The invention pertains to a method for remelting metal in an electric furnace, wherein material electrodes are molten by forming a slag bath and the molten metal of the material electrodes solidifies in ingot form in a crucible apparatus as a result of cooling in such a way that an ingot growth forms from an ingot base due to a progressive solidification process, wherein the ingot base is heated in order to influence the cooling process. The invention furthermore pertains to a device for heating an ingot base during the remelting of metal in an electric furnace.
In electroslag remelting processes, material electrodes are remolten in order to produce material ingots, wherein the latter are used as semifinished products for the manufacture of components with high material quality such as, for example, forgings for use in power plants that have to meet the strictest reliability requirements. With respect to the systems or methods used, one distinguishes between two systems, the first of which is the so-called sliding crucible or ingot retraction system, in which the crucible apparatus, in which the ingots produced by melting the electrodes solidify, is provided with a crucible bottom that can be displaced independently of or together with a crucible wall in order to effectively manufacture the ingots in the form of a continuous slab. In so-called stationary crucible systems, the material electrodes are remolten into an ingot that is defined with respect to its linear dimension, wherein the crucible apparatus used in this case features a fixed crucible bottom.
In order to control the course of the cooling process that is essential for the material quality of the ingot, particularly in the region of the ingot base formed by the lower end of the ingot, it is known to realize the crucible bottom of crucible apparatuses used in stationary crucible systems in a heatable fashion. In this case, a bottom plate of the crucible bottom that is in contact with the ingot is indirectly tempered. A heat transfer medium such as, for example, water or oil is used for the tempering process. Consequently, the ingot mass in the crucible is tempered indirectly because the heat transfer medium initially needs to be heated to the desired temperature by means of a suitable energy carrier before a heat transfer to the ingot base can be realized via the bottom plate of the crucible bottom. The known heating method therefore is relatively sluggish such that it is hardly possible, in particular, to achieve desired temperature profiles during the heating of the ingot base. In addition, shrinkage of the ingot base occurs, in particular, in the region of the ingot base surface such that the ingot base frequently is not in direct contact with the bottom plate over its entire surface area.
A particular problem also arises due to the fact that the bottom plate consists of copper or a copper alloy in order to realize an adequate heat transfer such that the temperature of the bottom plate is limited to about 200° C. due to its material. It therefore must be assumed that the conventional ingot base heating process merely makes it possible to achieve slight temperature gradients on the one hand and also a relatively small temperature increase of the ingot base on the other hand.
The invention therefore is based on the objective of proposing a method and a device for heating an ingot base that not only make it possible to achieve a higher temperature gradient, but also an increase of the maximally possible heating of the ingot base.
In order to attain this objective, the inventive method is carried out in accordance with the characteristics of claim 1. Advantageous variations form the objects of the dependent claims.
In the inventive method for remelting metal in an electric furnace, in which material electrodes are molten in order to form a slag bath and the molten metal of the material electrodes solidifies in ingot form in a crucible apparatus as a result of cooling in such a way that an ingot growth forms from an ingot base due to a progressive solidification process, the ingot base is heated in order to influence the solidification process by directly acting upon the ingot base with energy.
Such a direct energy application makes it possible to achieve a higher temperature gradient during the heating of the ingot base on the one hand and an increase of the maximally possible ingot base temperature on the other hand.
Consequently, the inventive method provides a much more effective option for influencing the progression of the solidification process during the ingot growth. This becomes even more evident if one takes into account that the solidification progresses due to the migration of a solid/liquid interface such that its distance from the ingot base increases. Consequently, a variation of the temperature level or the temperature profile in the region of the ingot base also makes it possible to influence the structural composition at a greater distance from the ingot base during the solidification of the ingot. The direct heating of the ingot base therefore also makes it possible to influence the microstructure of the ingot at locations that lie relatively far from the actual ingot base. This reflects the considerable significance of the inventive method.
The invention furthermore makes it possible to limit the minimal surface temperature in the region of the ingot base or a negative temperature gradient in order to counteract an undesirable formation of cracks in the ingot surface during the cooling process.
The invention can be utilized in an equally advantageous fashion in stationary crucible systems, as well as sliding crucible or ingot retraction systems, particularly if a face of the ingot base is directly acted upon.
According to a particularly advantageous variation of the inventive method, the ingot base is heated by acting upon the ingot base with a device that uses, for example, gas or oil as energy carrier. The particular advantage of such a burner device can be seen in that the burner temperature can be very precisely adjusted and that the burner temperature can be very quickly varied by simply regulating the supply of the energy carrier or the distance of the burner device from the ingot base.
If the ingot base is acted upon with electric energy in accordance with an alternative variation, it is particularly advantageous that a corresponding heating device can be realized in a very compact fashion and therefore also easily integrated into the crucible bottom, if so required. It would be possible, for example, to utilize an inductively heatable contact plate that is brought in contact with the face of the ingot base.
It would furthermore be possible to act upon the ingot base with a stream of a heat transfer medium in such a way that, for example, a heated fluid stream, i.e., air or water, is directly aimed at the ingot base.
It is particularly advantageous to heat the ingot base such that a defined temperature distribution is adjusted over the ingot base cross section and, for example, outer edge regions of the ingot base that cool faster than inner regions of the ingot base can be acted upon with a higher or lower temperature depending on the respective requirements.
If the ingot base is acted upon by means of a burner device, in particular, it may be advantageous to carry out the heating of the ingot base in a reduced atmosphere in order to prevent, for example, a carburization, surface oxidation or nitration of edge regions of the ingot base.
After a previous cooling or solidification of the ingot base, an initially closed crucible bottom can be opened in order to form an opening and to subsequently control the further cooling by directly heating the face.
In order to attain the objective of the invention, the inventive device is realized in accordance with the characteristics of claim 7. Advantageous embodiments form the objects of the dependent claims.
In the inventive device for heating the ingot base of an ingot that solidifies in a crucible apparatus during an electroslag remelting process as a result of cooling a molten metal, the crucible apparatus features a casing wall and a crucible bottom that is provided with an opening in order to directly heat the ingot base by means of a heating device, namely in such a way that the heating energy generated by the heating device is directly introduced into the material of the ingot base.
The heating device may be realized in the form of a burner device or a contact device for introducing a current into the ingot base.
It would alternatively also be possible to realize the heating device in the form of a radiator in order to allow a contactless supply of heat into the ingot base.
If the heating device consists of a convection heater, for example, with a nozzle that aims a heated fluid stream at discretely defined areas of the ingot base, it would also be possible to utilize waste heat that is released at another location of the electroslag remelting processes or even independently thereof in the plant engineering section of a steel mill for realizing the heating device.
In order to allow, in particular, a selective utilization of the heating device on one and the same crucible apparatus, it is advantageous to realize the heating device independently of the crucible bottom.
The effectiveness of the heating device can be increased by arranging the heating device in a heating chamber that is situated adjacent to the crucible bottom, wherein a heating chamber in the form of a process chamber also makes it possible, in particular, to adjust a defined process atmosphere such as, for example, a reduced atmosphere within the heating chamber.
If the crucible apparatus is provided with an ingot base insulation in the region of the crucible bottom, the inventive device can be utilized in a particularly advantageous fashion in connection with a sliding crucible system, in which the ingot base generally cools faster and more intensely than in a stationary crucible system due to the partially great distance of the ingot base from the slag bath.
A preferred variation of the method and a preferred embodiment of the device are described in greater detail below with reference to the drawings.
In these drawings:
The crucible bottom 13 features a bottom plate 17 that is provided with an opening 18 in its center. A heating device 20 with a burner head 22 of the heating device 20 in the form of a burner device which is arranged on an interchangeable carrier 21 of a changing device 35 is situated underneath the bottom plate 17 and in concentric alignment with a central longitudinal axis 19 of the crucible pot 11 in the heating configuration illustrated in
In the heating configuration illustrated in
In contrast to the illustration according to
According to
Number | Date | Country | Kind |
---|---|---|---|
10 2009 025 176.6 | Jun 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP10/58249 | 6/11/2010 | WO | 00 | 2/17/2012 |