The invention relates to a method for recognising a coin which is inserted in a coin-acceptor unit by using the embossed pattern thereof according to the preamble of the main claim and to a device for implementing the method.
A method is known from DE 102 02 383 A1 for recognising an embossed pattern of a coin in a coin machine, in which a picture receiver takes a picture of the embossed pattern of the coin which is moved towards the picture receiver and towards a light source. An evaluation unit compares the picture with the first reference pattern with respect to whether the first reference pattern is contained within the recorded picture and, if it is contained, a test is made as to whether a second reference pattern is contained in a region, the position of which is determined relative to the position of the first reference pattern. The evaluation device produces, as a function of correspondence of the picture with the reference patterns, a valid or invalid signal for the coin. During evaluation, the centre is determined for the recorded picture and in addition the picture is transformed into circular coordinates, the transformed picture being the basis for looking for the reference patterns.
In addition, a method is described in EP 0 798 670 B1 for recognising the embossed pattern of a coin, in which again the picture of the coin is taken, the centre is determined and a polar transformation is undertaken. At a predetermined spacing from the abscissa in the polar-transformed image, the transformed embossed pattern is scanned and compared with a reference pattern at a corresponding spacing, the patterns being displaced relative to each other in order to bring the measured coin in correspondence with the reference coin with respect to the angle.
One of the main difficulties in the evaluation of the embossed pattern is this large quantity of data which must be processed within the time in which the coin falls through the machine in order to ensure accurate recognition. In order to be able to measure the diameter to an accuracy of e.g. 0.1 mm, the total picture of the coin must have a resolution of at least 100 pixels per mm. An average coin of approx. 20 mm in diameter is then imaged with 200×200 pixels. Even if only a relatively large fragment of the coin surface is selected for the comparison, the calculation volumes are so large that they can barely be implemented simultaneously during insertion of the coin into a coin machine.
The object therefore underlying the invention is to produce a method for recognising a coin which is inserted into a coin-acceptor unit by using the embossed pattern thereof, which allows recognition of the coin rapidly and reliably.
The object is achieved according to the invention by the characterising features of the main claim in conjunction with the features of the preamble.
As a result of the fact that the features which prescribe a pattern arrangement are spread in the image of the coin and that the features are reduced by reducing the image, the image being subjected to a polar coordinate transformation, the speed can be increased during comparison of the coins with reference patterns and the possibility is allowed of using not only fragments but practically the entire coin surface as reference pattern, which in turn increases the robustness of the method with respect to possible damage and to soiling of the coin, the spreading of the features increasing the robustness of the comparison between the current image and a reference image, in particular even during displacements or rotations of the coin. The polar coordinate transformation thereby converts the rotation of the current coin picture or of the reference pattern into a linear, e.g. horizontal, translation which can be calculated significantly more rapidly.
As a result of the fact that in addition a two-stage comparison is undertaken, in which the image of the coin is compared with the reference patterns according to a first simplified criterion and a list is produced of selected reference patterns with sorting according to the similarity thereof and subsequently a comparison of the image with those reference patterns contained in the list is undertaken corresponding to the sorting thereof according to a second exact criterion, the processing time is substantially shortened.
As a result of the measures indicated in the sub-claims, advantageous developments and improvements are possible.
According to the invention, the spreading is in direct connection with the reduction, the features being spread before the reduction or at the same time as the reduction. The size of the maximum filter is thereby determined by the reduction factor. As a result of the spreading, the physical features of the image during the reduction are preserved and the mathematical features are thereby reduced in order to accelerate the recognition.
It is particularly advantageous to calculate the distribution of the average brightness in the lines of the transformed image as a characteristic for the first simplified criterion, and then to use a one-dimensional correlation between the brightness distribution of the transformed image and the reference pictures or patterns. In this way, even during the first comparison, a good selection of possible reference patterns is achieved. By means of the first simplified criterion, a list of reference patterns corresponding to the similarity thereof to the current picture is produced.
As a second exact criterion, a two-dimensional correlation of the brightness distribution in the transformed image can preferably be used. An exact comparison is thereby implemented, the result of the pre-analysis no longer being taken into account and only the result of the exact comparison being valid.
Embodiments of the method according to the invention are explained in more detail in the subsequent description using the annexed drawing. There are shown:
The method according to the invention is used for recognising a coin by evaluation of the embossed pattern thereof. The coin is thereby inserted into the coin-acceptor unit and the image of the coin is taken by means of a picture sensor and is transmitted as pixel data to the evaluation unit. This evaluation unit determines inter alia the exact diameter and the exact centre and also if necessary the shape. In the further evaluation, a polar transformation corresponding to
In
In
In order to avoid the uncontrolled loss of information during reduction of the features by sub-scanning, spreading of the image is undertaken, the result of the spreading being represented in
The spreading can be implemented in different ways, in one image as represented for example in
If the picture of the coin is taken with perpendicular illumination in the camera module, dark lines on a light background can be seen in the image, in this case the spreading can be implemented for example by filtering with a minimum filter.
In order to achieve a reduction in the image, the size both of the maximum and the minimum filter is defined as N×M pixels, N and M corresponding to the reduction factors along the gaps and lines. Subsequently or simultaneously with the filtering and reduction which are based on processing of the pixels, the polar transformation can be implemented corresponding to
b
3 is a representation corresponding to
In another embodiment of the spreading of the features, this is achieved with a modified polar transformation, the image being reduced simultaneously. For this purpose, for a first point in the transformed picture with the Cartesian coordinates θ, r, a corresponding origin point in the original picture with a spacing from the centre of the coin N*r and an angle of M*θ relative to an orientation determined for the picture is calculated and the brightness of the point in the transformed picture is calculated as maximum of the brightness of the original picture on an area of the size K*K pixels around the origin point, K being the maximum of the reduction factors: K=max (N, M).
With this method of spreading and reduction by means of the modified polar transformation, the same results are achieved using
After the spreading, reduction and polar transformation which can take place as described above also simultaneously, a multi-stage comparison of the transformed image corresponding to
There can be used as a characteristic for a simplified criterion, the distribution of the average brightness in lines of the transformed image and, as simplified criterion, a one-dimensional correlation between these characteristics for the transformed image and the reference patterns.
In the second stage, a second comparison between the transformed image and the reference patterns found on the list is implemented corresponding to a second, exact criterion which demands a greater processing time. A correspondence with good accuracy is thereby found with one of the reference patterns and a signal for the permissibility of the coin is emitted or the process of the comparison is stopped. As a characteristic for the second, exact criterion, e.g. the two-dimensional brightness distribution in the transformed image can be used and the comparison can be implemented for example with the help of the two-dimensional correlation.
Since only a predetermined time is available during testing of the coin in the coin-acceptor unit, the test must be stopped and the coin returned if the time has expired. For example, the actual comparison process can be stopped after a predetermined number of reference patterns corresponding to the prescribed list. The maximum number of reference patterns to be processed can thereby be established as a function of the capacity of the computer. A further possibility resides in implementing the comparison calculations of the reference patterns corresponding to their sorted sequence until the coin comes to a predetermined position in its course through the coin-acceptor unit, for example at the position at which it is sorted. If at this time there is still no valid classification result, then the coin falls into the return shaft.
It is possible that, after this second comparison stage, a final decision can be made already about acceptance or rejection of the coin, in particular when all the reference patterns defined by coin classes can be separated readily. For example respectively all valid coins with the same nominal value can be assigned to one coin class. Then each class will comprise at least two reference patterns, one pattern for a head side and one pattern for a number side. If there is a plurality of valid variants for embossed patterns of the head or number side, the number of the pattern is higher. Nevertheless, normally all embossed patterns, apart from intentional forgeries, are so different that high correlation quotients are possible only between images of one class.
A different situation occurs if the similarity of the embossing or of the transformed image to one of the reference patterns of the coin class X is in fact established but a final recognition cannot be implemented because there are also further coin classes, the similarity of which to the coin class X is known already. For example, this concerns forgeries of coins which can be very similar to real coins in the case of “good forgery”. It cannot be precluded that, with the same diameter and similar embossings, sometimes also genuine coins can have different nominal values. In this case, an additional accuracy test is required as third step for a final decision.
The brightness distribution in the transformed picture can also be used for the accuracy test. If there are differences of specific fragments of the embossings, these fragments can be selected as patterns for the accuracy test. If different features are distributed on the entire image a difference characteristic of the features can be calculated as follows:
Uij(x,y)=K(x,y)*(hi(x,y)−hj(x,y)) (1)
hi(x, y) and hj(x, y) being average-free brightness distributions in the reference patterns of similar classes i and j. K is a factor which can be determined such that only significantly different positions are jointly included, for example:
The comparison of this difference of a transformed image which is more similar to class i produces a positive signal and an image which is more similar to class j produces a negative signal. If a plurality of classes are similar to each other, such differences or difference fragments must be produced and tested for each pair of classes.
In order to reduce further the number of incorrect recognitions, reference patterns of the embossings of coins, which can occur particularly frequently at the location of the relevant coin-acceptor unit, can be subjected, independently of the test according to the simplified first criterion, to the exact test corresponding to the second criterion. Part of this is for example a number side which is identical for all Euro coins and the probability of the appearance of which as a current image is 0.5. This should be tested in any case. Such patterns can be inserted for example at the beginning of the sorted temporary list without implementing a comparison corresponding to the simplified criterion.
In
In the permissible case, the image, in step S2, is subjected to a modified polar transformation with simultaneous spreading of the features and reduction of the image, as a result of which the transformed image corresponding to
The current transformed image of the coin is compared, in step S6, with the first reference pattern from the temporary list according to the second, exact criterion corresponding to a two-dimensional brightness distribution, e.g. with the help of a two-dimensional correlation. For this purpose, the corresponding reference patterns are delivered from the data bank GKRM. If it is established in step S7 that the result of the comparison exceeds with the respective reference pattern A of class X a predetermined similarity value, the comparison is stopped and the coin is sorted temporarily into a class X. If the class X has no known similarity with another class, this temporary classification is confirmed and the process is ended, i.e. the coin is recognised as permissible.
If it is established in step S7 that the similarity to the treated reference pattern is not great enough, it is established in step S8 whether there is still a further reference pattern in the temporary list TLRM. If this is the case, the process goes back to step S6 and a repeated test begins.
If it is established in step S7 that a possibility exists for confusion with a reference pattern of a class Y, the accuracy test is implemented in step S9, in which for example either fragments are sought which occur in one of the classes and not in another or the current transformed image is compared with a difference characteristic. The reference patterns or the reference values for the accuracy test are stored in a data bank MSP.
The comparison of the current embossed pattern or of the transformed image with the reference patterns is, if no valid result is present, stopped after the predetermined time.
The evaluation unit, i.e. the calculation- comparison- and storage means, can be configured in the form of a microprocessor, microcomputer or the like with corresponding memories, as indicated above.
In the above embodiment there was used as “simplified criterion” for the comparison, the result of a one-dimensional correlation between the distributions of the average brightness in lines of the transformed picture as specific characteristics. As another example of a simplified criterion, a result of a specific operation with the distribution of the light and dark pixels in one of the lines of the transformed image could be used. For example there are in the image of a number side of a German coin with the nominal value 1 or 2 Euros more dark pixels than light ones and, in a head side of the same coin, there are more light pixels than dark ones. If the quotient of the number of light/number of dark is used as a criterion, the head side of a German coin can be differentiated from the number side thereof.
Furthermore, the same characteristic can be used, namely the distribution of the average brightness in the lines of the transformed image but a different criterion can be selected for the comparison. For example, the coordinate of the maximum of the distribution can be used. If the maximum is situated at the edge of the coin in the current image, only the reference images which have the maximum of the distribution also at the edge are chosen for the exact comparison etc.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 028 669.0 | Jun 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/006529 | 6/14/2006 | WO | 00 | 12/12/2007 |