Method and device for recognizing cornering and for stabilizing a vehicle in case of over-steered cornering

Abstract
Methods and devices for detecting cornering and in particular over-steered cornering as well as a method and a device for stabilising a vehicle in case of an over-steered cornering manoeuvre are described. The detection can be carried out with reference to wheel slip values and/or transverse acceleration values. The stabilisation is carried out upon detection of the over-steered cornering manoeuvre by means of suitable interventions in the brake system.
Description


[0001] The present invention relates to a method and a device for recognising cornering, especially over-steered cornering, and for stabilising a vehicle in case of over-steered cornering according to the preambles of the independent claims.


[0002] A cornering manoeuvre can be recognised by different sensors, as e.g. steering angle sensors or transverse acceleration sensors. But the additional expenditure for the sensors also increases the expenditure for the cabling, the costs and the failure probability. Thus there are applications in which it is desirable that cornering be detected without additional sensors. It is, by the way, often difficult to recognise over-steered cornering which is understood as a cornering manoeuvre in which the vehicle turns into a curve around its vertical axis to an extent exceeding the extent that would be necessary or, more generally speaking, in which a vehicle drives to the outer side of the curve with its tail. In the extreme case we are talking about a swerving car in the broadest sense of the word. The present invention considers in particular also the extreme cases in which an over-steering exists only to a relatively small extent, as e.g. at the beginning of the vehicle's swerving. It is difficult to recognise an over-steered cornering manoeuvre just in these cases so that the over-steered behaviour is increasing slowly until finally the vehicle is completely unstable. Conventional methods for recognising over-steered cornering are not very useful due to the limited transverse dynamics in the limit range, so that the response thresholds for stabilising interventions are not reached and thus a stabilising brake intervention, which in principle would be possible, is omitted due to the lacking or delayed recognition of the over-steered cornering manoeuvre.


[0003] It is the object of the present invention to provide methods and devices for recognising cornering, especially over-steered cornering, as well as for stabilising a vehicle during an unstable cornering manoeuvre, which are sensitive, reliable and manage without additional expenditure for sensors, if necessary.


[0004] This object is achieved by the characteristics of the independent claims. Dependent claims relate to preferred embodiments of the present invention.


[0005] Before describing single embodiments of the invention, basic relations resp. a vehicle, in which the present invention can be applied, are illustrated with regard to FIG. 1 and FIG. 2. FIG. 1 schematically shows a vehicle. 101 to 104 are the wheels of the vehicle, 101 being the left front wheel, 102 the right front wheel, 103 the right rear wheel and 104 the left rear wheel. 105 is the front axle, 106 the rear axle. 111 to 114 are the wheel sensors detecting the wheel speed of the single wheels, particularly the rotating speed. 121 to 124 symbolise the wheel brakes. The output signals of the wheel sensors 111 to 114 are transmitted to a control 130. Furthermore said control can also receive signals of additional sensors 115 to 117. Furthermore the control 130 produces output signals 131 with which the longitudinal dynamics and/or the transverse dynamics of the vehicle can be influenced. Thus they produce in particular signals for the wheel brakes 121 to 124 in order to adjust the brake pressure. In addition to this, also signals can be produced which influence the driving torque and, if necessary, also the automatic transmission.


[0006] If a vehicle drives around a corner transverse forces (with regard to the longitudinal axis of the vehicle) have to be produced counteracting on the one hand to the centrifugal force resulting from cornering, and on the other hand to the moment of inertia of the vehicle itself during steering. The wheels transmit these forces to the vehicle. If the vehicle is stable the transverse forces resulting from this process can be transmitted by means of the static friction between roadway and tyre. If the vehicle is unstable and in particular if it is over-steered, the transverse forces which are actually necessary are bigger than the forces which can be transmitted due to the static friction between roadway and wheels.


[0007]
FIG. 2 describes the case which might appear in an over-steered left-hand curve. In the Figure the left front wheel is shown. The same reference numerals as in FIG. 1 indicate the same components. 111 is the wheel sensor, 111a is a marking disc which follows the wheel 101 and helps determining the rotating speed of the wheel 101. The speed of the wheel on the roadway is marked Vf. It is not oriented parallel to the wheel plane (vertical to the wheel axis) but extends at an angle α to the wheel plane. FIG. 2 shows the case of a wheel which is not braked. Then it can be assumed that the speed of the wheel in the wheel plane (vertical to the wheel axis) corresponds to the speed component of the wheel on the roadway (because the wheel can freely roll). The vehicle speed Vf then results from the vectorial addition of the longitudinal component Vl and the transverse component Vq. More specifically, it can thus be said that if there is a difference between the vehicle speed Vf and the longitudinal component Vl (detected by the wheel sensors), said difference can be attributed to a transverse component Vq. This is valid both for the vectorial approach as also for the approach by the absolute amount.


[0008] Furthermore it was established that during each cornering (i.e. ultimately also if a cornering manoeuvre is considered as stable) there is a transverse component—even if it is small—so that during each cornering, whether stable or over-steered, a transverse component is produced and thus a speed difference between the vehicle speed Vf and the longitudinal component Vl (slip). Said slip (difference between vehicle speed Vf and longitudinal component Vl resp. difference between their absolute amounts) can be produced on different wheels, according to the driving situation.


[0009] According to the present invention cornering is determined with reference to several slip values on several vehicle wheels. Also an over-steered cornering manoeuvre can be determined with reference to several slip values on several vehicle wheels. According to the present invention, over-steered cornering can also be determined with reference to the transverse accelerations of the vehicle axles. According to another aspect of the present invention, over-steered cornering can be determined in a particularly reliable way if the determination on the basis of the wheel slip values and the determination on the basis of the transverse accelerations of the axles are combined with each other. If over-steered cornering has been detected, according to the present invention one or more measures supporting stability can be taken.






[0010] In the following single embodiments of the invention are described on the basis of the figures, whereby:


[0011]
FIG. 1 shows schematically a vehicle in which the invention can be applied,


[0012]
FIG. 2 shows a representation illustrating physical relations,


[0013]
FIG. 3 shows an embodiment of a device for detecting a cornering manoeuvre,


[0014]
FIG. 4 shows a device for detecting over-steered cornering,


[0015]
FIG. 5 shows another device for detecting over-steered cornering,


[0016]
FIG. 6 shows another device for detecting over-steered cornering, and


[0017]
FIG. 7 shows the qualitative development of different values.






[0018]
FIG. 3 shows a device for detecting a cornering manoeuvre. The same reference numerals as in FIG. 1 indicate the same components. 111 to 114 are the wheel sensors which here are designed in a block-type manner, but are foreseen for each single wheel, in fact. They also respond as first detecting device.


[0019]

302


a
to d is a second detecting device with which the slip value is determined, preferably for all the wheels of the vehicle. It is the second detecting device that preferably receives a signal designating the vehicle speed Vf. The signal representing the vehicle speed Vf is preferably determined and made available by a third detection device 303. Said device may be another sensor or even a more complex elaboration device determining a signal, e.g. from the signals of the wheel sensors 111 to 114, by means of suitable strategies.


[0020] In the second detecting device 302a to d the difference between the vehicle speed and the wheel speed can be determined for the single wheels so that the slip values for each wheel can be output.


[0021] Furthermore suitable pre- or post-processing of the signals 301 can be foreseen. The wheel sensors 111 to 114 in general provide a more or less high-frequency sequence of pulses. This can be processed in such a way that a (preferably digital) signal is generated which directly characterises the wheel speed. In addition to this filter functions can be implemented in order to possibly filter faults and fluctuations. For example the averaging resp. integration over a certain period of time may be foreseen. Observation periods between 250 and 500 ms, preferably between 280 and 350 ms have resulted advantageous for the averaging resp. integration. The signal processing 301 can be foreseen at suitable points in the signal flow. Thus, e.g. the signals coming from the wheel sensors 111 to 114 can be processed resp. filtered. Instead of or in addition to this also the output signals of the second detecting device can be processed ins such a way, this being indicated by the dashed box below 302a.


[0022]

300
is a first detection device recognising cornering with reference to several, preferably to all of the determined slip values. If a cornering manoeuvre is recognised, the device can output signals 304 which are received and further processed by other components/braking functions 305. The signals 304 are preferably shaped in such a way that the three cases “curve left, curve right, no curve” can be distinguished. The first detection device 300 as well as also the other components/braking functions 305 can receive further signals which are shown or not and are necessary for the signal processing to be realised by them. In the Figure the reception of the external sensor signals 115 to 117 is represented. In addition to that also in this case the wheel speed signals and other internal signals can be received.


[0023] The first detection device 300 recognises a left curve, if one or more of the following conditions are met:


[0024] Shl−S0≧Shr−S0,


[0025] Svl−S0>0


[0026] Svr−S0=0,


[0027] and recognises a right curve, if one or more of the following conditions are met at the same time:


[0028] Shr−S0≧Shl−S0,


[0029] Svr−S0>0


[0030] Svl−S0=0,


[0031] Shl being the slip on the left-hand rear wheel, Shr being the slip on the right-hand rear wheel, Svl being the slip on the left-hand front wheel, Svr being the slip on the right-hand front wheel and S0 being a slip correction value.


[0032] The respectively first condition with one of the two conditions mentioned afterwards is preferably used for the left-hand resp. right-hand curve in order to recognise cornering in one direction. All three conditions are also preferably-used for recognising cornering in respectively one direction.


[0033] As already mentioned, the above mentioned polls can be examined by means of integrated and averaged slip values with respect to time. It is in particular desirable that for detecting a left-hand curve the integration period for the slip on the left-hand rear wheel is longer than the integration period mentioned above. The same applies with regard to the slip on the right-hand rear wheel for detecting a right-hand curve.


[0034] The slip correction value S0 is a correction value eliminating small errors. It can e.g. be determined as a fraction of the vehicle speed Vf and/or according to the transverse acceleration Aq. S0 is preferably between 0.1% and 1% of the vehicle speed and also preferably between 0.4% and 0.6% of the vehicle speed. The correction value S0 can also depend on the transverse speed Aq, as shown in FIG. 7 in a qualitative manner (S0 decreases with increasing Aq). Furthermore, it is pointed out, that S0 does not have to be the same, identical value for all the wheels resp. all the polls. Rather different correction values S0 can be used for different values resp. different polls. In this case a single variable was used only in order to simplify the representation.


[0035] If averaged/integrated values are used for examining the above mentioned conditions, the slip correction value S0 has to be adjusted in a suitable manner resp. to be included in the averaging/integration. Thus the respective integral value considered would not only be defined by means of the considered slip value, but by means of the difference between slip value and slip correction value.


[0036] The first detection device 300 can consider a left-hand curve as completed, if one or both of the following conditions are met:


[0037] Shl−S0<Shr−S0


[0038] Shl−S0=0


[0039] and consider a right-hand curve as completed, if at least one of the following conditions is met:


[0040] Shr−S0<Shl−S0


[0041] Shr−S0=0


[0042] The considered values are defined as illustrated above.


[0043] The application of a slip correction value leads to the fact that only major values can lead to a detection. The comparison of the wheels of an axle, preferably of the axle which is not driven, used for detecting the curve, is based on the finding that the wheel located respectively towards the inner side of the curve shows bigger slip values than the wheel located towards outer side of the curve. The resp. other polls serve for excluding disturbing conditions.


[0044] The curve recognition described above is preferably realised only if the vehicle is not braked. In this case it is assured that the slip values which have been determined are those of a wheel rolling freely and are not falsified by the slip due to interventions of the brake. If the slip values are compared by axle, in general the slip values of the wheels on the non-driven axle are preferably used because in this case there can be no falsifications due to the slip produced by the vehicle drive.


[0045] With the method described above and the device suitable for realising the method it is possible to determine a curve in a reliable manner without having to use a steering angle sensor, yaw rate sensor or transverse speed sensor. The detection result output by the signal lines 304 of the first detection device 300 is transmitted to other components/braking functions 305 which can be braking functions in the broadest sense of the word, e.g. ABS, braking assistance functions or similar.


[0046] With regard to FIG. 4 in the following a method for detecting over-steered cornering is described resp. a device for realising the method. Identical reference numerals as in FIG. 3 indicate identical components with the same function which are not described again in order to eliminate repetitions.


[0047]
FIG. 4 shows a second detection device 400 detecting over-steered cornering with relation to several of the determined slip values. It can output signals 304 being formed as those in FIG. 3. In other components/braking functions 305 of the control 130 said signals 304 can be considered in a suitable manner.


[0048] The second detection device 400 can detect over-steered cornering, if the condition


[0049] Sh−Sv>a


[0050] is met, whereby Sh is a value describing the slip behaviour on the rear axle, Sv a value describing the slip behaviour on the front axle and a a safety value.


[0051] Sh can be determined with relation to at least one slip value, preferably with relation to the slip values of both wheels on the rear axle, e.g. as average value. The same applies analogously to value Sv.


[0052] Over-steered cornering can be detected as completed, if at least the first, preferably more or all of the following conditions are met:


[0053] Sh−Sv<s


[0054] Sh−Sv>−s


[0055] Sha<Sva.


[0056] Sh and Sv are defined as above, Sha and Sva are the slip values of the front resp. rear wheels on the outside.


[0057] The condition used for detecting over-steered cornering is based on the finding that in case of over-steered cornering the slip behaviour of the rear axle due to different influences is bigger than that of the front axle, e.g. reflected by the average slip of the wheels on this axle.


[0058] In order to exclude incorrect detections, the safety value a is introduced. Then an over-steered cornering is detected only if there is a major difference between the slip behaviour on both axles. The safety value a can be a constant or determined according to the vehicle speed and/or according to the calculated resp. measured transverse acceleration Aq. FIGS. 7b and 7c show the qualitative dependences for a. On the basis of the lowest limit value for transverse acceleration 0, a may increase together with the transverse acceleration Aq. In addition to this, a can decline with increasing vehicle speed, possibly again towards a limit value.


[0059] The conditions for detecting, if an over-steered cornering manoeuvre is completed, are chosen in such a way that slip differences between front and rear axle are tolerated within a certain range, defined by s, resp. are no longer considered as over-steered cornering. The threshold value s can determined according to the vehicle speed Vf and amounts to values from 0.5% to 1% of the vehicle speed Vf. The safety value a and the threshold value s are chosen with regard to each other in such a way that the result is a hysteresis-type behaviour with regard to detecting an over-steered cornering.


[0060] The direction of the curves which are travelled through can be determined by other polls, as e.g. by means of the device described in FIG. 3 or by a suitable sensor.


[0061] In FIG. 4401 and 402 are devices for producing the average value with which the average of the slip values on the front axle resp. on the rear axle is determined. The difference is produced in device 403. In device 405 the difference is compared with the safety value a resp. the threshold value s, whereby the safety value a and the threshold value s are determined in device 404 according to further operating states.


[0062] The method described on the basis of FIG. 4 can be interrupted if the brake intervenes. In case of brake interventions it is also possible to carry out the polls above for detecting the over-steered cornering with reference to the slip values of the front and rear wheels located towards the outside of the curve. The value describing the slip behaviour of an axle is no longer the average value but only a value based on the slip behaviour of the wheel located towards the outside of the curve. This procedure is based on the finding that due to the rolling moment of the vehicle around its longitudinal axis in a curve, the wheels located towards the outside of the curve are stressed in a more intensive manner, and thus are subjected to a lower amount of slip due to the braking manoeuvre, therefore rarely presenting disturbed signals for the detection of the over-steered cornering according to the present invention. In a special embodiment of FIG. 4 also the wheel speeds can be used directly since the subtraction of the vehicle reference speed from the wheel speeds is again eliminated in the difference 403. The production of wheel slip values therefore is only necessary to the extent that it is needed by other components or functions. Otherwise it can be omitted.


[0063] The detection of over-steered cornering described above is based on the finding that the axial speed component Vq which is not detected increases according to Vq=Vf·sin α with increasing king pin inclination of the wheel (α in FIG. 2), while the longitudinal component Vl according to Vl=Vf·cos α detected in the wheel plane declines. Thus the slip, i.e. the difference (in absolute values) resulting between the vehicle speed Vf and the longitudinal component Vl is a measure for the king pin inclination so that it can be used for evaluating the over-steering behaviour.


[0064] Up to now the detection of an over-steered cornering manoeuvre has been described with reference to the slip values of the vehicle wheels, but instead of the slip values also the wheel speed values can be used for the examination.


[0065] With regard to FIG. 5 another embodiment for determining over-steered cornering is described. The same reference numerals as in FIG. 3 indicate the same components which are not described anymore in order to eliminate repetitions.


[0066] The over-steered cornering manoeuvre of a vehicle can also be determined on the basis of the transverse accelerations of the vehicle's axles, the transverse acceleration being the acceleration approximately in the direction of the radius of the curve, thus also approximately in the direction of the axle. The transverse acceleration Aq can be determined in approximation by equating the formula for the centrifugal force (F=m·v2/r) with the general formula for the force on a mass which is to be accelerated (F=m·a). Thus results Aq=v2/r. On the basis of a more precise consideration of the geometric relations in a curve the transverse acceleration on an axle can be expressed by


[0067] Aq=((Vr+Vl)(Vr−Vl))/(2d),


[0068] Vr being the wheel speed of the right wheel on the axle, Vl the wheel speed of the left wheel on said axle and d the track on said axle. Thus the transverse acceleration on said axle can be determined with reference to the wheel speeds on said axle, the centre of the axle being the mathematically exact point of the determined transverse acceleration, which is a useful hypothesis for the purpose of the detection procedure which has to be described.


[0069] Furthermore the finding is used that in case of an over-steered driving behaviour the transverse acceleration on the rear axle is generally bigger than the transverse acceleration on the front axle.


[0070] Thus the over-steered driving behaviour can be determined by comparing the transverse acceleration of the rear axle with the transverse acceleration of the front axle. Over-steered cornering can be detected, e.g. if the condition


[0071] Aqha−Aqva>b


[0072] is met, Aqha being the transverse acceleration on the rear axle, Aqva the transverse acceleration on the front axle and b being a safety value.


[0073] The safety value is introduced into the poll in order to separate accidental small deviations resulting from detecting inaccuracies, because these should not lead to the detection of an over-steered cornering. The value of b can be in the range between 5% and 10% of the determined transverse accelerations Aq, but at least between 0.1 g and 0.2 g. FIG. 7d shows qualitatively the possible development of b.


[0074]
FIG. 5 shows a fourth detection device 501, 502 with which the transverse accelerations for the front and rear axles can be determined. These values are transmitted to the third detection device 500 which carries out the comparison e.g. on the basis of the condition mentioned above. The signals 304 can be output as described above-as a result of the detection. The determined transverse accelerations are preferably compared according to their absolute value. The direction of the curve can be determined by suitable further polls or e.g. also by the method resp. the device according to FIG. 3. A sensor may be used, too.


[0075] As already mentioned above, a suitable signal processing may be carried out at the beginning and/or for intermediate results, e.g. the determined transverse accelerations, in order to detect the over-steered cornering manoeuvre according to the present invention. In FIG. 5 this is again indicated by reference numeral 301, whereby the indicated devices can be foreseen individually or in combination with each other.


[0076] The determination of over-steered cornering on the basis of the transverse acceleration is particularly suitable for cornering with high transverse dynamics, i.e. with high transverse acceleration. In this case the transverse acceleration can, on the one hand, be calculated with a satisfactory accuracy. And on the other hand problems may arise due to the wheel slips when over-steered cornering is detected.


[0077]
FIG. 6 shows an embodiment according to the present invention, in which the detections according to FIG. 4 and FIG. 5 are combined with one another, and represents the second detection device 400 of FIG. 4 detecting over-steered cornering with reference to the wheel slips, and the third detection device 500 of FIG. 5 detecting over-steered cornering with reference to the transverse accelerations of the vehicle axles. The same components as in the corresponding position in FIG. 4 are located above the second detection device 400. The same applies analogously for the components above the third detection device 500. Resources which are required by both devices, as e.g. signal processors, do not need to be provided twice, but can be used in common.


[0078] Generally, the detection result of one of the two detection devices can be preferred resp. chosen. For this reason a selection device 600 is foreseen choosing and transmitting either the detection result of the second detection device 400 or the detection result of the third detection device 500. The selection may be carried out according to further operating states of the vehicle. In particular in case of a relatively low transverse acceleration or also in case of relatively small wheel slip values the detection of the over-steered cornering with regard to the wheel slip values may be preferred resp. chosen, while in case of higher transverse accelerations or higher wheel slip values the detection of over-steered cornering with reference to the transverse accelerations may be preferred.


[0079]
FIG. 6 shows a device 604 producing a test value, the test value being produced according to the operating states of the vehicle mentioned above, in particular according to the transverse accelerations and/or according to the wheel slips. In a comparison device 601 of the selection device 600 the test value can be compared with a threshold value. On the basis of said comparison, e.g. the second detection device 400 or the third detection device 500 can be chosen. The Figure shows the commutators 602, 603 chosing either two outputs at a time of the one or the other detection device and transmitting them, as described above, to the other components/brake functions 305.


[0080] The detection by combination of the methods described with reference to FIG. 6, as described on the basis of the FIGS. 4 and 5, has the advantage that well adjusted detection procedures are chosen for single operative states of the vehicle. This permits on the one hand to detect over-steered cornering in a reliable manner, but on the other hand to avoid error detections in a reliable manner.


[0081] If over-steered cornering has been detected, as described above, different measures may be taken individually or in combination with each other.


[0082] A curve-outward acting moment around the vertical axis of the vehicle may be generated by reducing or building up the brake pressure with less force/speed (gradient) resp. a nominal value on one or more of the wheels located on the inner side of the curve. Then the brake force on the wheel located on the outside of the vehicle increases so that also the curve-outward turning moment increases (resp. a curve-inward turning moment declines). This counteracts to the over-steering tendency (acting curve-inwardly).


[0083] The increase of the driving moment when towing the vehicle has a similar effect, especially on the rear axle. This also has a stabilising influence counteracting the over-steering tendency.


[0084] Finally it is possible to change in general the reaction thresholds for assistance functions. Subject to the fact whether said braking assistance functions have a positive or negative effect on over-steered cornering, the corresponding reaction thresholds may be reduced or increased so that the single functions are more sensitive resp. less sensitive.


[0085] This helps inducing favourable influences from higher braking assistance functions and avoiding unfavourable influences.


[0086] The intervention possibilities described above may be carried out in the other components/braking functions 305 according to the signals 304. They influence the output signals 131 which influence the driving behaviour of the vehicle on their part.

Claims
  • 1. Method for detecting cornering which includes the following steps determination of the wheel speeds of several wheels and determination of the slip of these wheels, characterised by detecting a cornering manoeuvre with reference to several of the determined slip values.
  • 2. Method according to claim 1, characterised by that the vehicle speed is determined and the slip of a wheel is determined on the basis of the vehicle speed and the wheel speed of said wheel.
  • 3. Method according to claim 1 or 2, characterised by that it is interrupted or not carried if a brake intervenes.
  • 4. Method according to anyone of the preceding claims, characterised by that a left curve is detected if one or more of the following conditions are met: Shl−S0>=shr−S0, Svl−S0>0, Svr−S0=0, and that a right curve is detected if one or more of the following conditions are met at the same time: Shr−S0>=Shl−S0, Svr−S0>0, Svl−S0=0, Shl being the slip on the left rear wheel, Shr being the slip on the right rear wheel Svl being the slip on the left front wheel Svr being the slip on the right front wheel, and S0 being the slip correction value.
  • 5. Method according to any one of the preceding claims, characterised by that a left curve is considered as completed, if at least one of the following conditions is met: Shl−S0<Shr−S0, Shl−S0>0, and that a right curve is considered as completed, if at least one of the following conditions is met: Shr−S0<Shl−S0, Shr−S0=0, Shl being the slip on the left rear wheel, Shr being the slip on the right rear wheel, and S0 being the slip correction value.
  • 6. Method according to claim 4 or 5, characterised by that values averaged with respect to time or integrated are used as wheel speed values and/or slip values, the averaging resp. integration being carried out over a minimum period of time.
  • 7. Method according to claim 6, characterised by that the minimum period of time is between 250 and 500 ms.
  • 8. Method according to anyone of the claims 4 to 7, characterized by that the slip correction value is determined subject to the vehicle speed and/or friction coefficient between wheel and road and may also be zero.
  • 9. Method according to claim 8, characterised by that the slip correction value is a value between 0.2 and 0.8% of the vehicle speed.
  • 10. Method for detecting an over-steered cornering manoeuvre including the following steps determination of the wheel speeds of several wheels and determination of the slip of these wheels, characterised by detecting an over-steered cornering manoeuvre with reference to several of the determined slip values.
  • 11. Method according to claim 10, characterised by that the vehicle speed is determined and the slip of a wheel is determined on the basis of the vehicle speed and the wheel speed of said wheel.
  • 12. Method according to claim 10 or 11, characterised by that it is interrupted or not carried out in case of a brake intervention.
  • 13. Method according to any one of claims 10 to 12, characterised by that an over-steered cornering manoeuvre is detected, if the following condition is met: Sh−Sv>a, Sh being a value describing the slip behaviour on the rear axle which has been determined with reference to at least one slip value of one wheel on the rear axle, Sv being a value describing the slip behaviour on the front axle which has been determined with reference to at least one slip value of one wheel on the front axle; a being a safety value.
  • 14. Method according to any one of claims 10 to 13, characterised by that an over-steered cornering manoeuvre is considered as completed if at least one of the following conditions is met: Sh−Sv<s, Sh−Sv>−s, Sha<Sa, Sh being a value describing the slip behaviour on the rear axle which has been determined with reference to at least one slip value of one wheel on the rear axle, Sv being a value describing the slip behaviour on the front axle which has been determined with reference to at least one slip value of one wheel on the front axle Sha being the slip on the outer rear wheel, Sva being the slip on the outer front wheel, and s being a threshold value.
  • 15. Method according to claim 13 or 14 characterised by that values are used as wheel speed values and/or as slip values which have been averaged with respect to time or integrated whereby the averaging or integration is carried out over a minimum period of time.
  • 16. Method according to claim 15, characterised by that the minimum period of time is between 250 and 500 ms.
  • 17. Method according to any one of claims 13 to 16, characterised by that an average value of the slips of the wheels on an axle is used as the value describing the slip behaviour of said axle.
  • 18. Method according to any one of claims 10 to 17, characterised by that the curve direction is determined by comparing the slip values and/or wheel speeds at least of a left wheel with one slip value or more of at least one right wheel considering preferably the wheels of the non-driven axle.
  • 19. Method according to any one of claims 13 to 18, characterised by that in case of a brake intervention a value based upon the slip of the wheel of an axle located towards the outside of the curve is taken as value describing the slip behaviour of said axle.
  • 20. Method for detecting an over-steered cornering manoeuvre including the following steps determination of the wheel speed of several wheels, characterised by determination of the transverse acceleration for the front and the rear axle, and determination of an over-steered cornering with reference to the determined transverse accelerations.
  • 21. Method according to claim 20, characterised by that it is interrupted or not carried out if the brakes intervene.
  • 22. Method according to claim 20 or 21, characterised by that an over-steered cornering manoeuvre is detected, if the following condition is met: Aqha−Aqva>b, Aqha being the transverse acceleration on the rear axle, Aqva being the transverse acceleration on the front axle, and b being a safety value.
  • 23. Method according to claim 22, characterised by that values are used as slip values and/or transverse acceleration values which have been averaged with respect to time or integrated, whereby the averaging or integration is carried out over a minimum period of time.
  • 24. Method according to claim 23, characterised by that the minimum period of time is between 250 and 500 ms.
  • 25. Method according to any one of the claims 20 to 24, characterised by that the transverse acceleration Aq of an axle for the centre of said axle is determined with reference to the formula
  • 26. Method according to any one of the claims 20 to 25, characterised by that the curve direction is determined by comparing the slip values and/or wheel speed values of at least one left wheel with the values of at least one right wheel, whereby the wheels of the non-driven axle are preferred.
  • 27. Method for detecting an over-steered cornering manoeuvre which combines the method according to any one of the claims 10 to 19 and the method according to any one of the claims 20 to 26 in such a way that according to the operating state of the vehicle either one method or the other is preferred.
  • 28. Method according to claim 27, characterised by that the method according to any one of the claims 10 to 19 is preferred if relatively low transverse accelerations or wheel slip values are determined, and failing this, the method according to any one of the claims 20 to 26 is preferred.
  • 29. Method according to claim 28, characterised by that according to one or more transverse acceleration values or one or more wheel slip values a test value is produced which is compared with a threshold value.
  • 30. Method for stabilising a vehicle in an over-steered cornering manoeuvre including the step detection of an over-steered cornering manoeuvre preferably with the method according to any one of the claims 10 to 29, characterised by one or more of the following steps: selective reduction of the corresponding brake pressures and/or nominal values, in particular on the wheels located towards the inside of the curve, increase of the driving moment, in particular on the rear axle, change of the response thresholds of braking assistance functions.
  • 31. Device for detecting cornering with a first detecting device (111-114) to determine the wheel speeds of several wheels, and a second detecting device (302a-d) to determine the slip of said wheels, characterised by a first detecting device (300) for detecting cornering with reference to several of the determined slip values.
  • 32. Device according to claim 31, characterised by that the vehicle speed is determined by a third detecting device (303) and that the second detecting device (302a-d) determines the slip of a wheel on the basis of the vehicle speed and the wheel speed of said wheel.
  • 33. Device according to claim 31 or 32, characterised by an interrupting device interrupting or avoiding the curve detection, if the brake intervenes.
  • 34. Device according to any one of the preceding claims, characterised by that the first detection device (300) detects a left-hand curve, if one or more of the following conditions are met: Shl−S0>=Shr−S0, Svl−S0>0, Svr−S0=0, and a right-hand curve, if one or (more of the following conditions are met at the same time: Shr−S0>=Shl−S0, Svr−S0>0, Svl−S0=0 Shl being the slip on the left rear wheel, Shr being the slip on the right rear wheel, Svl being the slip on the left front wheel, Svr being the slip on the right front wheel, and S0 being a slip correction value.
  • 35. Device according to anyone of the precedent claims, characterised by that the first detection device (300) considers a left-hand curve as completed, if at least one of the following conditions is met: Shl−S0<Shr−S0; Shl−S0=0 and considers a right-hand curve as completed, if at least one of the following conditions is met: Shr−S0<Shl−S0 Shr−S0=0, Shl being the slip on the left rear wheel, Shr being the slip on the right rear wheel, and S0 being the slip correction value.
  • 36. Device according to claim 34 or 35, characterised by a device (301) which produces an average value or an integral value used as wheel speed values and/or as slip values, the averaging or integration being carried out over a minimum period of time.
  • 37. Device according to claim 36, characterised by that the minimum period of time is between 250 and 500 ms.
  • 38. Device according to any one of the claims 34 to 37, characterised by a device determining the slip correction value subject to the vehicle speed and/or the friction coefficient between wheel and roadway, which, may be also zero.
  • 39. Device for detecting an over-steered cornering manoeuvre including a first detecting device (111-114) for detecting the wheel speeds of several wheels, and a second detecting device (302a-d) for detecting the slip of said wheels, characterised by a second detecting device (400) for detecting an over-steered cornering with reference to several of the determined slip values.
  • 40. Device according to claim 39, characterised by that the vehicle speed is detected by a third detecting device (303) and that the second detecting device (302a-d) determines the slip of a wheel on the basis of the vehicle speed and the wheel speed of said wheel.
  • 41. Device according to claim 39 or 40, characterised by an interrupting device which interrupts or avoids the detection of a curve if a brake intervenes.
  • 42. Device according to any one of claims 39 to 41, characterised by that the second detection device (400) detects an over-steered cornering manoeuvre, if the following condition is met: Sh−Sv>a Sh being a value describing the slip behaviour on the rear axle which has been determined with reference to at least one slip value of a wheel on the rear axle, Sv being a value describing the slip behaviour on the front axle which has been determined with reference to at least one slip value of a wheel on the front axle, and a being a safety value.
  • 43. Device according to any one of the claims 39 to 42, characterised by that the second detection device (400) considers an over-steered cornering as completed, if at least one of the following conditions is met: Sh−Sv<s, Sh−Sv>−s, Sha<Sva, Sh being a value describing the slip behaviour on the rear axle which has been determined with reference to at least one slip value of a wheel on the rear axle, Sv being a value describing the slip behaviour on the front axle which has been determined with reference to at least one slip value of a wheel on the front axle, Sha being the slip value on the outer rear wheel, Sva being the slip value on the outer front wheel, and s being a threshold value.
  • 44. Device according to claim 42 or 43, characterised by a device (301) which produces an average value or an integral used as wheel speed value and/or as slip value, the averaging or integration being carried over a minimum period of time.
  • 45. Device according to claim 44, characterised by that the minimum period of time is between 250 and 500 ms.
  • 46. Device according to any one of claims 42 to 45, characterised by a device (401, 402) producing an average value of the slip values on the wheels of the axle which serves as the value describing the slip behaviour of said axle.
  • 47. Device according to any one of the claims 39 to 46, characterised by that the direction of the curve is determined by comparing the slip values and/or wheel speed values of at least one left wheel with those of at least on right wheel, considering preferably the wheels of the non-driven axle.
  • 48. Device for detecting an over-steered cornering including at least one detecting device (111-114) for detecting the wheel speeds of several wheels, characterised by a fourth detecting device (501, 502) for detecting the transverse acceleration for the front and the rear axle, and a third detecting device (500) for detecting an over-steered cornering with reference to the determined transverse accelerations.
  • 49. Device according to claim 48, characterised by an interrupting device which interrupts or avoids the detection of an over-steered cornering manoeuvre if a brake intervenes.
  • 50. Device according to claim 48 or 49, characterised by that a third detecting device (500) detects an over-steered cornering manoeuvre, if the following condition is met: Aqha−Aqva>b Aqha being, the transverse acceleration on the rear axle, Aqva being the transverse acceleration on the front axle, and b being a safety value.
  • 51. Device according to claim 50, characterised by a device (301) which produces an average value or an integral value used as wheel speed values and/or slip values, the averaging or integration being carried out over a minimum period of time.
  • 52. Device according to claim 51, characterised by that the minimum period of time is between 250 and 500 ms.
  • 53. Device according to any one of the claims 48 to 52, characterised by that the fourth detecting device (501, 502) determines the transverse acceleration of Aq of an axle (105, 106) for the centre of the axle (105, 106) with reference to the formula
  • 54. Device according to any one of the claims 48 to 53, characterised by that the direction of the curve is determined by comparing the slip values and/or wheel speed values of at least one left wheel with those of at least one right wheel, considering preferably the wheels of the non-driven axle.
  • 55. Device for detecting an over-steered cornering manoeuvre, in which the device according to any one of the clams 39 to 47 and the device according to any one of the claims 48 to 54 are combined in such a way that according to an operating state of the vehicle either the output of the second detecting device (400) or of the third detecting device (500) is preferred.
  • 56. Device according to claim 81, characterised by a selection device (600) selecting the output of the second detecting device (400), if relatively low transverse accelerations or wheel slip values are determined, and failing this, selecting the output of the third detecting device (500).
  • 57. Device according to claim 82, characterised by a device (604) producing a test value according to one or several transverse acceleration values or one or several wheel slip values, the test value being compared with a threshold value.
  • 58. Device according to any one of the claims 81 to 84, characterised by that the device according to any one of the claims 39 to 47 and the device according to any one of the claims 48 to 54 are combined in such a way that identical components are foreseen only once and used in common.
  • 59. Device for stabilising a vehicle in case of over-steered cornering, including a device for detecting the over-steered cornering manoeuvre preferably according to any one of the claims 39 to 58, characterised by one or more of the following devices (305): a device for selectively reducing the brake pressures or the corresponding nominal values, in particular on the wheels located towards the inner side of the curve, a device for increasing the driving moment, in particular of the rear axle, a device for changing a response threshold of a braking assistance function
Priority Claims (5)
Number Date Country Kind
198 04 953.6 Feb 1998 DE
198 04 941.2 Feb 1998 DE
198 04 956.0 Feb 1998 DE
198 11 149.5 Mar 1998 DE
198 32 484.7 Jul 1998 DE
Divisions (1)
Number Date Country
Parent 09601704 Sep 2000 US
Child 10437681 May 2003 US