343 Perret et al. Jan 2004 B1
6713125 Sherwood et al. Mar 2004 B1
6722872 Swanson et al. Apr 2004 B1
6733528 Abe et al. May 2004 B2
6742456 Kasperchik et al. Jun 2004 B1
6764636 Allanic et al. Jul 2004 B1
6827988 Krause et al. Dec 2004 B2
6830643 Hayes Dec 2004 B1
6838035 Ederer et al. Jan 2005 B1
6855205 McQuate et al. Feb 2005 B2
6896839 Kubo et al. May 2005 B2
6905645 Iskra Jun 2005 B2
6972115 Ballard Dec 2005 B1
6989115 Russell et al. Jan 2006 B2
7004222 Ederer et al. Feb 2006 B2
7037382 Davidson et al. May 2006 B2
7048530 Gaillard et al. May 2006 B2
7049363 Shen May 2006 B2
7087109 Bredt et al. Aug 2006 B2
7120512 Kramer et al. Oct 2006 B2
7137431 Ederer et al. Nov 2006 B2
7153463 Leuterer et al. Dec 2006 B2
7204684 Ederer et al. Apr 2007 B2
7220380 Farr et al. May 2007 B2
7291002 Russell et al. Nov 2007 B2
7296990 Devos et al. Nov 2007 B2
7332537 Bredt et al. Feb 2008 B2
7348075 Farr et al. Mar 2008 B2
7378052 Harryson May 2008 B2
7381360 Oriakhi et al. Jun 2008 B2
7387359 Hernandez et al. Jun 2008 B2
7402330 Pfeiffer et al. Jul 2008 B2
7431987 Pfeiffer et al. Oct 2008 B2
7435072 Collins et al. Oct 2008 B2
7435368 Davidson et al. Oct 2008 B2
7455804 Patel et al. Nov 2008 B2
7455805 Oriakhi et al. Nov 2008 B2
7497977 Nielsen et al. Mar 2009 B2
7531117 Ederer et al. May 2009 B2
7550518 Bredt et al. Jun 2009 B2
7578958 Patel et al. Aug 2009 B2
7597835 Marsac Oct 2009 B2
7641461 Khoshnevis Jan 2010 B2
7665636 Ederer et al. Feb 2010 B2
7722802 Pfeiffer et al. May 2010 B2
7807077 Ederer et al. May 2010 B2
7736578 Ederer et al. Jun 2010 B2
7748971 Hochsmann et al. Jul 2010 B2
7767130 Elsner et al. Aug 2010 B2
7795349 Bredt et al. Sep 2010 B2
7799253 Höschmann et al. Sep 2010 B2
7879393 Ederer et al. Feb 2011 B2
7887264 Naunheimer et al. Feb 2011 B2
7927539 Ederer Apr 2011 B2
8020604 Hochsmann et al. Sep 2011 B2
8096262 Ederer et al. Jan 2012 B2
8186415 Marutani et al. May 2012 B2
8349233 Ederer et al. Jan 2013 B2
8506870 Hochsmann et al. Aug 2013 B2
8524142 Unkelmann et al. Sep 2013 B2
8574485 Kramer Nov 2013 B2
8715832 Ederer et al. May 2014 B2
8727672 Ederer et al. May 2014 B2
8741194 Ederer et al. Jun 2014 B1
8911226 Gunther et al. Dec 2014 B2
8951033 Höchsmann et al. Feb 2015 B2
8956140 Hartmann Feb 2015 B2
8956144 Grasegger et al. Feb 2015 B2
8992205 Ederer et al. Mar 2015 B2
9174391 Hartmann et al. Nov 2015 B2
9174392 Hartmann Nov 2015 B2
9242413 Hartmann et al. Jan 2016 B2
9321934 Mögele et al. Apr 2016 B2
9327450 Hein et al. May 2016 B2
9333709 Hartmann May 2016 B2
9358701 Gnuchtel et al. Jun 2016 B2
20010045678 Kubo et al. Nov 2001 A1
20010050031 Bredt et al. Dec 2001 A1
20020015783 Harvey Feb 2002 A1
20020016387 Shen Feb 2002 A1
20020026982 Bredt et al. Mar 2002 A1
20020079601 Russell et al. Jun 2002 A1
20020090410 Tochimoto et al. Jul 2002 A1
20020111707 Li et al. Aug 2002 A1
20020155254 McQuate et al. Oct 2002 A1
20020167100 Moszner et al. Nov 2002 A1
20030004599 Herbak Jan 2003 A1
20030065400 Beam et al. Apr 2003 A1
20030069638 Barlow et al. Apr 2003 A1
20030083771 Schmidt May 2003 A1
20030113729 DaQuino et al. Jun 2003 A1
20030114936 Sherwood et al. Jun 2003 A1
20040003738 Imiolek et al. Jan 2004 A1
20040012112 Davidson et al. Jan 2004 A1
20040025905 Ederer et al. Feb 2004 A1
20040026418 Ederer et al. Feb 2004 A1
20040035542 Ederer et al. Feb 2004 A1
20040036200 Patel et al. Feb 2004 A1
20040038009 Leyden et al. Feb 2004 A1
20040045941 Herzog et al. Mar 2004 A1
20040056378 Bredt et al. Mar 2004 A1
20040084814 Boyd et al. May 2004 A1
20040094058 Kasperchik et al. May 2004 A1
20040104515 Swanson et al. Jun 2004 A1
20040112523 Crom Jun 2004 A1
20040138336 Bredt et al. Jul 2004 A1
20040145088 Patel et al. Jul 2004 A1
20040170765 Ederer et al. Sep 2004 A1
20040187714 Napadensky et al. Sep 2004 A1
20040207123 Patel et al. Oct 2004 A1
20040239009 Collins et al. Dec 2004 A1
20050003189 Bredt et al. Jan 2005 A1
20050017386 Harrysson Jan 2005 A1
20050017394 Hochsmann Jan 2005 A1
20050074511 Oriakhi et al. Apr 2005 A1
20050079086 Farr Apr 2005 A1
20050093194 Oriakhi et al. May 2005 A1
20050167872 Ederer et al. Aug 2005 A1
20050174407 Johnson et al. Aug 2005 A1
20050179167 Hachikian Aug 2005 A1
20050212163 Bausinger et al. Sep 2005 A1
20050218549 Farr et al. Oct 2005 A1
20050219942 Wallgren Oct 2005 A1
20050280185 Russell et al. Dec 2005 A1
20050283136 Skarda Dec 2005 A1
20060012058 Hasei Jan 2006 A1
20060013659 Pfeiffer et al. Jan 2006 A1
20060105102 Hochsmann et al. May 2006 A1
20060108090 Ederer et al. May 2006 A1
20060159896 Pfeifer et al. Jul 2006 A1
20060176346 Ederer et al. Aug 2006 A1
20060208388 Bredet et al. Sep 2006 A1
20060237159 Hochsmann Oct 2006 A1
20060251535 Pfeifer et al. Nov 2006 A1
20060254467 Farr et al. Nov 2006 A1
20060257579 Farr et al. Nov 2006 A1
20070045891 Martinoni Mar 2007 A1
20070054143 Otoshi Mar 2007 A1
20070057412 Weiskopf et al. Mar 2007 A1
20070065397 Ito et al. Mar 2007 A1
20070126157 Bredt Jun 2007 A1
20070215020 Miller Sep 2007 A1
20070238056 Baumann et al. Oct 2007 A1
20080001331 Ederer Jan 2008 A1
20080018018 Nielsen et al. Jan 2008 A1
20080047628 Davidson et al. Feb 2008 A1
20080138515 Williams Jun 2008 A1
20080187711 Alam et al. Aug 2008 A1
20080233302 Elsner Sep 2008 A1
20080237933 Hochsmann et al. Oct 2008 A1
20080241404 Allaman et al. Oct 2008 A1
20080260945 Ederer et al. Oct 2008 A1
20080299321 Ishihara Dec 2008 A1
20090011066 Davidson et al. Jan 2009 A1
20090068376 Philippi et al. Mar 2009 A1
20090261497 Ederer et al. Oct 2009 A1
20100007062 Larsson et al. Jan 2010 A1
20100026743 Van Thillo et al. Feb 2010 A1
20100152865 Jonsson et al. Jun 2010 A1
20100207288 Dini Aug 2010 A1
20100212584 Ederer et al. Aug 2010 A1
20100243123 Ederer et al. Sep 2010 A1
20100244301 Ederer et al. Sep 2010 A1
20100247742 Shi et al. Sep 2010 A1
20100272519 Ederer et al. Oct 2010 A1
20100279007 Briselden et al. Nov 2010 A1
20100291314 Kashani-Shirazi Nov 2010 A1
20100323301 Tang et al. Dec 2010 A1
20110049739 Uckelmann et al. Mar 2011 A1
20110059247 Kuzusako et al. Mar 2011 A1
20110177188 Bredt et al. Jul 2011 A1
20110223437 Ederer et al. Sep 2011 A1
20110308755 Hochsmann Dec 2011 A1
20120046779 Pax et al. Feb 2012 A1
20120094026 Ederer et al. Apr 2012 A1
20120097258 Hartmann Apr 2012 A1
20120113439 Ederer May 2012 A1
20120126457 Abe et al. May 2012 A1
20120189102 Maurer, Jr. et al. Jul 2012 A1
20120291701 Grasegger et al. Nov 2012 A1
20120329943 Hicks et al. Dec 2012 A1
20130000549 Hartmann et al. Jan 2013 A1
20130004610 Hartmann et al. Jan 2013 A1
20130026680 Ederer et al. Jan 2013 A1
20130029001 Gunther et al. Jan 2013 A1
20130092082 Ederer et al. Apr 2013 A1
20130108726 Uckelmann May 2013 A1
20130157193 Moritani et al. Jun 2013 A1
20130189434 Randall et al. Jul 2013 A1
20130199444 Hartmann Aug 2013 A1
20130234355 Hartmann et al. Sep 2013 A1
20130302575 Mogele et al. Nov 2013 A1
20130313757 Kashani-Shirazi Nov 2013 A1
20140048980 Crump et al. Feb 2014 A1
20140202381 Ederer et al. Jul 2014 A1
20140202382 Ederer Jul 2014 A1
20140212677 Gnuchtel et al. Jul 2014 A1
20140227123 Gunster Aug 2014 A1
20140236339 Fagan Aug 2014 A1
20140271961 Khoshnevis Sep 2014 A1
20140306379 Hartmann et al. Oct 2014 A1
20140322501 Ederer et al. Oct 2014 A1
20150042018 Gunther et al. Feb 2015 A1
20150069659 Hartmann Mar 2015 A1
20150110910 Hartmann et al. Apr 2015 A1
20150165574 Ederer et al. Jun 2015 A1
20150210822 Ederer et al. Jul 2015 A1
20150224718 Ederer et al. Aug 2015 A1
20150266238 Ederer et al. Sep 2015 A1
20150273572 Ederer et al. Oct 2015 A1
20150290881 Ederer et al. Oct 2015 A1
20150375418 Hartmann Dec 2015 A1
20150375419 Gunther et al. Dec 2015 A1
20160001507 Hartmann et al. Jan 2016 A1
20160052165 Hartmann Feb 2016 A1
20160052166 Hartmann Feb 2016 A1
20160318251 Ederer et al. Mar 2016 A1
20160107386 Hartmann et al. Apr 2016 A1
20160114533 Grassegger et al. Apr 2016 A1
20160303762 Gunther Oct 2016 A1
20160311167 Gunther et al. Oct 2016 A1
20160311210 Gunther et al. Oct 2016 A1
20170028630 Ederer et al. Feb 2017 A1
20170050378 Ederer Feb 2017 A1
20170050387 Ederer Feb 2017 A1
20170106595 Gunther et al. Apr 2017 A1
20170136524 Ederer et al. May 2017 A1
20170151727 Ederer et al. Jun 2017 A1
20170157852 Ederer et al. Jun 2017 A1
20170182711 Gunther et al. Jun 2017 A1
20170197367 Ederer et al. Jul 2017 A1
20170210037 Ederer et al. Jul 2017 A1
20170217098 Hartmann et al. Aug 2017 A1
20170297263 Ederer et al. Oct 2017 A1
20170305139 Hartmann Oct 2017 A1
20170326693 Ederer et al. Nov 2017 A1
20170355137 Ederer et al. Dec 2017 A1
20180079133 Ederer et al. Mar 2018 A1
20180141271 Gunter et al. May 2018 A1
20180141272 Hartmann et al. May 2018 A1
20180169758 Ederer et al. Jun 2018 A1
20180222082 Gunther et al. Aug 2018 A1
20180222174 Guneter et al. Aug 2018 A1
20180319078 Ederer et al. Nov 2018 A1
20180326654 Ederer et al. Nov 2018 A1
20180326662 Gunther et al. Nov 2018 A1
20180333781 Ederer et al. Nov 2018 A1
20180369910 Gunter et al. Dec 2018 A1
20190047218 Ederer et al. Feb 2019 A1
20190084229 Gunther Mar 2019 A1
20200055246 Gunther et al. Feb 2020 A1
20200130263 Gunther et al. Apr 2020 A1
Foreign Referenced Citations (68)
Number Date Country
720255 May 2000 AU
101146666 Mar 2008 CN
109055212 Dec 2018 CN
3221357 Dec 1983 DE
3930750 Mar 1991 DE
4102260 Jul 1992 DE
4305201 Apr 1994 DE
4 325 573 Feb 1995 DE
29506204 Jun 1995 DE
4440397 Sep 1995 DE
19525307 Jan 1997 DE
19530295 Jan 1997 DE
19528215 Feb 1997 DE
29701279 May 1997 DE
19545167 Jun 1997 DE
69031808 Apr 1998 DE
19853834 May 2000 DE
69634921 Dec 2005 DE
201 22 639 Nov 2006 DE
10 2006 040 305 Mar 2007 DE
102006029298 Dec 2007 DE
102006038858 Feb 2008 DE
102007040755 Mar 2009 DE
102007047326 Apr 2009 DE
102011053205 Mar 2013 DE
102015006363 Dec 2016 DE
102015008860 Jan 2017 DE
102015011503 Mar 2017 DE
102015011790 Mar 2017 DE
0361847 Apr 1990 EP
0431924 Jun 1991 EP
1415792 May 2004 EP
1457590 Sep 2004 EP
1524049 Apr 2005 EP
1381504 Aug 2007 EP
2297516 Aug 1996 GB
S62275734 Nov 1987 JP
2003136605 May 2003 JP
2004082206 Mar 2004 JP
2009202451 Sep 2009 JP
9003893 Apr 1990 WO
01034371 May 2001 WO
0140866 Jun 2001 WO
0178969 Oct 2001 WO
02026419 Apr 2002 WO
2004014637 Feb 2004 WO
2006100166 Sep 2006 WO
2007114895 Oct 2007 WO
2008049384 May 2008 WO
2008061520 May 2008 WO
2011063786 Jun 2011 WO
2013075696 May 2013 WO
2014090207 Jun 2014 WO
2014166469 Oct 2014 WO
2015078430 Jun 2015 WO
2015081926 Jun 2015 WO
2015085983 Jun 2015 WO
2015090265 Jun 2015 WO
2015090567 Jun 2015 WO
2015096826 Jul 2015 WO
2015149742 Oct 2015 WO
2015180703 Dec 2015 WO
2016019937 Feb 2016 WO
2016019942 Feb 2016 WO
2016058577 Apr 2016 WO
2016095888 Jun 2016 WO
2016101942 Jun 2016 WO
2016146095 Sep 2016 WO
Non-Patent Literature Citations (13)
Entry
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials,” SFF Symposium, Austin, TX, 1994.
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep. 1995, p. 130-33.
Gebhart, Rapid Prototyping, pp. 118-119, 1996.
Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by Joel Segal, Apr. 2000.
EOS Operating Manual for Laser Sintering Machine with Brief Summary Feb. 22, 2005.
Sachs, E., P. Williams, D. Brancazio, M. Cima, and K. Kremmin, Three dimensional printing: Rapid Tooling and Prototypes Directly from a CAD Model. In Proceedings of Manufacturing International 1990 (Atlanta, GA, Mar. 25-28). ASME, New York, 1990, pp. 131-136.
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143-151, Jan. 1990.
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Mechanical Engineering, abstract only; Sep. 25, 2001.
Armin Scharf, “Erster 3D-Endlosdrucker”, zwomp.de, http://www.zwomp.de/2012/11/06/voxeljet-endlosdrucker/ dated Nov. 6, 2012.
Voxeljet's VXconcept—Continuous 3D printing for sand casting, You-Tube, Nov. 16, 2011, XP002713379, retrieved from the Internet URL: http://www.youtube.com/watch?v=hgIrNXZjIxU retrieved on Sep. 23, 2013.
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?”.
Translation of International Search Report, Application No. PCT/DE2014/000546, dated Mar. 20, 2015.
Written Opinion of the International Search Authority, Application No. PCT/DE2014/000546, dated Mar. 20, 2015.
Related Publications (1)
Number Date Country
20200406602 A1 Dec 2020 US
Continuations (1)
Number Date Country
Parent 15029759 US
Child 17018247 US