Method and device for repairing a membrane filtration module

Information

  • Patent Grant
  • 10427102
  • Patent Number
    10,427,102
  • Date Filed
    Thursday, September 25, 2014
    9 years ago
  • Date Issued
    Tuesday, October 1, 2019
    4 years ago
Abstract
A method for repairing a membrane filtration module in fluid communication with a plurality of additional membrane filtration modules includes fluidly connecting a fluid transfer assembly to the membrane filtration module, fluidly isolating the membrane filtration module from the plurality of additional membrane filtration modules, forcing liquid within the membrane filtration module into the fluid transfer assembly by introducing a pressurized gas into the membrane filtration module, releasing the pressurized gas from the membrane filtration module, fluidly disconnecting the fluid transfer assembly from the membrane filtration module, repairing one or more damaged membranes in the membrane filtration module, and fluidly reconnecting the membrane filtration module to the plurality of additional membrane filtration modules.
Description
RELATED APPLICATIONS

Foreign priority benefits are claimed under 35 U.S.C. § 119(a)-(d) or 35 U.S.C. § 365(b) of Australian Provisional application number 2013903804, titled A METHOD AND DEVICE FOR REPAIRING A MEMBRANE FILTRATION MODULE filed Oct. 2, 2013, which is hereby incorporated by reference in its entirety for all purposes.


BACKGROUND

1. Field of Invention


Aspects and embodiments of the present invention relate to membrane filtration systems and, more particularly, to a method and a fluid transfer assembly for such systems that is used to repair the membranes within a module in situ while the module is connected to a manifold fluidly connecting the module to a plurality of additional modules.


2. Discussion of Related Art


Examples of hollow fiber filtration modules and banks of such modules are shown in, for example, International Patent Application PCT/AU87/00309 and PCT/AU90/00470. These applications are incorporated herein by reference in their entireties for all purposes.


In some examples, a hollow fiber filtration module may comprise an elongate tubular casing enclosing a bundle of hollow fiber membranes. At one end of the casing there is a first header which has a feed passageway therethrough. The feed passage is in fluid communication with the interior of the casing and hence the exterior of the fiber membranes. At the other end of the casing there is a second header which has a treated feed passageway therethrough in communication with the interior of the casing and the lumens of the fiber membranes.


At least one of the headers, for example, the lower header, may also be provided with a gas conveying passageway in fluid communication with the interior of the casing and the exterior of the fiber membranes.


The passageways may be formed in off-set portions of the headers. The headers may have planar end faces. A plurality of such modules may be joined together with or without interconnecting manifolds or pipe work to form a row of filter modules. A number of such rows of filter modules may be inter-connected to define a bank of filter modules.


Prior art arrangements typically have manifolds for communicating fluids to and from the headers arranged above and below the headers. The filter cartridges in these systems have a finite life and need to be removed for cleaning or replacement at regular intervals during the operating life of a system. This can be time and labor intensive, resulting in the system being off-line for longer than required, particularly where only one cartridge, located deep within a bank of modules, is required to be replaced or serviced.


SUMMARY

According to a first aspect there is provided a method for diagnosing a membrane filtration module in fluid communication with a plurality of additional membrane filtration modules in situ. In the method, a fluid transfer assembly is fluidly connected to the membrane filtration module. The membrane filtration module is fluidly isolated from the plurality of additional membrane filtration modules. A pressurized gas is introduced into the membrane filtration module to force liquid within the membrane filtration module into the fluid transfer assembly. The pressurized gas is released from the membrane filtration module. The fluid transfer assembly is fluidly disconnected from the membrane filtration module. The module is inspected to determine if one or more membranes in the membrane filtration module are damaged. The membrane filtration module is fluidly reconnected to the plurality of additional membrane filtration modules.


The method provides for filtration membranes in the membrane filtration module to be inspected and for damaged membranes in the membrane filtration module to be blocked while the additional filtration modules, which may be in a same bank of modules as the filtration module undergoing inspection and/or repair, remain operational or in operation. The membrane filtration module may be inspected and/or repaired in situ in the bank of membrane modules without the need to drain feed from the other membrane filtration modules in the bank.


In some embodiments, fluidly isolating the membrane filtration module comprises fluidly isolating a filtrate port of the membrane filtration module. Fluidly isolating the membrane filtration module may comprise fluidly sealing the filtrate port from the plurality of additional membrane filtration modules. In some embodiments, fluidly isolating the membrane filtration module comprises closing the filtrate port.


In some embodiments, fluidly isolating the membrane filtration module comprises fluidly isolating the filtrate port with the fluid transfer assembly. The fluid transfer assembly may comprise a body sealingly engageable with the membrane filtration module, and fluidly isolating the filtrate port may comprise at least partly inserting the body into the membrane filtration module to fluidly seal the filtrate port. In some embodiments, the body closes or blocks the filtrate port.


In some embodiments, fluidly isolating the membrane filtration module comprises fluidly isolating one or more fluid communication openings between the membrane filtration module and the plurality of additional membrane filtration modules. In some embodiments, fluidly isolating the membrane filtration module comprises fluidly sealing the one or more fluid communication openings from the plurality of additional membrane filtration modules. In some embodiments, fluidly isolating the membrane filtration module comprises closing the one or more fluid communication openings.


In some embodiments, fluidly reconnecting the membrane filtration module step comprises fluidly reconnecting the filtrate port. In some embodiments, fluidly reconnecting the membrane filtration module comprises fluidly unsealing the filtrate port. In some embodiments, fluidly reconnecting the membrane filtration module comprises opening the filtrate port.


In some embodiments, fluidly reconnecting the membrane filtration module comprises fluidly reconnecting the one or more fluid communication openings. In some embodiments, fluidly reconnecting the membrane filtration module comprises fluidly unsealing the one or more fluid communication openings. In some embodiments, fluidly reconnecting the membrane filtration module comprises opening the one or more fluid communication openings.


In some embodiments, the fluid communication openings comprise a feed port for introducing a feed liquid into the membrane filtration module, an exhaust port for removing waste liquid and/or enabling backwashing and an aeration port for introducing air into the membrane filtration module for filtration of the feed liquid.


In some embodiments, introducing the pressurized gas comprises directing the pressurized gas into the membrane filtration module. In some embodiments, introducing the pressurized gas comprises injecting the pressurized gas into the membrane filtration module.


In some embodiments, introducing the pressurized gas comprises introducing the pressurized gas through one of the fluid communication openings. Alternatively, a pressurized gas port is provided in a housing of the membrane filtration module for introducing the pressurized gas. In some embodiments, the pressurized gas port is provided in an upper part of the housing of the membrane filtration module.


In some embodiments, the pressurized gas is introduced through the exhaust port and the feed port and aeration port are fluidly isolated. In some embodiments, the feed and aeration ports are fluidly sealed.


In some embodiments, the pressurized gas is introduced downstream of the feed port, with the feed port and the aeration port being fluidly isolated. In some embodiments, the feed port and the aeration port are fluidly sealed.


In some embodiments, the pressurized gas is introduced through the aeration port and the feed port is fluidly isolated. In some embodiments, the feed port is fluidly sealed.


In some embodiments, the pressurized gas is introduced through the pressurized gas port and the exhaust port is fluidly isolated. In some embodiments, the exhaust port is fluidly sealed.


In some embodiments where a separate pressurized gas port is used to introduce the pressurized gas into the membrane filtration module, the exhaust port is fluidly isolated. In some embodiments, the exhaust port is fluidly sealed.


Fluidly isolating the fluid communication openings, and even the filtrate port, can be performed by any isolation means, such as valves. Isolation valves of the type described in International Patent Application PCT/US2012/057198, which is herein incorporated by reference in its entirety for all purposes, are suitable for fluidly isolating the fluid communication openings and/or filtrate port.


In some embodiments, the pressurized gas is at a pressure below the bubble point of membranes in the membrane module. In some embodiments, the pressurized gas is compressed air.


In some embodiments, repairing the one or more damaged membranes comprises directing a pressurized gas into the membranes of the membrane filtration module to identify the one or more damaged membranes. In some embodiments, repairing the one or more damaged membranes comprises inserting a plug into the lumen of each damaged membrane to block the lumens of the damaged membranes.


In some embodiments, the membrane filtration module comprises a membrane sub-module surrounded by a casing and fluidly connected to a header. The header may comprise an open-ended housing for receiving at least one end of the membrane sub-module and a removable end cap. In some embodiments, the open-ended housing and the at least one end of the membrane sub-module defines a filtrate collection chamber.


In some embodiments, the method further comprises removing the end cap sealingly engageable with the header.


According to a second aspect, there is provided a fluid transfer assembly for repairing a membrane filtration module in fluid communication with a plurality of additional membrane filtration modules. The fluid transfer assembly comprises a body having a fluid communication passageway for transferring fluid from the membrane filtration module, wherein the body at least partly fluidly isolates a filtrate port of the membrane filtration module from the fluid communication passageway.


In some embodiments, the body is sealingly engageable with the membrane filtration module. In some embodiments, the body is sealingly engageable with an open-ended housing of the membrane filtration module. In some embodiments, the body partly fluidly seals the filtrate port from the fluid communication passageway. In some embodiments, the body closes or blocks the filtrate port from the fluid communication passageway.


In some embodiments, the body is at least partly insertable into the membrane filtration module. In some embodiments, the body is at least partly insertable into the open-ended housing.


In some embodiments, the fluid transfer assembly comprises a sealing member for fluidly isolating the filtrate port from the fluid communication passageway. In some embodiments, the fluid transfer assembly comprises two sealing members for fluidly sealing the filtrate port from the fluid communication passageway. In some embodiments, the two sealing members are arranged on an outer side of the body such that the sealing members are located on either side of the filtrate port when the body sealingly engages the membrane filtration module. In some embodiments, the sealing members are fittingly engaged with the outer side of the body. In some embodiments, the sealing members each comprise an O-ring.


In some embodiments, the body has a cross-section complementary to the inner cross-section of the membrane filtration module. In some embodiments, the body has a cross-section complementary to the inner cross-section of the open-ended housing of the membrane filtration module. In some embodiments, the body is tubular or cylindrical in shape. In other embodiments, the body is a sleeve.


In some embodiments, the fluid communication passageway extends along the length of the body of the fluid transfer assembly. In some embodiments, the fluid communication passageway extends through a bore of the body.


In some embodiments, the fluid transfer assembly comprises a cap sealingly engageable with the body for inhibiting escape of fluid from a filtrate collection chamber of the membrane filtration module. In some embodiments, the cap fluidly seals the filtrate collection chamber. In some embodiment, the cap comprises a sealing member. In some embodiments, the sealing member comprises an O-ring.


In some embodiments, the fluid transfer assembly comprises a first conduit for transferring liquid from the fluid communication passageway. In some embodiments, the first conduit is connected to a bore in the cap. In some embodiments, the first conduit comprises a fluid transferring tube, pipe, or hose. In some embodiments, the cap comprises a vent hole for facilitating operation of the first conduit.


In some embodiments, the cap comprises a fitting for receiving a second conduit for removing the liquid from the fluid transfer assembly. In some embodiments, the fitting comprises a bore. In some embodiments, the fitting comprises a threaded bore. In some embodiments, the second conduit is a hose, tube, or pipe.


In some embodiments, the cap comprises a first securing member for securing the cap to the body. In some embodiments, the first securing member comprises a flange for engaging a complementary seat in the body. In some embodiments, the flange comprises a bayonet-type fitting.


Alternatively or additionally, the fluid transfer assembly comprises a second securing member for securing the cap to the body. In some embodiments, the second securing member engages the body adjacent the cap to hinder movement of the cap outwardly of the membrane filtration module. In some embodiments, the second securing member comprises a circlip engageable with a seat in the body.


In some embodiments, the cap comprises a thread for engaging a complementary thread on the body.


In some embodiments, the body comprises an engagement member for engaging the membrane filtration module. In some embodiments, the engagement member is a thread formed on the body.


In some embodiments, the cap comprises one or more handles for facilitating installation and removal of the fluid transfer assembly.


According to a third aspect, there is provided a method for regulating the flow of a feed fluid in a membrane filtration module. In the method, a valve is provided adjacent a feed opening of the membrane filtration module. The valve is moveable between a closed position and an open position to regulate or control the flow of the feed fluid into the membrane filtration module.


In some embodiments, the valve is adjustably moveable into a plurality of discrete positions between the closed and open positions.


According to a fourth aspect, there is provided a membrane filtration module comprising a feed opening for receiving a feed fluid and a valve seat downstream of the feed opening. A valve has a valve body that is engageable with the valve seat and a stem for moving the valve body between a closed position and an open position to control the flow of feed fluid into the membrane filtration module.


In some embodiments, the stem is adjustably movable to position the valve body into a plurality of discrete positions between the closed and open positions. In some embodiments, the valve body restricts the flow of feed fluid in the discrete positions. In some embodiments, the valve body gradually restricts the flow of feed fluid in the discrete positions from the open position to the closed position


In some embodiments, in the closed position, the valve body fluidly isolates the feed opening from an interior of the module. In some embodiments, the valve body fluidly isolates the feed opening from a membrane sub-module.


In some embodiments, the membrane filtration module comprises a valve bore for receiving the stem. In some embodiments, the stem is rotatable within the valve bore to move the valve body between the closed and open positions.


In some embodiments, the valve bore and stem have mutual engagement members. In some embodiments, the valve bore and stem have mutual mating threads.


In some embodiments, the stem is lockable in position so that the valve body is held in one of the discrete positions. In some embodiments, a locking member is provided on the stem. In other embodiments, the stem comprises a stop for limiting movement of the valve body.


In some embodiments, the valve body comprises a sealing member for sealing the valve body against the valve seat. In some embodiments, the sealing member is an O-ring.


In some embodiments, the membrane filtration module comprises an aeration opening for receiving gas or air, wherein the valve seat is located downstream of the aeration opening. In some embodiments, in the closed position, the valve body fluidly isolates the aeration opening from an interior of the module. In some embodiments, the valve body fluidly isolates the aeration opening from a membrane sub-module.





BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:



FIG. 1 is a schematic cross-sectional elevation view of a pair of membrane filtration modules;



FIG. 2 is a front schematic, partially exploded, perspective view of a bank of membrane modules in a partially disassembled state;



FIG. 3 is a schematic perspective view of a row of pairs of filtration modules mounted on a support rack;



FIG. 4 is a schematic cross-sectional elevational view of one of the membrane filtration modules including an embodiment of a fluid transfer assembly;



FIG. 5 is an enlarged schematic cross-sectional elevation view of region A of FIG. 4;



FIG. 6 is an enlarged schematic cross-sectional elevation view of region B of FIG. 4;



FIG. 7 is an alternate embodiment of the structure illustrated in FIG. 6;



FIG. 8 is an enlarged schematic cross-sectional elevation view of region C of FIG. 7;



FIG. 9 is a schematic cross-sectional elevation view of a membrane filtration module including a valve according to one embodiment;



FIG. 10 is an enlarged schematic cross-sectional elevation view of region D of FIG. 9 with the valve in a partly open position;



FIG. 11 is an enlarged schematic cross-sectional elevation view of region D of FIG. 9 with the valve in a closed position; and



FIG. 12 is a flowchart of a method according to one embodiment.





DETAILED DESCRIPTION

Aspects and embodiments disclosed herein are not limited in application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. Aspects and embodiments disclosed herein are capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


Filter cartridges in filtration modules can be repaired if an individual membrane fails or becomes damaged, without necessarily having to replace the entire filter cartridge. This repair process is called “pin repair,” and involves locating the damaged fiber(s) in the filter cartridge and inserting a relatively short (about 10 mm long) pin into the top of the fiber to block the fiber lumen. The damaged fiber is effectively removed from operation of the filter cartridge, enabling the remaining fibers to operate normally in the filtration module. The advantages of pin repair are reduced costs in delaying replacement of the filter cartridge and maximizing its operating life.


One difficulty with previously known pin repair techniques is that, in these techniques, the module to be repaired needs to be removed from the filtration unit and installed in a dedicated pin repair device to carry out the repair. Accordingly, a typical pin repair process involves a shutdown of the filtration unit, removing the module to be repaired, repairing the module in the dedicated pin repair device, reinstalling the module, and restarting the filtration unit. The process of removing and reinstalling the module may take a similar amount of time as the time required to perform the actual repair in the pin repair device. Where only a minor repair is required, the time involved with removing and reinstalling the module(s) that have to be repaired can be significantly longer than the actual repair process. Also, removing and reinstalling a module in a bank of modules increases the risk of operator injury or damage to the membrane module or other modules in the bank due to manual handling of the modules.


Aspects and embodiments disclosed herein advantageously provide methods and devices whereby pin repair can be performed quickly and safely with a reduced risk of damaging the filtration cartridges in unaffected modules.


Aspects and embodiments of the present invention will be described with reference to hollow fiber membranes but it is to be understood that aspects and embodiments disclosed herein are not necessarily limited thereto as they may be applied to systems incorporating other kinds of filter membranes, for example, porous or permeable membranes in a spiral wound, mat, or sheet form.


Aspects and embodiments of the present invention relate to filter module assemblies composed of filter membrane cartridge or sub-module assemblies having opposed, symmetrical potting heads attached to either end, although filter membrane cartridges or sub-modules having dissimilar potting heads are also contemplated. Aspects and embodiments disclosed herein may be implemented with single ended pressurized membrane filtration modules.


Aspects and embodiments of the present invention relate to filter module assemblies which utilize headers adapted to conduct fluids in the form of feed, filtrate, and gas to other headers, for example, adjacent like headers, and into and out of the filter cartridge or sub-module assembly to which they are connected.


Aspects and embodiments of the present invention relate to membrane filters whose filter sub-modules comprise elongate bundles of permeable hollow fiber membranes wherein feed to be filtered is applied to the outside of the bundle of fiber membranes and filtrate or permeate is withdrawn from the fiber lumens. Aspects and embodiments of the present invention relate to membrane filtration systems having multiple filtration modules connected together in a bank of filtration modules. A fluid control module, alternatively referred to herein as a manifold, fluidly communicates a source of feed and a source of aeration gas to headers of one or more of the filtration modules in the bank. The fluid control module and/or filtration module headers may include integrated feed, filtrate, and gas conduits. The fluid control module may be configured to automatically deliver gas to the filtration module headers upon introduction of gas into a feed conduit included within a body of the fluid control module.


Examples of the type of fluid control manifolds which may be used with aspects and embodiments disclosed herein are described in Applicant's Australian Patent Application No. 2010902334, the subject matter of which is incorporated herein in its entirety by cross-reference.


An embodiment of a filter module assembly 10 suitable for use with aspects and embodiments disclosed herein is shown in FIG. 1, and is described in more detail in the Applicant's International Patent Application PCT/US2012/055715, which is herein incorporated by reference in its entirety for all purposes.



FIG. 1 is a side sectional elevational view of the filter module assembly 10. The filter module assembly 10 includes two filter modules 11 and 12 mounted in common upper and lower manifolds, 13 and 14, respectively. Each filter module 11 and 12 includes a tubular outer casing 15 that encloses a respective sub-module or cartridge 16. The sub-module 16 comprises a plurality of hollow fiber membranes (not shown) potted in and extending vertically between opposed upper and lower potting heads 17 and 18. Upper and lower potting heads 17 and 18 may be formed of resinous potting material. The potting heads 17 and 18, in this embodiment, are generally cylindrical in configuration though the shape and size of the potting heads is not narrowly critical and a variety of configurations may be used including square, rectangular, triangular or elliptical blocks. Each module 11 and 12 has an upper header 155.


The hollow fiber membranes form the working part of the filter sub-module or cartridge 16. Each fiber membrane may have an average pore size of about 0.04-0.2 microns, a wall thickness of about 100-500 microns and a lumen diameter of about 300-1,000 microns. The fiber membranes may be arranged in bundles. There may be about 14,000 hollow fibers in the bundle, but this number, as well as the individual fiber dimensions and characteristics are not narrowly critical and may be varied according to operational requirements.


Each potting head 17, 18 is cast into and peripherally surrounded on its outer side by a respective potting sleeve 19, 20 which extends longitudinally in the direction of the fibers towards a respective opposed potting head 17, 18. Each potting sleeve 19, 20 extends beyond the interface between the potting head 17, 18 and the fibers extending longitudinally from the potting head 17, 18 towards a respective opposed potting head 17, 18 to form a fluid communication region 21.


Each potting sleeve 19, 20 has a plurality of openings 23 formed therein located in the fluid communication region 21. In this embodiment, an array of openings 23 is provided spaced circumferentially and longitudinally from each other. Each opening 23 is in the form of a circumferentially extending slot. It will be appreciated that the number, size and shape of the opening 23 is not narrowly critical. The openings 23 are preferably located towards the distal end 24, 25 of each potting head 17, 18.


The lower potting head 18 is provided with a number of through passages 26 extending generally longitudinally from the lower end surface 27 of the lower potting head 18 to its upper surface from which the potted membrane fibers (not shown) extend.


The lower and upper potting heads 17, 18 and the respective potting sleeves 19, 20 are fitted into respective upper header housings 30 and lower sockets 31. A lower header 32 is a combined feed/gas header which has a head piece 49 with an internal fluid connection passageway 50, designated as a feed port, extending downward from a fluid transfer port 45 and radially outward to a side of the head piece 49. A common fluid control manifold 54 is located between the lower head pieces 49 of each module 11, 12 for conveying a feed fluid to be treated by the paired modules 11, 12.


A filtrate receiving chamber 135 is positioned between an upper surface of the upper potting head 17 and an end cap 120 (FIG. 2) of each module 11, 12. Open ends of the fiber membranes potted in the upper potting head 17 open into filtrate receiving chamber 135 and provide fluid communication between the membrane fiber lumens and filtrate receiving chamber 135.



FIG. 2 illustrates an exemplary filtration module assembly and manifold configuration as described in International Patent Application PCT/US2012/055715 that is suitable for use with various aspects and embodiments disclosed herein. A fluid transfer manifold 170 and the filtrate transfer manifold 168 are each provided with a respective generally circular cross-section passageway 172 and 171, respectively (FIG. 1) extending normal to the longitudinal axis of the modules 11, 12. The filtrate transfer manifold 168 is mounted to and above the fluid transfer manifold 170. The manifolds 168, 170 are mounted between the upper header housings 30 of each module pair 11, 12 so as not to obstruct the removal of the respective end caps 120 of each header housing 30. The lower manifold 170 may include a passageway 179 (FIG. 1) extending longitudinally along its base for receiving a tie bar which helps hold portions of the manifolds 168, 170 in adjacently positioned filtration modules together.



FIG. 3 shows an exemplary mounting arrangement for a row of pairs of modules in a non-expensive light-weight rack, as described in International Patent Application PCT/US2012/055715 that is suitable for use with various aspects and embodiments disclosed herein. The filtration system arrangement comprises a plurality of membrane module pairs 11 and 12 having filtration membranes included therein disposed on a rack formed of a pair of parallel base support rails 216 and 217 extending longitudinally along a row of module pairs. The lower header piece 49 of each module 11 and the lower header piece 49 of each module 12 is supported on rail 216 and rail 217, respectively. End support members 218 and 219 extend vertically upward from the respective rails 216 and 217 at each end of the rack. A lower cross member 220 spaces the end support members and extends horizontally between the support members 218 and 219 adjacent to and above the lower headers 49. An upper cross member 221 further spaces the end support members 218 and 219 and extends horizontally between the support members adjacent to and below fluid transfer manifold 170. An upper longitudinal rail 222 extends along the length of and between the rows of module pairs and is supported on upper cross members 221. Each base support rail 216 and 217 includes feet 223, 224, and 225 which extend downward from the respective ends of the rails and at a mid portion of each rail. The feet support the lower head pieces 49 above the lower common manifold 54.


The manifold arrangements shown in FIGS. 2 and 3 provided a convenient means for individual removal of sub-modules 16 for replacement or repair. However, this entailed removing the sub-module 16 out of the casing 15.


As such, it would be desirable to perform repair of the module in situ without having to remove the module from the unit or rack. However, to implement in situ repair several issues need to be addressed. One issue is that in situ pin repair is that it may require the liquid waste within the module to be drained and removed. Since the individual module is typically part of a unit having a plurality of modules that are fluidly connected to each other by a manifold arrangement, draining an individual module may requires emptying the entire filtration assembly. In addition, in many installations with filtration module units it is desirable to keep the floor space clean to avoid hazards, thus requiring a container to safely store and remove the liquid waste drained from the modules.


Another issue with in situ pin repair is that pin repair can be a lengthy process. For example, it may take up to 30 minutes to repair a single module. If multiple modules need to be repaired, modules in a unit may be exposed to air for a prolonged period causing fiber drying and loss of performance. In addition, a significant amount of time may be spent in draining the shell side of the module and removing the liquid waste volume.


Also, an integrity test is generally integrated in the operating process of the unit. The integrity test is generally carried out by pressuring the lumen with compressed air at not less than 70 kPa and tests the ability of the module to hold the air pressure when the compressed air source is removed. Depending on the method used, either the outer surface of the fibers or the lumens of the fibers are exposed to air during the integrity test. Due to capillary effects, an integral fiber with its fiber wall fully filled with water should not pass any compressed air. If an integral fiber is unduly dried, however, air will leak through the fiber wall freely and reduce the ability of the lumen to hold air pressure. Thus, the air pressure drop during the integrity test caused by fiber drying can give a false integrity test results.


A further issue is that in situ pin repair can pose a safety risk, since it involves filling the shell sides of the modules in a unit with compressed air, hence significantly increasing the hazard level due to the explosive property of compressed air. The hazard level is calculated based on applied compressed air pressure and the volume. For a defined pressure, the hazard level increases linearly with volume. Thus, the housing of the module would desirably be strengthened to minimize this hazard level to acceptable limits. Depending on the volume of the shell side of the module, this would impose significant costs for a unit with more than 15 to 30 modules. The costs incurred in strengthening the housing would significantly increase manufacturing costs and hence the retail cost for the unit.


Referring to FIGS. 4 and 5, a fluid transfer assembly 300 and method in accordance with various aspects and embodiments disclosed herein is shown which enables repair of damaged sub-modules in situ, without having to remove the sub-module 16 out of the casing 15. FIGS. 4 and 5 also show a simplified diagram of one of the membrane filtration modules 11, 12 to more clearly illustrate the method according to this embodiment of the invention. In particular, the module 12 has four fluid communication openings or “ports” that are in fluid communication with the manifolds 54, 168, and 170 (as best shown in FIGS. 1 to 3) that fluidly connect the module 12 with the other modules 11, 12 in the unit or rack. The module 12 has a filtrate port 301 in the upper header housing 30 for conveying filtrate to the filtrate transfer manifold 168 and an exhaust port 302 for conveying liquid waste from the casing 15 into the fluid transfer manifold 170. At its opposite end, the module 12 has a feed port 50 for conveying feed fluid to be treated from the feed manifold 54 to the module and an aeration port 303 for injecting air from an aeration manifold (not shown) to facilitation filtration. The upper header housing 30 defines a filtrate collection chamber 305 that extends from the distal end 24 of the potting head 17 up to the top of the housing, which is normally fluidly sealed by the removable end cap 120, as shown in FIG. 2.


Referring to FIGS. 6 to 8, the fluid transfer assembly 300 has a body in the form of a tubular sleeve 350 having a fluid communication passageway in the form of a through bore 354 for transferring fluid from the module 12. The sleeve 350 at least partly fluidly isolates the filtrate port 301 from the through bore 354.


As the sleeve body 350 has a length approximate to the length of the upper header housing 30, it closes off the filtrate port 301 from the through bore 354. In addition, two sealing members in the form of O-rings 351 are provided on the outer surface of the sleeve 350 for fluidly isolating the filtrate port 301 from the through bore 354. The O-rings 351 are located on the sleeve 350 so that they are located or positioned on either side of the filtrate port 301 when the sleeve 300 is installed into the upper header housing 30, thus fluidly sealing off the filtrate port 301.


While the body 350 is a tubular sleeve in this embodiment, it will be appreciated that the body can have other polygonal cross-sections to complement the inner cross-section of the membrane filtration module and/or upper header housing 30. For example, the body can have a rectangular or square cross-section to complement a rectangular or square inner cross-section of the membrane filtration module. Likewise, the body can have other cross-sections, such as triangular, oval, elliptical, hexagonal, octagonal or any other polygonal cross-section, as desired to complement the inner cross-section of the membrane filtration module and/or upper header housing 30.


The fluid transfer assembly 300 also has one end 352 of the sleeve an optional end cap 353 for fluidly sealing the fluid transfer assembly 300 and the filtrate collection chamber 305. The end cap 353 has a sealing member 359 in the form of an O-ring to fluidly seal off the fluid transfer assembly 300.


The cap 353 also has a fluid transferring conduit in the form of a tube 355 that is in fluid communication with an exit bore 356. Thus, fluid in the filtrate collection chamber 305 is able to flow under a driving pressure into the through bore 354 and then through the tube 355 and out of the exit bore 356. The exit bore is connected to a hose or other tube to permit the fluid to drain out of the module 12, through the fluid transfer assembly 300 and the hose to a floor drain or sump. Hence, this avoids spillage of filtrate on the plant floor, eliminating a potential hazard in the plant. In some embodiments, the exit bore 356 has thread for securing the hose or tube to the fluid transfer assembly 300. An air vent 360, shown in dotted lines, can also be provided to assist in siphoning the liquid out from the through bore 354, through the tube 355 and out exit bore 356.


Where spillage of the filtrate does not present a hazard, then the cap 353 may be dispensed with and the fluid transfer assembly 300 may comprise the sleeve 350 and O-rings 351 without the cap 353.


The cap 353 may also have a pair of handles 357 and grips in the form of knobs 358 to allow easy installation and removal of the sleeve 300 into and out of the upper header housing 30.


As discussed above, the cap 353 is an optional component to the sleeve 300. As such, instead of being permanently fixed to the sleeve body 350, the cap 353 is secured to the sleeve body 350 by way of bayonet-type fitting in the form of a flange 361 in the cap that securingly engages a seat 362 formed on the inner surface of the sleeve body 350 at one end 352, as best shown in FIG. 6.


Alternatively or additionally, the cap 353 can be secured to the sleeve 350 using a securing member in the form of a circlip 365 that engages a seat 366 in the sleeve 350 adjacent to the cap. The circlip 365 hinders or prevents outward movement of the cap 353.


In some embodiments, the cap 353 and the sleeve 350 may have complementary threads for securing the cap to the sleeve. The sleeve 350 may has a thread 367 at its outer surface at one end 352 for engaging a corresponding thread 368 on the upper header housing 30 for securing the fluid transfer assembly 300 to the upper header housing of the membrane filtration module 12.


Other methods of removably securing or permanently securing the cap 353 to the sleeve 350 known in the art may additionally or alternatively be employed.


A repair process to perform an in situ pin repair according to various aspects and embodiments disclosed herein using the fluid transfer assembly 300 will now be described. A flowchart of this method is illustrated generally at 500 in FIG. 12.


Membrane failure may be detected by a pressure decay test (PDT) that is conducted a regular intervals during operation of the rack or unit of modules. Once a module has been identified as requiring repair, all pipe connections to the unit or rack are isolated from the rest of the plant. The pressurized module 12 is vented to release pressure within the module (act 505). Both the shell side of the module 12 and the lumens of the membranes may be depressurized. The shell side and lumen pressure readings may be checked to ensure the both pressure readings are low enough to allow safe removal of the removable end cap 120 of the module 12 to be repaired. The removable end cap 120 is then removed (act 510) and the fluid transfer assembly 300 is fluidly connected to the membrane filtration module 12 (act 515). A more detailed description of the fluid transfer assembly 300 is provided below.


The membrane filtration module 12 is then fluidly isolated from the other membrane filtration modules in the rack or unit (act 520). This ensures that the remaining membrane filtration modules are not affected by the repair process, and hence reduces or minimizes any risk of damage to those modules due to being exposed to air while waiting for the module containing the defective membranes to be repaired. Fluid isolation of the module 12 can be achieved in several ways, which will be discussed in more detail below. Generally, in one embodiment, one or more of the fluid communication openings of the module 12 are fluidly sealed or closed to prevent the pressurized gas from entering the manifolds and the other membrane filtration modules. In some embodiments, isolation of the membrane filtration module may occur prior to or concurrently with any of acts 505, 510, or 515.


A pressurized gas in the form of compressed air is introduced into the membrane filtration module 12 to force liquid within the membrane filtration module into the fluid transfer assembly 300 (act 525). As the module 12 to be repaired is fluidly isolated from the common manifolds 54, 168, 170, and the filtrate port 301 is fluidly isolated from the other modules in the unit or rack, only the module to be repaired is vented to air. Hence, positive transmembrane pressure (TMP) only occurs in the module 12 and consequently feed liquid in the shell side of the module passes through the membrane walls of the sub-module 16 and exits as filtrate, where it is removed via the fluid transfer assembly 300 out of the module. The compressed air drives some or all feed fluid in the casing 15 out through the membranes in the sub-module 16 as filtrate and into the filtrate collection chamber 305. The filtrate in the filtrate collection chamber 305 passes into the fluid transfer assembly 300 and is drained out of the module 12. Filtration in the module 12 to be repaired stops when the liquid level in casing 15 reaches the lower pot 18 as all membrane fibers of the module to be repaired are exposed to the compressed air. In some embodiments, the module may be filtered down by applying suction to the membrane lumens rather than by applying compressed air to the external walls of the membranes.


In this embodiment, the compressed air is directed or injected into the module 12 at a pressure below the membrane bubble point so as to not damage the membranes during draining of the liquid via the fluid transfer assembly 300. Once the filtrate has been drained from the module, the pressurized gas is then released or vented from the membrane filtration module. These steps allow the membranes to be exposed to the atmosphere and permit testing of the membrane sub-module 16 to identify and repair the damaged membrane(s).


The damaged membrane(s) in the membrane filtration module are then identified and repaired. This involves fluidly disconnecting the fluid transfer assembly 300 from the membrane filtration module 12 by removing the fluid transfer assembly from the upper header housing 30 so that the top of the upper potting head 17 and the ends of the membrane lumens are visible (act 530). Compressed air is injected into the membrane filtration module 12 at a pressure below the membrane bubble point (act 535). The compressed air may be introduced into the shell side of the module 12 and may pass from the shell side through defects, for example, holes, tears, rips, or other defects, in damaged membranes and into the lumens of the damaged membranes.


The membranes are then examined to determine which, if any membranes are damaged (act 540). Damaged membrane(s) will show bubbles exiting their ends or lumens at the upper side of the upper potting head 17, indicating that gas has entered the membrane due to a tear or break in the membrane wall. The bubbles may be formed in residual liquid remaining on top of the upper potting head 17 by air exiting damaged membranes. The pressure of the compressed air may be increased slightly during testing to identify all the damaged membranes. A plug in the form of a relatively short plastic or metallic pin is inserted into the end of the lumen of each damaged membrane to block the lumens of the damaged membrane(s) (act 545). The pins may be sealed in the membrane lumens with an adhesive, for example, an epoxy, or may be sized and shaped such that the pins are retained in the membrane lumens by friction at operating pressures of the membrane filtration module 12. Alternatively, or additionally, the lumen of a damaged membrane may be sealed with epoxy or another form of sealant. Once all the damaged membrane(s) have been blocked and repair of the module 12 has been completed, the membranes and membrane filtration module 12 are vented to release the compressed air (act 550).


The membrane filtration module 12 is then fluidly reconnected to the plurality of membrane filtration modules (via the manifold connections) by reversing the above steps that were performed to fluidly isolate the filtrate port 301 and other fluid communication openings 50, 302, and/or 303. Thus, the filtrate port 301 would be fluidly unsealed or opened as would the other fluid communication openings.


The removable end cap 120 is then fastened to the upper header housing 30 to fluidly seal the module 12, after which the module is returned to service (act 550) and a final check is made by conducting a PDT.


The above repair process is repeated for any other modules that may require repair in the unit or rack. Where multiple operators are available for perform the repair process, then each operator can be provided with a fluid transfer assembly 300 to enable simultaneous repair of the modules. In such instances, the fluid transfer assemblies would be fluidly connected to the respective modules 12 to be repaired at the same time, so that the repair process can be performed efficiently.


Where there is only a single operator, the modules 12 are repaired one at a time to reduce or minimize air exposure of the modules to be repaired. Otherwise, it might take too long for a single operator to repair all the modules at once and thus would be more likely to result in the membrane fibers drying out during the repair process. To make this process more efficient, it is contemplated that a single operator could be provided with multiple fluid transfer assemblies 300 fitted with manually operable valves, which may be provided in the threaded bore 356 in the cap 353 where the filtrate is removed. The valve can be any type of valve, including the valve described in relation to FIGS. 9 to 11 below or isolation valve as described in International Patent Application PCT/US2012/057198.


The operator would install each fluid transfer assembly 300 to each module to be repaired after venting to release their operating pressurized air. Then, the operator would open the manually operable valve on the fluid transfer assembly 300 installed on the first module to be repaired. Due to the valve being opened on one fluid transfer assembly 300, only the module with that opened valve in its fluid transfer assembly is drained and exposed to air. After the repair is complete, the valve can be closed and the operator may open the valve of the fluid transfer assembly 300 installed on the next module to be repaired, and so on. Thus, the pressurized gas can be supplied to all the modules to be repaired at the same time without exposing the other modules to the pressurized gas. This can also be done where the pressurized gas is supplied individually to each module, rather than from a common pressurized gas supply. Without the manually operable valve on the fluid transfer assembly 300, the operator would need to release pressures of the respective modules each time, thus preventing the use of multiple fluid transfer assemblies 300 and hence requiring removal of the fluid transfer assembly 300 and reinstalling it for each module 12.


In addition, where multiple modules in the same rack or unit are to be repaired one after the other, the liquid level in the unit or rack will tend to drop after each repair of different modules within the unit or rack, which may increase the hazard factor and the risk of the membrane fibers drying out due to prolonged exposure to compressed air. Accordingly, the unit or rack may be refilled after several repairs of different modules are carried out. The frequency of refilling will depends on the number of modules in the rack or unit. The larger the number of modules in the rack or unit, the less level drop would occur and less frequent refilling would be required.


As discussed above, there are several ways to fluidly isolate the fluid communication openings that fluidly connect the module to the manifolds and hence the other modules. Common to these ways is to fluidly isolate the filtrate port 301 by fluidly sealing it off from the filtrate collection chamber 305. This is achieved using the fluid transfer assembly 300 to close the filtrate port. However, it will be appreciated that the filtrate port 301 can be fluidly sealed using other means, such as an isolation valve or a plug. However, it is more convenient for the fluid transfer assembly 300 to fluidly isolate the filtrate port 301 since it is used to drain the filtrate from the module 12 and obviates the need to provide a separate isolation means for the filtrate port. The various ways of fluidly isolating the fluid communication openings will also depend on how pressurized gas for will be delivered to the module.


The pressurized gas may be delivered through any one of the exhaust port 302, feed port 50 or aeration port 303. The pressurized gas can be transferred through these ports either by delivering pressurized gas into the common manifolds or directly through the port of the module 12 to be repaired. Where one of the common manifolds is used, the other membrane filtration modules in the unit or rack are fluidly isolated from the manifold using any isolation means, such as an isolation valve as described in International Patent Application PCT/US2012/057198.


Where the pressurized gas is injected through the exhaust port 302, the feed and aeration ports 50, 303 are fluidly isolated. In one embodiment, the feed and aeration ports 50, 303 are fluidly sealed or closed using any isolation means, such as an isolation valve as described in International Patent Application PCT/US2012/057198. In some embodiments, a flow regulator valve according to another aspect of the invention is used to close off the feed and aeration ports 50, 303 from the module and hence fluidly isolate these ports.


Where the pressurized gas is injected through the aeration port 303, the feed port 50 is fluidly isolated. In one embodiment, the feed port 50 is fluidly sealed or closed using any isolation means, such as an isolation valve as described in International Patent Application PCT/US2012/057198. In these embodiments, it is not necessary to fluidly seal the exhaust port as any liquid above the level of the exhaust fluid transfer manifold 170 (for example, the floor or invert of the manifold where the manifold is a pipe) interconnecting the exhaust ports 302 of the membrane filtration modules 12 will be displaced by the pressurized gas and forced through and out of the sub-module as filtrate, where it is passed out of the filtrate collection chamber 305 into the fluid transfer assembly 300 and the out of the module 12. Once the liquid falls below the level of the fluid transfer manifold 170, only the liquid within the module 12 to be repaired is displaced by the compressed air and transferred out as filtrate via the fluid transfer assembly 300. Thus, the exhaust port 302 is fluidly isolated from the plurality of membrane filtration modules. While it is not necessary to fluidly seal the exhaust port 302, it can be fluidly sealed if desired.


In one embodiment, the feed port 50 is fluidly sealed or closed using any isolation means, such as an isolation valve as described in International Patent Application PCT/US2012/057198. It is also not necessary to fluidly seal the exhaust port as described above, but the exhaust port may be sealed if so desired.


Alternatively, a dedicated pin repair port 310 can be provided to introduce the pressurized gas into the module 12, as best shown in FIG. 4. While the pin repair port 310 is illustrated as being located in the upper header housing 30, it can be located anywhere in the module casing 15. Where the pin repair port 310 is used, the exhaust port 302 is fluidly sealed or closed using any isolation means, such as an isolation valve as described in International Patent Application PCT/US2012/057198. However, the feed port 50 and aeration port 303 do not need to be fluidly sealed or closed, since injecting the compressed air through the pin repair port 310 in the upper header housing 30 displaces the liquid in the module to sufficiently expose the membranes without further displacing any liquid past the pot 18 where the feed and aeration ports 50, 303 are located. Thus, the feed and aeration ports 50, 303 are effectively fluidly isolated due to the manner in which the compressed air is injected into the module 12 through the pin repair port 310. While it is not necessary to fluidly seal the feed port and aeration port, they can be sealed if so desired.


The source for the pressurized gas to perform module repair can be the same as the source for the aeration port 303 or a separate unit. If the aeration air source is used, a dedicated adjustable aeration air regulator for each rack or unit is preferred to enable the modules that are not being repaired to continue to operate.


Alternatively, to enable fast removal of the liquid in the shell side of the module 12 to be repaired, minimize the impact of other modules and to adjust the pressurized gas repair pressure more accurately, the aeration air source is only used to remove the liquid in the shell side of the0 module being repaired and a dedicated repair air source is used for the actual membrane repair step


Referring to FIGS. 9 to 11, one embodiment of another aspect of the invention is shown. A valve 400 for regulating feed flow into the membrane filtration module 12 has a valve body 401 engageable with a valve seat 402 in the membrane filtration module and a stem 403 connected to the valve body for moving the valve body between a closed position and an open position to control the flow of feed fluid into the membrane filtration module. The valve 400 is positioned downstream from the feed port 50 and the aeration port 303 so that it can fluidly isolate both ports in the membrane filtration module repair method described above in relation to one embodiment of the invention. This conveniently avoids providing separate isolation valves for each of the feed and aeration ports 50, 303, and hence reduces costs, especially when measured against the number of modules in a rack or unit. The valve 400 can also be used to fluidly isolate the module from filtration if the module is identified as having an integrity issue.


The valve body 401 has a sealing member in the form of an O-ring 404 to fluidly seal the valve body against the valve seat 402 in the lower header piece 49. The valve stem 403 has a thread 405 that engages a complementary thread 406 in an inner valve bore 407. A stop 408 is also provided on the valve stem 403 to limit movement of the valve stem, and hence valve body 401 to its closed position shown in FIG. 11.


The valve 400 is operable by rotating the valve stem 403 so that the valve body 401 moves axially between the closed position and an open position. Moreover, the valve stem 403 can be rotated so that the valve body 401 can be located in discrete positions between the closed and open positions, such as the partly open position shown in FIG. 10. This permits control of the feed fluid flow into individual membrane filtration modules in a rack or unit, enabling greater control over operation of the rack or unit. In some embodiments, the stem 403 has a locking member (not shown) to secure the stem and hence the valve body 401 into the discrete position.


Even flow distribution in a unit is crucial to ensure that all the membrane modules installed in the unit perform identically. Uneven distribution of air through the aeration port 303 or the feed flow through the feed port 50 can cause solid packing in some modules and damage fibers. Solid packing, also known as solid accumulation, occurs where particles or foulants accumulate in the membrane sub-module 16 or in the casing 15 of the sub-module 16. Generally, good hydraulic distribution ensures solids (or foulants, particles, etc.) are distributed evenly in each module 12 during filtration and then are effectively removed by the backwash process via the exhaust port 302. If there is a preferential flow during filtration or backwash in a rack or unit (that is, uneven distribution) the particles and foulants in some of the modules 12 may not be removed during the backwash process. This results in continued accumulation of foulants in the affected modules, reducing their performance. Also, when one or more modules are packed with solids, these modules can also affect the hydraulic profile in the rack or unit.


A typical rack or unit design may include about 28 modules in each rack or unit and the internal design (for example, sizes of the openings of the fluid communication ports) may provide good distribution of liquid and gas for the 28 modules. However, where the number of modules were to be increased for operational or design requirements, for example, to about 40 modules or more per rack, the manifold pressures (being the pressure in all four feed, filtrate, aeration and exhaust manifolds) may increase to a point that instead of the fluid communication ports controlling the distribution of feed, filtrate, aeration and exhaust fluids, respectively, the pressure drops in the manifolds control the distribution of the feed, filtrate, aeration and exhaust fluids. If this occurs, uneven distribution may occur, resulting in damage to the membrane fibers.


Accordingly, by adjusting the position of the valve 400 (and hence its valve body 401) into discrete positions between its fully open and closed positions, control over the distribution of the feed and aeration fluids can be returned to the respective feed and aeration ports 50, 303. As the valve body 401 moves into discrete positions between the open and closed positions, it restricts the flow of the feed fluid and air into the fluid transfer port 45 communicating fluid between the feed and aeration ports 50, 303 and the socket 31 and potting sleeve 20 (as best shown in FIG. 1). This also adjusts the cross-sectional area of the fluid transfer port 45, and thus creates a pressure loss across valve 400, which can be made significantly larger than the manifold pressure losses. As a consequence, the pressure loss across the valve 400 reduces the effect of manifold pressure losses in controlling distribution of the feed fluid and air through the membrane filtration module 12. Thus, providing the valve 400 in each membrane filtration module 12 ensures that a more even distribution of the feed fluid and air is achieved in units or racks that have large numbers, for example, more than 28 modules.


In some embodiments, the valve stem 403 may, for example, protrude from the module 12 when activated so that it is easily ascertainable, even at a distance, that the valve is in the closed position and that the feed and aeration ports, 50, 303 which the valve controls is disconnected or offline. In accordance with some embodiments, the module 12 may have a transparent window or may be formed of transparent material so that valve 400 can be observed by an operator.


It will further be appreciated that any of the features in the disclosed aspects and embodiments may be combined together and are not necessarily applied in isolation from each other. For example, the use of the cap 353 in the fluid transfer assembly 300 can be combined with the use of the valve 400 to increase the efficiency of the membrane filtration module repair method of the invention.


Providing a method and associated fluid transfer assembly for performing repair of a membrane filtration module fluidly connected to a plurality of additional membrane filtration modules confers significant advantages over the prior art. In particular, being able to perform repair of the membrane filtration module in situ negates the need to remove the module for repairs. This significantly reduces manual handling of large and heavy modules, and hence labor involved with maintenance and repair of racks or units of these membrane filtration modules. It also reduces the machine downtime due to module repairs. Thus, in accordance with various aspects and embodiments disclosed herein an operator is able to perform individual module repairs relatively quickly, reducing the risk of damaging the membrane fibers due to air exposure. By isolating individual modules for repair, there is less waste in draining the entire rack or unit of modules to repair a single or relatively few modules at a time. Also, isolating individual modules reduces the safety risks involved by limiting the use of compressed air to a single module and not all the modules in a rack or unit, as well as reducing or minimizing the hazard created by potential spills of the exhausted liquid in the module being repaired. In all these respects, the aspects and embodiments disclosed herein represent a practical and commercially significant improvement over the prior art.


Those skilled in the art would readily appreciate that the various parameters and configurations described herein are meant to be exemplary and that actual parameters and configurations will depend upon the specific implementation in which the apparatus and methods of the present disclosure are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. For example, those skilled in the art may recognize that the system, and components thereof, according to the present disclosure may further comprise a network of systems or be a component of a heat exchanger system or water treatment system. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the disclosed systems and methods may be practiced otherwise than as specifically described. For example, flat sheet membranes may be prepared and used in the systems of the present disclosure. The present systems and methods are directed to each individual feature, system, or method described herein. In addition, any combination of two or more such features, systems, or methods, if such features, systems or methods are not mutually inconsistent, is included within the scope of the present disclosure.


Further, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the disclosure. For example, the fluid transfer assembly may be prepared by any fabrication technique, including injection molding or welding techniques and be fabricated from any desired material. In other instances, an existing facility may be modified to utilize or incorporate any one or more aspects of the invention. Thus, in some instances, the systems may involve connecting or configuring an existing facility to comprise a filtration system or components of a filtration system, for example, the manifolds disclosed herein. Accordingly, the foregoing description and drawings are by way of example only. Further, the depictions in the drawings do not limit the disclosures to the particularly illustrated representations.


Use of ordinal terms such as “first,” “second,” “third,” and the like in the specification and claims to modify an element does not by itself connote any priority, precedence, or order of one element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one element having a certain name from another element having a same name, but for use of the ordinal term, to distinguish the elements.

Claims
  • 1. A fluid transfer assembly for repairing a membrane filtration module in fluid communication with a plurality of additional membrane filtration modules, the membrane filtration module including an upper header housing and a filtrate collection chamber defined within the upper header housing, the fluid transfer assembly comprising: a body having open upper and lower ends and a single fluid communication passageway defined within the body, a first sealing member circumscribing an upper periphery of the body; anda second sealing member circumscribing a lower periphery of the body, the first and second sealing members engaging an inner surface of a wall on the upper header housing on upper and lower sides of a filtrate port defined in the wall of the upper header housing when the fluid transfer assembly is disposed within the upper header housing and fluidly isolating the filtrate port of the membrane filtration module from the single fluid communication passageway, the single fluid communication passageway being in fluid communication between the filtrate collection chamber and an exterior of the membrane filtration module when the fluid transfer assembly is disposed within the upper header housing.
  • 2. The fluid transfer assembly of claim 1, wherein the body is sealingly engageable with an open-ended housing of the membrane filtration module.
  • 3. The fluid transfer assembly of claim 1, wherein the body is at least partly insertable into the upper header housing of the membrane filtration module.
  • 4. The fluid transfer assembly of claim 1, wherein the body has a cross-section complementary to an inner cross-section of the upper header housing of the membrane filtration module.
  • 5. The fluid transfer assembly of claim 1, wherein the body has a length approximate to a length of the upper header housing of the membrane filtration module.
  • 6. The fluid transfer assembly of claim 1, wherein the single fluid communication passageway extends along a length of the body of the fluid transfer assembly.
  • 7. The fluid transfer assembly of claim 6, wherein the single fluid communication passageway extends through a bore of the body.
  • 8. The fluid transfer assembly of claim 1, further comprising a cap sealingly engageable with the body, the cap including an exit bore in fluid communication with the single fluid communication passageway.
  • 9. The fluid transfer assembly of claim 8, wherein the cap comprises a vent hole.
  • 10. The fluid transfer assembly of claim 8, wherein the cap comprises a first securing member configured to secure the cap to the body.
  • 11. The fluid transfer assembly of claim 10, wherein the first securing member comprises a flange configured to engage a complementary seat in the body.
  • 12. The fluid transfer assembly of claim 10, wherein the fluid transfer assembly further comprises a second securing member configured to secure the cap to the body.
  • 13. The fluid transfer assembly of claim 12, wherein the second securing member comprises a circlip engageable with a seat in the body.
  • 14. The fluid transfer assembly of claim 1, wherein the body comprises a thread configured to engage the membrane filtration module.
Priority Claims (1)
Number Date Country Kind
2013903804 Oct 2013 AU national
PCT Information
Filing Document Filing Date Country Kind
PCT/US2014/057326 9/25/2014 WO 00
Publishing Document Publishing Date Country Kind
WO2015/050764 4/9/2015 WO A
US Referenced Citations (611)
Number Name Date Kind
285321 Tams Sep 1883 A
D403507 Bode May 1889 S
511995 Buckley Jan 1894 A
1997074 Novotny Apr 1935 A
2080783 Petersen May 1937 A
2105700 Ramage Jan 1938 A
2517626 Berg Aug 1950 A
2843038 Manspeaker Jul 1958 A
2926086 Chenicek et al. Feb 1960 A
3068655 Murray et al. Dec 1962 A
3139401 Hach Jun 1964 A
3183191 Hach May 1965 A
3191674 Richardson Jun 1965 A
3198636 Bouthilet Aug 1965 A
3228876 Mahon Jan 1966 A
3246761 Bryan et al. Apr 1966 A
3275554 Wagenaar Sep 1966 A
3442002 Geary et al. May 1969 A
3462362 Kollsman Aug 1969 A
3472168 Inoue et al. Oct 1969 A
3472765 Budd et al. Oct 1969 A
3492698 Geary et al. Feb 1970 A
3501798 Carraro Mar 1970 A
3505215 Bray Apr 1970 A
3556305 Shorr Jan 1971 A
3563860 Henderyckx Feb 1971 A
3591010 Pall et al. Jul 1971 A
3592450 Rippon Jul 1971 A
3625827 Wildi et al. Dec 1971 A
3628775 McConnell et al. Dec 1971 A
3654147 Levin Apr 1972 A
3679052 Asper Jul 1972 A
3693406 Tobin, III Sep 1972 A
3700561 Ziffer Oct 1972 A
3700591 Higley Oct 1972 A
3708071 Crowley Jan 1973 A
3728256 Cooper Apr 1973 A
3763055 White et al. Oct 1973 A
3791631 Meyer Feb 1974 A
3795609 Hill et al. Mar 1974 A
3804258 Okuniewski et al. Apr 1974 A
3827566 Ponce Aug 1974 A
3843809 Luck Oct 1974 A
3876738 Marinaccio et al. Apr 1975 A
3912624 Jennings Oct 1975 A
3937015 Akado et al. Feb 1976 A
3955998 Clampitt et al. May 1976 A
3962095 Luppi Jun 1976 A
3968192 Hoffman, III et al. Jul 1976 A
3992301 Shippey et al. Nov 1976 A
3993816 Baudet et al. Nov 1976 A
4016078 Clark Apr 1977 A
4049765 Yamazaki Sep 1977 A
4076656 White et al. Feb 1978 A
4082683 Galesloot Apr 1978 A
4105556 O'Amaddio et al. Aug 1978 A
4105731 Yamazaki Aug 1978 A
4107043 McKinney Aug 1978 A
4130622 Pawlak Dec 1978 A
4138460 Tigner Feb 1979 A
4157899 Wheaton Jun 1979 A
4169873 Lipert Oct 1979 A
4183890 Bollinger Jan 1980 A
4187263 Lipert Feb 1980 A
4188817 Steigelmann Feb 1980 A
4190411 Fujimoto Feb 1980 A
4190419 Bauer Feb 1980 A
4192750 Elfes et al. Mar 1980 A
4193780 Cotton, Jr. et al. Mar 1980 A
4203848 Grandine, II May 1980 A
4204961 Cusato, Jr. May 1980 A
4218324 Hartmann et al. Aug 1980 A
4226921 Tsang Oct 1980 A
4227295 Bodnar et al. Oct 1980 A
4230583 Chiolle et al. Oct 1980 A
4243525 Greenberg Jan 1981 A
4247498 Castro Jan 1981 A
4248648 Kopp Feb 1981 A
4253936 Leysen et al. Mar 1981 A
4271026 Chen et al. Jun 1981 A
4272379 Pollock Jun 1981 A
4302336 Kawaguchi et al. Nov 1981 A
4315819 King et al. Feb 1982 A
4323453 Zampini Apr 1982 A
4340479 Pall Jul 1982 A
4350592 Kronsbein Sep 1982 A
4353802 Hara et al. Oct 1982 A
4359359 Gerlach et al. Nov 1982 A
4367139 Graham Jan 1983 A
4367140 Wilson Jan 1983 A
4369605 Opersteny et al. Jan 1983 A
4371427 Holler et al. Feb 1983 A
4384474 Kowalski May 1983 A
4388189 Kawaguchi et al. Jun 1983 A
4389363 Molthop Jun 1983 A
4405688 Lowery et al. Sep 1983 A
4407975 Yamaguchi Oct 1983 A
4414113 LaTerra Nov 1983 A
4414172 Leason Nov 1983 A
4415452 Heil et al. Nov 1983 A
4431545 Pall et al. Feb 1984 A
4451369 Sekino et al. May 1984 A
4462855 Yankowsky et al. Jul 1984 A
4467001 Coplan et al. Aug 1984 A
4476015 Schmitt et al. Oct 1984 A
4476112 Aversano Oct 1984 A
4491522 Ishida et al. Jan 1985 A
4496470 Kapiloff et al. Jan 1985 A
4511471 Muller Apr 1985 A
4519909 Castro May 1985 A
4539940 Young Sep 1985 A
4540490 Shibata et al. Sep 1985 A
4545862 Gore et al. Oct 1985 A
4547289 Okano et al. Oct 1985 A
4609465 Miller Sep 1986 A
4610789 Barch Sep 1986 A
4614109 Hofmann Sep 1986 A
4623460 Kuzumoto et al. Nov 1986 A
4623670 Mutoh et al. Nov 1986 A
4629563 Wrasidlo Dec 1986 A
4632745 Giuffrida et al. Dec 1986 A
4636296 Kunz Jan 1987 A
4647377 Miura Mar 1987 A
4650586 Ellis, III Mar 1987 A
4650596 Schlueter et al. Mar 1987 A
4656865 Callan Apr 1987 A
4660411 Reid Apr 1987 A
4666543 Kawano May 1987 A
4670145 Edwards Jun 1987 A
4673507 Brown Jun 1987 A
4687561 Kunz Aug 1987 A
4687578 Stookey Aug 1987 A
4688511 Gerlach et al. Aug 1987 A
4689191 Beck et al. Aug 1987 A
4702830 Makino et al. Oct 1987 A
4702836 Mutoh et al. Oct 1987 A
4702840 Degen et al. Oct 1987 A
4707266 Degen et al. Nov 1987 A
4708799 Gerlach et al. Nov 1987 A
4718270 Storr Jan 1988 A
4744240 Reichelt May 1988 A
4749487 Lefebvre Jun 1988 A
4752421 Makino Jun 1988 A
4756875 Tajima et al. Jul 1988 A
4763612 Iwanami Aug 1988 A
4769140 van Dijk et al. Sep 1988 A
4774132 Joffee et al. Sep 1988 A
4775471 Nagai et al. Oct 1988 A
4779448 Gogins Oct 1988 A
4781831 Goldsmith Nov 1988 A
4784771 Wathen et al. Nov 1988 A
4793932 Ford et al. Dec 1988 A
4797187 Davis et al. Jan 1989 A
4797211 Ehifeld et al. Jan 1989 A
4800019 Bikson et al. Jan 1989 A
4812235 Seleman et al. Mar 1989 A
4824563 Iwahori et al. Apr 1989 A
4828696 Makino et al. May 1989 A
4834998 Shrikhande May 1989 A
4839048 Reed et al. Jun 1989 A
4840227 Schmidt Jun 1989 A
4846970 Bertelsen et al. Jul 1989 A
4867883 Daigger et al. Sep 1989 A
4876006 Ohkubo et al. Oct 1989 A
4888115 Marinaccio et al. Dec 1989 A
4889620 Schmit et al. Dec 1989 A
4904426 Lundgard et al. Feb 1990 A
4908114 Ayers Mar 1990 A
4911838 Tanaka Mar 1990 A
4919815 Copa et al. Apr 1990 A
4931186 Ford et al. Jun 1990 A
4933084 Bandel et al. Jun 1990 A
4952317 Culkin Aug 1990 A
4963304 Im et al. Oct 1990 A
4966699 Sasaki et al. Oct 1990 A
4968430 Hildenbrand et al. Nov 1990 A
4968733 Muller et al. Nov 1990 A
4980066 Slegers Dec 1990 A
4988444 Applegate et al. Jan 1991 A
4990251 Spranger et al. Feb 1991 A
4999038 Lundberg Mar 1991 A
5002666 Matsumoto et al. Mar 1991 A
5005430 Kibler et al. Apr 1991 A
5015275 Beck et al. May 1991 A
5024762 Ford et al. Jun 1991 A
5034125 Karbachsch et al. Jul 1991 A
5043113 Kafchinski et al. Aug 1991 A
5059317 Marius et al. Oct 1991 A
5066375 Parsi et al. Nov 1991 A
5066402 Anselme et al. Nov 1991 A
5069065 Sprunt et al. Dec 1991 A
5069353 Espenan Dec 1991 A
5075044 Augem Dec 1991 A
5075065 Ellenberger et al. Dec 1991 A
5079272 Allegrezza, Jr. et al. Jan 1992 A
5080770 Culkin Jan 1992 A
5094750 Kopp et al. Mar 1992 A
5094867 Detering et al. Mar 1992 A
5098567 Nishiguchi Mar 1992 A
256008 Leak Apr 1992 A
5102550 Pizzino et al. Apr 1992 A
5104535 Cote et al. Apr 1992 A
5104546 Filson et al. Apr 1992 A
H001045 Wilson May 1992 H
5135663 Newberth, III et al. Aug 1992 A
5137631 Eckman et al. Aug 1992 A
5138870 Lyssy Aug 1992 A
5145826 Hirschberg et al. Sep 1992 A
5147553 Waite Sep 1992 A
5151191 Sunaoka et al. Sep 1992 A
5156738 Maxson Oct 1992 A
5158721 Allegrezza, Jr. et al. Oct 1992 A
5169528 Karbachsch et al. Dec 1992 A
5169530 Schucker et al. Dec 1992 A
5180407 DeMarco Jan 1993 A
5182019 Cote et al. Jan 1993 A
5186821 Murphy Feb 1993 A
5192442 Piccirillo et al. Mar 1993 A
5192456 Ishida et al. Mar 1993 A
5192478 Caskey Mar 1993 A
5198116 Comstock et al. Mar 1993 A
5198162 Park et al. Mar 1993 A
5203405 Gentry et al. Apr 1993 A
5209852 Sunaoka et al. May 1993 A
5211728 Trimmer May 1993 A
5211823 Giuffrida et al. May 1993 A
5221478 Dhingra et al. Jun 1993 A
5227063 Langerak et al. Jul 1993 A
5244579 Horner et al. Sep 1993 A
5262054 Wheeler Nov 1993 A
5269919 von Medlin Dec 1993 A
5271830 Faivre et al. Dec 1993 A
5275766 Gadkaree et al. Jan 1994 A
5286324 Kawai et al. Feb 1994 A
5290451 Koster et al. Mar 1994 A
5290457 Karbachsch et al. Mar 1994 A
5297420 Gilliland et al. Mar 1994 A
5316671 Murphy May 1994 A
5320760 Freund et al. Jun 1994 A
5353630 Soda et al. Oct 1994 A
5354470 Seita et al. Oct 1994 A
5358732 Seifter et al. Oct 1994 A
5361625 Ylvisaker Nov 1994 A
5364527 Zimmermann et al. Nov 1994 A
5364529 Morin et al. Nov 1994 A
5374353 Murphy Dec 1994 A
5389260 Hemp et al. Feb 1995 A
5393433 Espenan et al. Feb 1995 A
5396019 Sartori et al. Mar 1995 A
5401401 Hickok et al. Mar 1995 A
5401405 McDougald Mar 1995 A
5403479 Smith et al. Apr 1995 A
5411663 Johnson May 1995 A
5415490 Flory May 1995 A
5417101 Welch May 1995 A
5419816 Sampson et al. May 1995 A
5425415 Master et al. Jun 1995 A
5451317 Ishida et al. Sep 1995 A
5458779 Odegaard Oct 1995 A
5468397 Barboza et al. Nov 1995 A
5470469 Eckman Nov 1995 A
5477731 Mouton Dec 1995 A
5479590 Lin Dec 1995 A
5484528 Yagi et al. Jan 1996 A
5490939 Gerigk et al. Feb 1996 A
5501798 Al-Samadi et al. Mar 1996 A
5525220 Yagi et al. Jun 1996 A
5531900 Raghavan et al. Jul 1996 A
5552047 Oshida et al. Sep 1996 A
5556591 Jallerat et al. Sep 1996 A
5597732 Bryan-Brown Jan 1997 A
5607593 Cote et al. Mar 1997 A
5626755 Keyser et al. May 1997 A
5633163 Cameron May 1997 A
5639373 Mahendran et al. Jun 1997 A
5647988 Kawanishi et al. Jul 1997 A
5651393 Danowski Jul 1997 A
5670053 Collentro et al. Sep 1997 A
5677360 Yamamori et al. Oct 1997 A
5688460 Ruschke Nov 1997 A
5690830 Ohtani et al. Nov 1997 A
5733456 Okey et al. Mar 1998 A
5744037 Fujimura et al. Apr 1998 A
5747605 Breant et al. May 1998 A
5766479 Collentro et al. Jun 1998 A
D396046 Scheel et al. Jul 1998 S
5783083 Henshaw et al. Jul 1998 A
5786528 Dileo et al. Jul 1998 A
D396726 Sadr et al. Aug 1998 S
5814234 Bower et al. Sep 1998 A
D400890 Gambardella Nov 1998 S
5843069 Butler et al. Dec 1998 A
5846424 Khudenko Dec 1998 A
5846425 Whiteman Dec 1998 A
5871823 Anders et al. Feb 1999 A
5888401 Nguyen Mar 1999 A
5895521 Otsuka et al. Apr 1999 A
5895570 Liang Apr 1999 A
5906739 Osterland et al. May 1999 A
5906742 Wang et al. May 1999 A
5918264 Drummond et al. Jun 1999 A
5942113 Morimura Aug 1999 A
5944997 Pedersen et al. Aug 1999 A
5951878 Astrom Sep 1999 A
5958243 Lawrence et al. Sep 1999 A
5961830 Barnett Oct 1999 A
5968357 Doelle et al. Oct 1999 A
5988400 Karachevtcev et al. Nov 1999 A
5989428 Goronszy Nov 1999 A
5997745 Tonelli et al. Dec 1999 A
6001254 Espenan et al. Dec 1999 A
6007712 Tanaka et al. Dec 1999 A
6017451 Kopf Jan 2000 A
6036030 Stone et al. Mar 2000 A
6045698 Cote et al. Apr 2000 A
6045899 Wang et al. Apr 2000 A
6048454 Jenkins Apr 2000 A
6048455 Janik Apr 2000 A
6066401 Stilburn May 2000 A
6071404 Tsui Jun 2000 A
6074718 Puglia et al. Jun 2000 A
6077435 Beck et al. Jun 2000 A
6083381 Connelly et al. Jul 2000 A
6083393 Wu et al. Jul 2000 A
6096213 Radovanovic et al. Aug 2000 A
6113782 Leonard Sep 2000 A
6120688 Daly et al. Sep 2000 A
6126819 Heine et al. Oct 2000 A
6149817 Peterson et al. Nov 2000 A
6156200 Zha et al. Dec 2000 A
6162020 Kondo Dec 2000 A
6171496 Patil Jan 2001 B1
6193890 Pedersen et al. Feb 2001 B1
6214231 Cote et al. Apr 2001 B1
6214232 Baurmeister et al. Apr 2001 B1
6217770 Haney et al. Apr 2001 B1
6221247 Nemser et al. Apr 2001 B1
6224767 Fujiwara et al. May 2001 B1
6264839 Mohr et al. Jul 2001 B1
6277512 Hamrock et al. Aug 2001 B1
6280626 Miyashita et al. Aug 2001 B1
6284135 Ookata Sep 2001 B1
6299773 Takamura et al. Oct 2001 B1
6303026 Lindbo Oct 2001 B1
6303035 Cote et al. Oct 2001 B1
6315895 Summerton et al. Nov 2001 B1
6319411 Cote Nov 2001 B1
6322703 Taniguchi et al. Nov 2001 B1
6325928 Pedersen et al. Dec 2001 B1
6325938 Miyashita et al. Dec 2001 B1
6331248 Taniguchi et al. Dec 2001 B1
6337018 Mickols Jan 2002 B1
RE37549 Mahendran et al. Feb 2002 E
6349835 Saux et al. Feb 2002 B1
6354444 Mahendran et al. Mar 2002 B1
6361695 Husain et al. Mar 2002 B1
6368819 Gaddy et al. Apr 2002 B1
6372138 Cho et al. Apr 2002 B1
6383369 Elston May 2002 B2
6387189 Groschl et al. May 2002 B1
6402955 Ookata Jun 2002 B2
6423214 Lindbo Jul 2002 B1
6423784 Hamrock et al. Jul 2002 B1
6432310 Andou et al. Aug 2002 B1
6440303 Spriegel Aug 2002 B2
D462699 Johnson et al. Sep 2002 S
6444124 Onyeche et al. Sep 2002 B1
6468430 Kimura et al. Oct 2002 B1
6471869 Yanou et al. Oct 2002 B1
6485645 Husain et al. Nov 2002 B1
6495041 Taniguchi et al. Dec 2002 B2
6517723 Daigger et al. Feb 2003 B1
6524733 Nonobe Feb 2003 B1
6550747 Rabie et al. Apr 2003 B2
6562237 Olaopa May 2003 B1
6576136 De Moel et al. Jun 2003 B1
6592762 Smith Jul 2003 B2
D478913 Johnson et al. Aug 2003 S
6613222 Mikkelson et al. Sep 2003 B2
6623643 Chisholm et al. Sep 2003 B2
6627082 Del Vecchio et al. Sep 2003 B2
6635179 Summerton et al. Oct 2003 B1
6641733 Zha et al. Nov 2003 B2
6645374 Cote et al. Nov 2003 B2
6656356 Gungerich et al. Dec 2003 B2
6685832 Mahendran et al. Feb 2004 B2
6696465 Dellaria et al. Feb 2004 B2
6702561 Stillig et al. Mar 2004 B2
6706185 Goel et al. Mar 2004 B2
6706189 Rabie et al. Mar 2004 B2
6708957 Cote et al. Mar 2004 B2
6712970 Trivedi Mar 2004 B1
6721529 Chen et al. Apr 2004 B2
6723242 Ohkata et al. Apr 2004 B1
6723758 Stone et al. Apr 2004 B2
6727305 Pavez Aranguiz Apr 2004 B1
6743362 Porteous et al. Jun 2004 B1
6755894 Bikson et al. Jun 2004 B2
6755970 Knappe et al. Jun 2004 B1
6758972 Vriens et al. Jul 2004 B2
6761826 Bender Jul 2004 B2
6770202 Kidd et al. Aug 2004 B1
6780466 Grangeon et al. Aug 2004 B2
6783008 Zha et al. Aug 2004 B2
6790347 Jeong et al. Sep 2004 B2
6790912 Blong Sep 2004 B2
6805806 Arnaud Oct 2004 B2
6808629 Wouters-Wasiak et al. Oct 2004 B2
6811696 Wang et al. Nov 2004 B2
6814861 Husain et al. Nov 2004 B2
6821420 Zha et al. Nov 2004 B2
6830782 Kanazawa Dec 2004 B2
6840251 Gill et al. Jan 2005 B2
6841070 Zha et al. Jan 2005 B2
6861466 Dadalas et al. Mar 2005 B2
6863816 Austin et al. Mar 2005 B2
6863817 Liu et al. Mar 2005 B2
6863818 Daigger et al. Mar 2005 B2
6863823 Cote Mar 2005 B2
6869534 McDowell et al. Mar 2005 B2
6881343 Rabie et al. Apr 2005 B2
6884375 Wang et al. Apr 2005 B2
6890435 Ji et al. May 2005 B2
6890645 Disse et al. May 2005 B2
6893568 Janson et al. May 2005 B1
6899138 Lundman May 2005 B2
6936085 DeMarco Aug 2005 B2
6946073 Daigger et al. Sep 2005 B2
6952258 Ebert et al. Oct 2005 B2
6955762 Gallagher et al. Oct 2005 B2
6962258 Zha et al. Nov 2005 B2
6974554 Cox et al. Dec 2005 B2
6994867 Hossainy et al. Feb 2006 B1
7005100 Lowell Feb 2006 B2
7014763 Johnson et al. Mar 2006 B2
7018530 Pollock Mar 2006 B2
7022233 Chen Apr 2006 B2
7041728 Zipplies et al. May 2006 B2
7052610 Janson et al. May 2006 B2
7083733 Freydina et al. Aug 2006 B2
7087173 Cote et al. Aug 2006 B2
7122121 Ji Oct 2006 B1
7147777 Porteous Dec 2006 B1
7147778 DiMassimo et al. Dec 2006 B1
7160455 Taniguchi et al. Jan 2007 B2
7160463 Beck et al. Jan 2007 B2
7172699 Trivedi et al. Feb 2007 B1
7172701 Gaid et al. Feb 2007 B2
7186344 Hughes Mar 2007 B2
7208091 Pind et al. Apr 2007 B2
7223340 Zha et al. May 2007 B2
7226541 Muller et al. Jun 2007 B2
7247238 Mullette et al. Jul 2007 B2
7255788 Okazaki et al. Aug 2007 B2
7264716 Johnson et al. Sep 2007 B2
7279100 Devine Oct 2007 B2
7279215 Hester et al. Oct 2007 B2
7314563 Cho et al. Jan 2008 B2
7329344 Jordan et al. Feb 2008 B2
7344645 Beck et al. Mar 2008 B2
7410584 Devine Aug 2008 B2
7455765 Elefritz et al. Nov 2008 B2
7481933 Barnes Jan 2009 B2
7507274 Tonkovich et al. Mar 2009 B2
7510655 Barnes Mar 2009 B2
7563363 Kuzma Jul 2009 B2
7591950 Zha et al. Sep 2009 B2
7632439 Mullette et al. Dec 2009 B2
7648634 Probst Jan 2010 B2
7662212 Mullette et al. Feb 2010 B2
7708887 Johnson et al. May 2010 B2
7713413 Barnes May 2010 B2
7718057 Jordan et al. May 2010 B2
7718065 Jordan May 2010 B2
7722769 Jordan et al. May 2010 B2
7761826 Thanvantri et al. Jul 2010 B1
7819956 Muller Oct 2010 B2
7850851 Zha et al. Dec 2010 B2
7931463 Cox et al. Apr 2011 B2
8002246 Eguchi et al. Aug 2011 B2
8197688 Sakashita et al. Jun 2012 B2
8287923 Hsu et al. Oct 2012 B2
8372282 Zha et al. Feb 2013 B2
8506806 Beck et al. Aug 2013 B2
8679337 Ishibashi et al. Mar 2014 B2
9022224 Collignon et al. May 2015 B2
20010035092 Hachimaki et al. Nov 2001 A1
20010052494 Cote et al. Dec 2001 A1
20020027111 Ando et al. Mar 2002 A1
20020070157 Yamada Jun 2002 A1
20020117444 Mikkelson et al. Aug 2002 A1
20020148767 Johnson et al. Oct 2002 A1
20020153313 Cote Oct 2002 A1
20020185435 Husain et al. Dec 2002 A1
20030038075 Akimoto et al. Feb 2003 A1
20030038080 Vriens et al. Feb 2003 A1
20030042199 Smith Mar 2003 A1
20030052055 Akamatsu et al. Mar 2003 A1
20030056919 Beck Mar 2003 A1
20030057155 Husain et al. Mar 2003 A1
20030062301 Merrie et al. Apr 2003 A1
20030075495 Dannstrom et al. Apr 2003 A1
20030075504 Zha et al. Apr 2003 A1
20030121855 Kopp Jul 2003 A1
20030127388 Ando et al. Jul 2003 A1
20030146153 Cote et al. Aug 2003 A1
20030159977 Tanny et al. Aug 2003 A1
20030159988 Daigger et al. Aug 2003 A1
20030173706 Rabie et al. Sep 2003 A1
20030196955 Hughes Oct 2003 A1
20030205519 Zha et al. Nov 2003 A1
20030226797 Phelps Dec 2003 A1
20040007523 Gabon et al. Jan 2004 A1
20040007525 Rabie et al. Jan 2004 A1
20040035770 Edwards et al. Feb 2004 A1
20040045893 Watanabe et al. Mar 2004 A1
20040050791 Herczeg Mar 2004 A1
20040055974 Del Vecchio et al. Mar 2004 A1
20040108268 Liu et al. Jun 2004 A1
20040112831 Rabie et al. Jun 2004 A1
20040118779 Rawson et al. Jun 2004 A1
20040129637 Husain et al. Jul 2004 A1
20040149655 Petrucco et al. Aug 2004 A1
20040154671 Martins et al. Aug 2004 A1
20040168978 Gray Sep 2004 A1
20040173525 Hunniford et al. Sep 2004 A1
20040188339 Murkute et al. Sep 2004 A1
20040188341 Zha et al. Sep 2004 A1
20040222158 Husain et al. Nov 2004 A1
20040232076 Zha et al. Nov 2004 A1
20040245174 Takayama et al. Dec 2004 A1
20050000885 Stockbower Jan 2005 A1
20050006308 Cote et al. Jan 2005 A1
20050023219 Kirker et al. Feb 2005 A1
20050045557 Daigger et al. Mar 2005 A1
20050053878 Bruun et al. Mar 2005 A1
20050061725 Liu et al. Mar 2005 A1
20050077227 Kirker et al. Apr 2005 A1
20050098494 Mullette et al. May 2005 A1
20050103722 Freydina et al. May 2005 A1
20050109692 Zha et al. May 2005 A1
20050115880 Pollock Jun 2005 A1
20050115899 Liu et al. Jun 2005 A1
20050121389 Janson et al. Jun 2005 A1
20050126963 Phagoo et al. Jun 2005 A1
20050161389 Takeda et al. Jul 2005 A1
20050184008 Schacht et al. Aug 2005 A1
20050194305 Vido et al. Sep 2005 A1
20050194310 Yamamoto et al. Sep 2005 A1
20050194315 Adams et al. Sep 2005 A1
20060021929 Mannheim et al. Feb 2006 A1
20060033222 Godfrey et al. Feb 2006 A1
20060049093 Chikura et al. Mar 2006 A1
20060065596 Kent et al. Mar 2006 A1
20060081533 Khudenko Apr 2006 A1
20060091074 Pedersen et al. May 2006 A1
20060145366 Thomas Jul 2006 A1
20060151373 Szabo et al. Jul 2006 A1
20060201879 Den Boestert et al. Sep 2006 A1
20060249448 Fujishima et al. Nov 2006 A1
20060249449 Nakhla et al. Nov 2006 A1
20060273007 Zha et al. Dec 2006 A1
20060273038 Syed et al. Dec 2006 A1
20070039888 Ginzburg et al. Feb 2007 A1
20070045183 Murphy Mar 2007 A1
20070051679 Adams et al. Mar 2007 A1
20070075017 Kuzma Apr 2007 A1
20070084791 Jordan et al. Apr 2007 A1
20070084795 Jordan Apr 2007 A1
20070095741 Berends May 2007 A1
20070102339 Cote et al. May 2007 A1
20070108125 Cho et al. May 2007 A1
20070138090 Jordan et al. Jun 2007 A1
20070163942 Tanaka et al. Jul 2007 A1
20070170112 Elefritz et al. Jul 2007 A1
20070181496 Zuback Aug 2007 A1
20080011675 Kedziora Jan 2008 A1
20080093297 Gock et al. Apr 2008 A1
20080179249 Beck et al. Jul 2008 A1
20080203017 Zha et al. Aug 2008 A1
20080257822 Johnson Oct 2008 A1
20080277340 Hong et al. Nov 2008 A1
20090001018 Zha et al. Jan 2009 A1
20090084725 Poklop Apr 2009 A1
20090194477 Hashimoto Aug 2009 A1
20100012585 Zha et al. Jan 2010 A1
20100025320 Johnson Feb 2010 A1
20100051545 Johnson et al. Mar 2010 A1
20100170847 Zha et al. Jul 2010 A1
20100200503 Zha et al. Aug 2010 A1
20100300968 Liu et al. Dec 2010 A1
20100326906 Barnes Dec 2010 A1
20110049047 Cumin et al. Mar 2011 A1
20110049048 Benner et al. Mar 2011 A1
20110056522 Zauner et al. Mar 2011 A1
20110127209 Rogers et al. Jun 2011 A1
20110132826 Muller et al. Jun 2011 A1
20110139715 Zha et al. Jun 2011 A1
20110147298 Kennedy et al. Jun 2011 A1
20110192783 Cox et al. Aug 2011 A1
20120074053 Collignon et al. Mar 2012 A1
20120091602 Cumin et al. Apr 2012 A1
20120097601 Lee et al. Apr 2012 A1
20120103904 Morita et al. May 2012 A1
20120285885 James et al. Nov 2012 A1
20130037467 Biltoft et al. Feb 2013 A1
20130056426 Barnes Mar 2013 A1
20130168307 Drivarbekk et al. Jul 2013 A1
20140174998 Aerts et al. Jun 2014 A1
20140231367 Biltoft Aug 2014 A1
20150136686 Chen May 2015 A1
Foreign Referenced Citations (413)
Number Date Country
3440084 Apr 1985 AU
7706687 Feb 1988 AU
762091 Jun 2003 AU
2531764 Mar 2005 CA
2204898 Aug 1995 CN
2236049 Sep 1996 CN
1541757 Nov 2004 CN
3904544 Aug 1990 DE
4117281 Jan 1992 DE
4113420 Oct 1992 DE
4117422 Nov 1992 DE
4326603 Feb 1995 DE
19503060 Aug 1996 DE
19718028 Jun 1998 DE
29804927 Jun 1998 DE
29906389 Jun 1999 DE
10045227 Feb 2002 DE
10209170 Aug 2003 DE
202004012693 Oct 2004 DE
0012557 Jun 1980 EP
0038612 Oct 1981 EP
0053833 Jun 1982 EP
0090383 Oct 1983 EP
126714 Nov 1984 EP
194735 Sep 1986 EP
250337 Dec 1987 EP
327025 Aug 1989 EP
344633 Dec 1989 EP
407900 Jan 1991 EP
0464321 Jan 1992 EP
492942 Jul 1992 EP
518250 Dec 1992 EP
547575 Jun 1993 EP
280052 Jul 1994 EP
627255 Dec 1994 EP
662341 Jul 1995 EP
492446 Nov 1995 EP
430082 Jun 1996 EP
734758 Oct 1996 EP
763758 Mar 1997 EP
824956 Feb 1998 EP
848194 Jun 1998 EP
911073 Apr 1999 EP
920904 Jun 1999 EP
0937494 Aug 1999 EP
1034835 Sep 2000 EP
1156015 Nov 2001 EP
1236503 Aug 2004 EP
1466658 Oct 2004 EP
2620712 Mar 1989 FR
2674448 Oct 1992 FR
2699424 Jun 1994 FR
2762834 Nov 1998 FR
702911 Jan 1954 GB
996195 Jun 1965 GB
2253572 Sep 1992 GB
52-078677 Jul 1977 JP
53-5077 Jan 1978 JP
53108882 Sep 1978 JP
54162684 Dec 1979 JP
55099703 Jul 1980 JP
55129107 Oct 1980 JP
55129155 Oct 1980 JP
56021604 Feb 1981 JP
56118701 Sep 1981 JP
56121685 Sep 1981 JP
57190697 Nov 1982 JP
58088007 May 1983 JP
60019002 Jan 1985 JP
60206412 Oct 1985 JP
60260628 Dec 1985 JP
61097005 May 1986 JP
61097006 May 1986 JP
61107905 May 1986 JP
61167406 Jul 1986 JP
61167407 Jul 1986 JP
61171504 Aug 1986 JP
61192309 Aug 1986 JP
61222510 Oct 1986 JP
61242607 Oct 1986 JP
61249505 Nov 1986 JP
61257203 Nov 1986 JP
61263605 Nov 1986 JP
61291007 Dec 1986 JP
61293504 Dec 1986 JP
62004408 Jan 1987 JP
62068828 Mar 1987 JP
62114609 May 1987 JP
62140607 Jun 1987 JP
62144708 Jun 1987 JP
62163708 Jul 1987 JP
62179540 Aug 1987 JP
62237908 Oct 1987 JP
62250908 Oct 1987 JP
62187606 Nov 1987 JP
62262710 Nov 1987 JP
63-93307 Apr 1988 JP
63097634 Apr 1988 JP
63099246 Apr 1988 JP
63143905 Jun 1988 JP
63-1602 Jul 1988 JP
63171607 Jul 1988 JP
63180254 Jul 1988 JP
S63-38884 Oct 1988 JP
64-075542 Mar 1989 JP
1-501046 Apr 1989 JP
1111494 Apr 1989 JP
01151906 Jun 1989 JP
01-307409 Dec 1989 JP
02-017925 Jan 1990 JP
02017924 Jan 1990 JP
02026625 Jan 1990 JP
02031200 Feb 1990 JP
02040296 Feb 1990 JP
02107318 Apr 1990 JP
02126922 May 1990 JP
02144132 Jun 1990 JP
02164423 Jun 1990 JP
02174918 Jul 1990 JP
02241523 Sep 1990 JP
02277528 Nov 1990 JP
02284035 Nov 1990 JP
03018373 Jan 1991 JP
03028797 Feb 1991 JP
03-086529 Apr 1991 JP
03110445 May 1991 JP
04108518 Apr 1992 JP
04110023 Apr 1992 JP
4-190889 Jul 1992 JP
04187224 Jul 1992 JP
4-256425 Sep 1992 JP
04250898 Sep 1992 JP
04256424 Sep 1992 JP
04265128 Sep 1992 JP
04293527 Oct 1992 JP
04310223 Nov 1992 JP
04317793 Nov 1992 JP
04334530 Nov 1992 JP
04348252 Dec 1992 JP
05-4030 Jan 1993 JP
05023557 Feb 1993 JP
05096136 Apr 1993 JP
05137977 Jun 1993 JP
05157654 Jun 1993 JP
05161831 Jun 1993 JP
05184884 Jul 1993 JP
05285348 Nov 1993 JP
05305221 Nov 1993 JP
06-027215 Feb 1994 JP
06071120 Mar 1994 JP
06114240 Apr 1994 JP
07136470 May 1994 JP
06180364 Jun 1994 JP
06190250 Jul 1994 JP
06218237 Aug 1994 JP
06238273 Aug 1994 JP
06-292820 Oct 1994 JP
06277469 Oct 1994 JP
06295496 Oct 1994 JP
06343837 Dec 1994 JP
07024272 Jan 1995 JP
070000770 Jan 1995 JP
07068139 Mar 1995 JP
07136471 May 1995 JP
07155564 Jun 1995 JP
07155758 Jun 1995 JP
7-39921 Jul 1995 JP
07178323 Jul 1995 JP
07185268 Jul 1995 JP
07185270 Jul 1995 JP
07185271 Jul 1995 JP
07185272 Jul 1995 JP
07205635 Aug 1995 JP
07236819 Sep 1995 JP
07251043 Oct 1995 JP
07256253 Oct 1995 JP
07275665 Oct 1995 JP
07289860 Nov 1995 JP
07303895 Nov 1995 JP
07313973 Dec 1995 JP
08010585 Jan 1996 JP
8039089 Feb 1996 JP
08197053 Aug 1996 JP
08323161 Dec 1996 JP
08332357 Dec 1996 JP
09000890 Jan 1997 JP
09038470 Feb 1997 JP
09038648 Feb 1997 JP
09072993 Mar 1997 JP
09075689 Mar 1997 JP
09099227 Apr 1997 JP
09103655 Apr 1997 JP
09103661 Apr 1997 JP
9117647 May 1997 JP
9138298 May 1997 JP
09141063 Jun 1997 JP
09155345 Jun 1997 JP
09187628 Jul 1997 JP
09192458 Jul 1997 JP
09220569 Aug 1997 JP
09271641 Oct 1997 JP
09313902 Dec 1997 JP
09324067 Dec 1997 JP
10015365 Jan 1998 JP
10024222 Jan 1998 JP
10033955 Feb 1998 JP
10048466 Feb 1998 JP
10066972 Mar 1998 JP
10076144 Mar 1998 JP
10076264 Mar 1998 JP
10085562 Apr 1998 JP
10085565 Apr 1998 JP
10085566 Apr 1998 JP
10156149 Jun 1998 JP
10180048 Jul 1998 JP
10225685 Aug 1998 JP
10235168 Sep 1998 JP
10249171 Sep 1998 JP
10286441 Oct 1998 JP
10328538 Dec 1998 JP
11005023 Jan 1999 JP
11028339 Feb 1999 JP
11028467 Feb 1999 JP
11031025 Feb 1999 JP
11033365 Feb 1999 JP
11033367 Feb 1999 JP
11076769 Mar 1999 JP
11076770 Mar 1999 JP
11090189 Apr 1999 JP
11156166 Jun 1999 JP
11156360 Jun 1999 JP
11165200 Jun 1999 JP
11179171 Jul 1999 JP
11300177 Nov 1999 JP
11302438 Nov 1999 JP
11309351 Nov 1999 JP
11319501 Nov 1999 JP
11319507 Nov 1999 JP
11333265 Dec 1999 JP
2000000439 Jan 2000 JP
200051670 Feb 2000 JP
2000051669 Feb 2000 JP
2000061466 Feb 2000 JP
200079390 Mar 2000 JP
2000070684 Mar 2000 JP
2000093758 Apr 2000 JP
2000157845 Jun 2000 JP
2000157850 Jun 2000 JP
2000185220 Jul 2000 JP
2000189958 Jul 2000 JP
2000233020 Aug 2000 JP
2000237548 Sep 2000 JP
2000300968 Oct 2000 JP
2000317276 Nov 2000 JP
2000334276 Dec 2000 JP
2000342932 Dec 2000 JP
2001009246 Jan 2001 JP
2001070967 Mar 2001 JP
2001079366 Mar 2001 JP
2001079367 Mar 2001 JP
2001104760 Apr 2001 JP
2001120963 May 2001 JP
2001179059 Jul 2001 JP
2001179060 Jul 2001 JP
2001190937 Jul 2001 JP
2001190938 Jul 2001 JP
2001205055 Jul 2001 JP
2001212587 Aug 2001 JP
2001232160 Aug 2001 JP
2001-269546 Oct 2001 JP
2002011472 Jan 2002 JP
2002143849 May 2002 JP
2002177746 Jun 2002 JP
2002263407 Sep 2002 JP
2002-336663 Nov 2002 JP
2003024751 Jan 2003 JP
2003047830 Feb 2003 JP
2003053157 Feb 2003 JP
2003053160 Feb 2003 JP
200371254 Mar 2003 JP
2003062436 Mar 2003 JP
2003135935 May 2003 JP
2003190976 Jul 2003 JP
2003-265597 Sep 2003 JP
2003-275548 Sep 2003 JP
2003266072 Sep 2003 JP
2003275759 Sep 2003 JP
2003340250 Dec 2003 JP
2004008981 Jan 2004 JP
2004050011 Feb 2004 JP
2004073950 Mar 2004 JP
2004-230287 Aug 2004 JP
2004216263 Aug 2004 JP
2004230280 Aug 2004 JP
2004249168 Sep 2004 JP
2004322100 Nov 2004 JP
2004337730 Dec 2004 JP
2005-087887 Apr 2005 JP
2005144291 Jun 2005 JP
2005154551 Jun 2005 JP
2005279447 Oct 2005 JP
2006116495 May 2006 JP
1998-0024438 Jul 1998 KR
20-0232145 Jul 2001 KR
1020020067227 Aug 2002 KR
20-0295350 Nov 2002 KR
2002-0090967 Dec 2002 KR
2003-033812 May 2003 KR
2003-060625 Jul 2003 KR
20030066271 Aug 2003 KR
20030097167 Dec 2003 KR
2005-063478 Jun 2005 KR
1006390 Dec 1998 NL
1020491 Oct 2003 NL
1021197 Oct 2003 NL
216773 Dec 1993 TW
347343 Dec 1998 TW
1985001449 Apr 1985 WO
1986005116 Sep 1986 WO
1986005705 Oct 1986 WO
8800494 Jan 1988 WO
8801529 Mar 1988 WO
88001895 Mar 1988 WO
8806200 Aug 1988 WO
8900880 Feb 1989 WO
9000434 Jan 1990 WO
9104783 Apr 1991 WO
9116124 Oct 1991 WO
1993002779 Feb 1993 WO
9315827 Aug 1993 WO
9323152 Nov 1993 WO
9411094 May 1994 WO
9511736 May 1995 WO
9534424 Dec 1995 WO
9603202 Feb 1996 WO
9607470 Mar 1996 WO
9628236 Sep 1996 WO
199629142 Sep 1996 WO
9641676 Dec 1996 WO
9706880 Feb 1997 WO
9710046 Mar 1997 WO
9822204 May 1998 WO
9825694 Jun 1998 WO
9828066 Jul 1998 WO
9853902 Dec 1998 WO
9901207 Jan 1999 WO
9906326 Feb 1999 WO
199908773 Feb 1999 WO
99-55448 Nov 1999 WO
9959707 Nov 1999 WO
0021890 Apr 2000 WO
200018498 Apr 2000 WO
200030742 Jun 2000 WO
200100307 Jan 2001 WO
200105715 Jan 2001 WO
0108790 Feb 2001 WO
200119414 Mar 2001 WO
200132299 May 2001 WO
200136075 May 2001 WO
0143856 Jun 2001 WO
200145829 Jun 2001 WO
2002004100 Jan 2002 WO
0211867 Feb 2002 WO
0230550 Apr 2002 WO
200226363 Apr 2002 WO
2002040140 May 2002 WO
2002047800 Jun 2002 WO
2003000389 Jan 2003 WO
03013706 Feb 2003 WO
2003024575 Mar 2003 WO
03053552 Jul 2003 WO
03057632 Jul 2003 WO
03059495 Jul 2003 WO
03068374 Aug 2003 WO
2003095078 Nov 2003 WO
04024304 Mar 2004 WO
2004018084 Mar 2004 WO
2004033078 Apr 2004 WO
2004050221 Jun 2004 WO
2004056458 Jul 2004 WO
2004078327 Sep 2004 WO
2004101120 Nov 2004 WO
2005005028 Jan 2005 WO
2005021140 Mar 2005 WO
2005023997 Mar 2005 WO
2005028085 Mar 2005 WO
2005028086 Mar 2005 WO
2005037414 Apr 2005 WO
2005046849 May 2005 WO
2005070524 Aug 2005 WO
2005077499 Aug 2005 WO
2005082498 Sep 2005 WO
2005107929 Nov 2005 WO
2006026814 Mar 2006 WO
2006029456 Mar 2006 WO
2006029465 Mar 2006 WO
2006047814 May 2006 WO
2006066319 Jun 2006 WO
2006066350 Jun 2006 WO
2006126833 Nov 2006 WO
2007022576 Mar 2007 WO
2007053528 May 2007 WO
2007065956 Jun 2007 WO
2007073080 Jun 2007 WO
2007135087 Nov 2007 WO
2008025077 Mar 2008 WO
2008034570 Mar 2008 WO
2008071516 Jun 2008 WO
2008141080 Nov 2008 WO
2008153818 Dec 2008 WO
2009030405 Mar 2009 WO
2013048801 Apr 2013 WO
2013049109 Apr 2013 WO
Non-Patent Literature Citations (38)
Entry
Lu, et al., “The Influence of Bubble Characteristic on the Performance of Submerged Hollow Fiber Membrane Module Used in Microfiltration,” Separation and Technology, 61 (2008), pp. 89-95.
Almulla et al., “Developments in high recovery brackish water desalination plants as part of the solution to water quantity problems,” Desalination, 153 (2002), pp. 237-243.
Anonymous, “Nonwoven Constructions of Dyneon™ THV and Dyneon™ HTE Fluorothermoplastics”, Research Disclosure Journal, Apr. 1999, RD 420013, 2 pages.
Berg et al., “Flux Decline in Ultrafiltration Processes,” Desalination, 77 (1990) pp. 101-133.
Brazilian Office Action dated Nov. 29, 2010 from Application No. PI0316992-8 (with translation).
Cote et al. “A New Immersed Membrane for Pretreatment to Reverse Osmosis,” Desalination, 139 (2001), pp. 229-236.
Cote et al., “Immersed Membranes Activated Sludge Process Applied to the Treatment of Municipal Wastewater,” Wat. Sci. Tech. 38(4-5) (1998), pp. 437-442.
Coulson et al., “Coulson and Richardson's Chemical Engineering,” 1999, vol. 1, pp. 358-364.
Crawford et al., American Water Works Association Membrane Technology Conference, “Procurement of Membrane Equipment: Differences Between Water Treatment and Membrane Bioreactor (MBR) Applications,” (2003).
Cui et al., “Airlift crossflow membrane filtration—a feasibility study with dextran ultrafiltration,” J. Membrane Sci. (1997) vol. 128, pp. 83-91.
Davis et al., Membrane Technology Conference, “Membrane Bioreactor Evaluation for Water Reuse in Seattle, Washington” (2003).
DeCarolis et al., Membrane Technology Conference, “Optimization of Various MBR Systems for Water Reclamation” (2003).
Delgrange-Vincent et al., “Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production,” Desalination 131 (2000) pp. 353-362.
Dow Chemical Company, “Filmtec Membranes—Cleaning Procedures for Filmtec FT30 Elements,” Tech Facts, Online, Jun. 30, 2000, XP002237568.
EPA, Membrane Filtration Guidance Manual, Nov. 2005.
Husain, H. et al., “The Zenon experience with membrane bioreactors for municipal wastewater treatment,” MBR2: Membr. Bioreact. Wastewater Treat., 2nd Intl. Meeting; School of Water Sciences, Cranfield University, Cranfield, UK, Jun. 1999.
Johnson, “Recent Advances in Microfiltration for Drinking Water Treatment,” AWWA Annual Conference, Jun. 20-24, 1999, Chicago, Illinois, entire publication.
Jones, Craig, “Applications of Hydrogen Peroxide and Derivatives,” The Royal Society of Chemistry, Cambridge, UK 1999, Chapters 2 and 5.
Judd, “The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment,” (2006), pp. 174-178.
Kaiya et al., “Water Purification Using Hollow Fiber Microfiltration Membranes,” 6th World Filtration Congress, Nagoya, 1993, pp. 813-816.
Kang et al. “Characteristics of microfiltration membranes in a membrane coupled sequencing batch reactor system,” Water Research, 37(5) Mar. 2003, pp. 1192-1197, Elsevier, Amsterdam, NL.
Korean Notice of Last Preliminary Rejection dated Apr. 16, 2010 for Application No. 10-2005-7010079 (with translation).
Lloyd, D.R. et al. “Microporous Membrane Formation Via Thermally Induced Phase Separation/Solid-Liquid Phase Separation,” Journal of Membrane Science, 52(3) (1990), pp. 239-261, Elsevier Scientific Publishing Company, Amsterdam, NL.
Lozier et al., “Demonstration Testing of ZenoGem and Reverse Osmosis for Indirect Potable Reuse Final Technical Report,” published by CH2M Hill, available from the National Technical Information Service, Operations Division, Jan. 2000, entire publication.
Mark et al., “Peroxides and Peroxy Compounds, Inorganic,” Kirk—Othmer Encyclopedia of Chemical Technology, Peroxides and Peroxy Compounds, Inorganic, To Piping Systems, New York, Wiley & Sons, Ed., Jan. 1, 1978, pp. 14-18.
MicroCTM—Carbon Source for Wastewater Denitrification. Information from Environmental Operating Solutions website including MSDS.
Miller et al., “Side Stream Air Lift MBR Development and Successful Application of a New Generation of MBR,” Pollution Solutions Brochure, NORIT, The Netherlands, Apr. 2008.
Nakayama, “Introduction to Fluid Mechanics,” Butterworth-Heinemann, Oxford, UK, 2000.
Ramaswammy S. et al. “Fabrication of Ply (ECTFE) Membranes via Thermally Induced Phase Separation”, Journal of Membrane Science, (Dec. 1, 2002), pp. 175-180, vol. 210 No. 1, Scientific Publishing Company, Amsterdam, NL.
Rosenberger et al., “Filterability of activated sludge in membrane bioreactors,” Desalination, 151 (2002), pp. 195-200.
Schematic of 4 Geyser Pump, Geyser Pump Tech. Co., Nov. 13, 2005.
Ueda et al., “Effects of Aeration on Suction Pressure in a Submerged Membrane Bioreactor,” Wat. Res. vol. 31, No. 3, 1997, pp. 489-494.
Water Encyclopedia, edited by Jay Lehr, published by John Wiley & Sons, Inc., Hoboken, New Jersey, 2005. Available at http://wwwmmrw.interscience.wiley.com/eow/.
White et al., “Optimisation of intermittently operated microfiltration processes,” The Chemical Engineering Journal, 52 (1993), pp. 73-77.
Wikipedia, “Seawater,” available at http://en.wikipedia.org/wiki/Seawater, Jul. 15, 2007.
Yamamoto et al., “Direct Solid-Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank,” Water Science Technology, 21 (1989), pp. 43-54.
Yoon: “Important operational parameters of membrane bioreactor-sludge disintegration (MBR-SD) system for zero axcess sludge production” Water Research, 37 (2003), pp. 1921-1931, Elsevier, Amsterdam, NL.
Zenon, “Proposal for ZeeWeed® Membrane Filtration Equipment System for the City of Westminster, Colorado, Proposal No. 479-99,” Mar. 2000, entire publication.
Related Publications (1)
Number Date Country
20160228822 A1 Aug 2016 US