The present invention relates to a method for sharpening a profiled cutting tool with a substantially planar surface, e.g. cutting knives for a spindle moulder, shears for sheep, cattle and horses, as well as a device for implementing the above method.
Cutting knives for spindle moulders have a profiled cutting edge for milling a specific profile in a moulding, see
The cutting tool can also be resharpened by grinding the planar surface until a sharp edge is formed. This makes the cutting tool thinner, which means that a limited number of resharpenings may be carried out. Grinding the planar surface can be done on the planar side face of a slowly rotating wet grindstone. The large surface contact between the grindstone and the tool reduces the grinding pressure, however, and only polishing is de facto obtained. If, by some means, higher pressure is applied on the side face, uneven wear of the grindstone will result and this will render the grindstone unsuitable for future fettling of e.g. chisels or cutting blades for planes.
Large industrial machines may alternatively be used for grinding the planar surface, but these machines are also very expensive.
One way of increasing the speed of the grinding operation is to use a bench grinder with a rapidly rotating grindstone. This is not recommended, though, since the grindstone might burst from grinding on its planar side face, and the heat from the grinding may destroy the temper of the tool.
It is an object of the present invention to overcome the above-mentioned problems by providing a method with the steps of guiding the tool, mounted in the tool holder (200), along an intended plane which is tangential to a peripheral surface of the rotatable grindstone, using a practically linear contact between the rotatable grindstone and the cutting tool, and moving the tool holder, with the mounted cutting tool, along the intended plane for transferring said intended plane to an unbevelled side of the cutting tool.
By using the curved peripheral face of the grind-stone, the grinding pressure increases due to the small contact area. This method is preferably carried out on a slowly rotating wet grindstone, which does not make the tool overheat and lose its temper.
It is also an object of the present invention to provide a device for carrying out the above method. This is accomplished in that the grinding base comprises guiding means, adapted to guide the tool holder along an intended plane, and that the tool holder has matching surfaces for interacting with the guiding means of the grinding base.
The invention will be described in further detail below with reference to the accompanying drawings, in which
a is an example of a profiled moulder knife, and
The present invention is intended to be used in conjunction with a grinding machine, but this is per se not a part of the invention. References will be made to the grinding machine for illustrative purposes only. In order to describe the drawings, references will be made to upper, lower, right and left, but this is only for making it easier to interpret the figures.
A grinding jig of the present invention comprises a grinding base 100 and a tool holder 200. The grinding base 100, see
The two beams 130, 140 extend in parallel from either end of the upper crossbar 110 down to the lower crossbar 120. The four parts (upper and lower crossbars 110, 120 and beams 130, 140) are rigidly joined in the corners in order to form a stable base or frame. The lower crossbar 120 is on the left side provided with a downwardly extending projection 121. The right beam 140 is provided with an optional arm 141, which is adjustable. The adjustable arm 141 is, at its upper end, attached to the right side of the right beam 140 with a locking screw 142, which is guided in a slot 143. The beams 130, 140 have upper guiding surfaces 135, 145, which are provided with pads 150 of a slick material, e.g. Teflon® (PTFE).
The tool holder 200 can be seen from below in
The grinding machine can be equipped with universal supports 300, 310, see
The two universal supports 300, 310 are mounted in their corresponding sockets 310, 311, as shown in
The tool holder 200 is then prepared to accommodate the cutting tool. Spring pins 221, 222 are mounted in the bores 206 of the tool mount 203 to suit the hole configuration of the current cutting tool, see
As can be seen in
The grinding base 100 pivots about the rod 305 of the generally vertically mounted universal support 300. It rests on the rod 315 of the generally horizontally mounted universal support 310. The grinding position is approx. halfway between these points, and this means that a height adjustment at the projection 121 corresponds to an adjustment of the grinding depth with half of that amount.
The projection 121 of the grinding base 100 further forms a small angle with a plane of the horizontally mounted universal support 310. This means that a small adjustment of the horizontal displacement of the support rod 315 corresponds to a smaller increase in height relative to the grindstone for the projection 121. This represents an additional change ratio for altering the grinding depth. Tests have shown that turning the screw nut 313 (with a screw pitch of about 1.5 mm) a 1/7 of a turn corresponds to a change in grinding depth of 0.05 mm (50 micron), resulting in a total change ratio of about 4:1. The screw nuts 303, 313 can for this purpose be provided with a scale, which makes it easier to adjust the grinding depth.
In
When the grinding machine is switched on, only a very small portion of the tool is ground. In order to grind the entire tool, it must be moved over the grindstone. This is simplified by the pads 150 of slick material on the two beams 130, 140. The tool is moved sideways and forwards and backwards, until the entire surface has been ground. Since the grinding base is not centered over the grindstone, it may be necessary to rotate the tool holder half a turn, in a plane defined by the crossbars, in order to grind the final part. For large cutting tools, it may be necessary to loosen the base locking screw 112 and slide the grinding base 100 away from the threaded leg 302. The grinding base 100 is then secured in its new position by said locking screw 112. The guiding surface 135, 145 of the grinding base 100, defined by the beams 130, 140, has now been transferred to the cutting tool. Deburring can thereafter be performed on a honing wheel HW. The vertical sidewalls 204, 205 of the tool holder 200 protect the cutting edge of the cutting tool against contacting the guiding beams 130, 140.
The thickness of the cutting tool should not be reduced more than approx. 0.3 mm. A normal grinding depth is approximately 0.03-0.05 mm, meaning that the tool can be resharpened 6-10 times before it must be discarded.
The guiding surface 135, 145 of the grinding base 100 may also have a slightly curved shape, and the tool holder 200 may in this case be provided with additional guides for maintaining the orientation of the tool. The grinding base 100 can be mounted on the grinding machine, but can equally well be mounted on a separate structure. The lower crossbar 120 can optionally be formed with one, two or more fixed projections instead of one fixed projection 121 and one adjustable arm 141. The micro-adjust means 303, 313 in the disclosed embodiment is positioned on the legs 302, 312 of the universal supports 300, 310. These micro-adjust means 303, 313 may also be integral with the grinding base 100 and/or the tool holder 200 in order to obtain the same adjustability, e.g. such as shown in
If the tool to be sharpened is not equipped with any holes, the tool holder 200 may be provided with a number of additional magnets 207′, as shown in
The present invention is described for grinding a moulder knife, but it can be used with various profiled cutting tools having a substantially planar surface and the cutting edge ground into the opposite side.
The spirit of the present invention can be achieved by any structure, which enables a cutting tool to be supported along a planar or curved surface, for grinding on the peripheral face of a grindstone and thus transferring the shape of said surface onto the cutting tool. The guiding surfaces 135, 145 guides the cutting tool so that the surface to be ground moves in a plane which is tangential to the peripheral face of the grindstone.
Number | Name | Date | Kind |
---|---|---|---|
2748543 | Pardee | Jun 1956 | A |
3368310 | Garvey | Feb 1968 | A |
4961288 | Ketteringham | Oct 1990 | A |
5301473 | Seear | Apr 1994 | A |
5527208 | Blake et al. | Jun 1996 | A |
6381862 | Doman | May 2002 | B1 |
7104876 | Lin | Sep 2006 | B1 |
7112124 | Naples | Sep 2006 | B1 |
20060154576 | Hepworth | Jul 2006 | A1 |
20060211348 | Hyde et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
1216150 | Apr 1962 | DE |
0225806 | Dec 1986 | EP |
Number | Date | Country | |
---|---|---|---|
20050287934 A1 | Dec 2005 | US |