The invention relates to a method for sorting flat mail items.
Flat mail items, such as letters, large-format letters, postcards, shrink-wrapped newspapers and so on, are sorted in very large numbers by address and deposited in a plurality of stacking compartments in mail centers or large post offices. The degree of sorting that can be achieved is determined by the number of sorting passes and the number of stacking compartments, to which the mail items are distributed, in each sorting pass. In particular the sorting of mail items according to the order of the round of one or more delivery operators is a process, in which a number of sorting runs generally have to be executed due to the plurality of addresses. After the last sorting run the mail items are then present in the sequence in which the delivery operators distribute the mail items to the addressees.
It is accordingly an object of the invention to provide a method and a device for sorting flat mail items which overcome the above-mentioned disadvantages of the prior art methods and devices of this general type, with which sorting according to round order can be carried out swiftly and reliably.
According to the invention the object is achieved by a method for sorting flat mail items with a sorting device with at least a first and second segment, each with at least N storage modules. A first sorting pass is carried out in the first segment and a subsequent second sorting pass is carried out in the second segment. All overflow mail items, which are assigned to a storage module that is closed because it is full, are deposited in one of the other storage modules in the first sorting pass and are included in the sorting process of the second sorting pass. The sorting device with at least two segments allows sorting according to round order to be carried out swiftly. Depositing the overflow mail items in the further storage module allows the reserve volume in the storage modules to be kept small and therefore a large number of mail items can be sorted simultaneously. Including the overflow mail items in the sorting process, expediently controlled by a process device, allows the number of sorting errors to be kept low.
Sorting is expediently performed according to round order. Sorting according to round order can be implemented by putting a plurality of mail items an indiscriminate sequence into a predetermined sequence. The predetermined sequence can be a function of the mailing destinations of the mail items, for example their delivery addresses. A sorting pass can be understood to be a sorting operation, in which a plurality of mail items are distributed to storage modules as a function of their mailing destinations. In a subsequent sorting pass these already presorted mail items—in some instances minus mail items that have been removed—can be sorted more specifically and to this end can be sorted into the storage modules of the second segment, similarly as a function of their mailing destinations. Sorting according to round order for maximum Nn addresses is possible as a function of the number N of storage modules in each segment and the number n of sorting passes.
The mail items can be mailings of all types for mail dispatch, whose length and thickness respectively is significantly greater than their thickness, e.g. by at least the factor 10. The storage modules are configured to hold a plurality of mail items, expediently at least ten, in particular at least 50, which can be stored in the storage module, in particular stacked one on top of another. The storage modules are advantageously last-in-first-out modules, in other words storage modules in which the last stored mail item of a plurality of mail items is removed, in other words discharged, from the storage module again first. It is possible to store and remove a large number of mail items quickly, reliably and economically.
A storage module that is closed because it is full can be understood to be one which is identified by a process device for controlling sorting in such a manner that no further mail items are to be inserted into the storage module because it is sufficiently full. The identifier can be an electronic signal. Overflow mail items can be those mail items, which would have been deposited in the closed storage module, if it had not been closed. Depositing can take place by stacking. Inclusion in the sorting process of the second sorting pass can be effected by separating a mail item out from a storage module and inserting it into the sorting process of the second sorting pass.
In one advantageous embodiment of the invention the mail items are examined to determine a mailing destination before sorting and mail items that are not recognized during the examination are deposited in a storage module provided for this purpose, with the overflow mail items being deposited in the same storage module. Unrecognized mail items can be separated and grouped with very little outlay, so they can be presented to a mail operator as a set. The storage module provided for this purpose is advantageously a storage module of the first segment. The mailing destination can be a delivery address.
If a second recognition attempt is carried out on previously unrecognized mail items before the second sorting pass, it is possible to achieve a high recognition rate. The mail items newly recognized in the second recognition attempt can be inserted into the storage module assigned to the recognized mailing destination and can then be sorted specifically in the next sorting pass.
Mail item collisions can be avoided, if the overflow mail items and in particular also the unrecognized mail items are switched to a storage module of the second segment before the recognition attempt. Also mail items that are still not recognized can be deposited into the storage module of the first segment provided for this purpose.
The overflow mail items can be included in the sorting process swiftly and with little outlay, if they are included in the sorting process immediately before or after the closed storage module is emptied.
Unrecognized mail items can simply be kept separate when they are deposited in a storage module of the second segment. The storage module of the second segment is expediently provided as an overflow module.
In a further embodiment of the invention the overflow mail items are deposited in a storage module of the second segment in the first sorting pass. There is no need for a separate storage module for overflow mail items.
Between the first and second sorting passes the overflow mail items are advantageously deposited as secondary mail items in at least one partially occupied storage module of the first segment. It is thus possible to dispense with a separate storage module for overflow mail items in the second segment too. The storage module, which is thus occupied in a secondary manner, therefore first accommodates mail items originally assigned to it and sorted into it and then overflow mail items.
The storage module, which is occupied in a secondary manner with overflow mail items, is advantageously a storage module, which is provided for emptying after the closed storage module in the second sorting pass. Blocking of the storage module occupied in a secondary manner with overflow mail items can be avoided by emptying the storage modules of the first segment in the second sorting pass.
In a further variant of the invention the storage module, which is emptied last in the first sorting pass, is allocated a smaller destination area than the previous one, in particular than all the previous ones, before the first sorting pass. It is thus possible to prevent the last storage module overflowing and the overflow mail items being unable to be sorted into a subsequent storage module. The destination area can determine a statistical mail item set into the storage module and is for example a postcode or a number of addresses.
In another variant of the invention the overflow mail items are deposited during the first sorting pass in at least one partially occupied storage module of the first segments as secondary mail items. This allows sorting according to round order to be carried out particularly swiftly.
Mail items, which are originally assigned to the storage module occupied in a secondary manner after secondary occupation, are advantageously deposited in at least one further storage module of the first segment as secondary mail items. It is thus possible to avoid mixing mail items, which are assigned to different storage modules. Since at the point when a compartment overflows, there is generally only a small proportion of mail items still to be sorted, these also only include a few mail items, which are intended for the storage module which has in the meantime also been filled with mail items from the overflowing storage module. If so, these mail items are expediently routed in turn into a storage module, from which mail items are separated after the storage module in question in the next sorting pass. This continually reduces the probability of mail items still arriving, which are assigned to the last storage module in question. If there are not sufficient downstream storage modules for the next sorting pass, a storage module of the second or another segment can be used before the last storage module is reached.
To prevent blocking when the storage modules are being emptied in the next sorting pass, the storage module occupied in a secondary manner is expediently a storage module which is provided for emptying after the closed storage module in the second sorting pass. The emptying operation is expediently a complete emptying operation. The further storage module occupied in a secondary manner is advantageously provided for emptying after the first storage module occupied in a secondary manner.
Sorting can continue in a reliable manner despite the overflow, if in the case of a storage module containing overflow mail items, the overflow mail items are emptied first from the storage module, then another storage module is emptied and then the first storage module is emptied completely.
The invention is also directed at a device for sorting flat mail items. It is proposed that the device contains a sorting device, which has at least a first and second segment, each with at least N storage modules, and also a process device, which is provided to control a first sorting pass in the first segment and a subsequent second sorting pass in the second segment, with the process device also being provided to control the depositing of overflow mail items, which are assigned to a storage module that is closed because it is full, in one of the other storage modules in the first sorting pass and the subsequent inclusion of the overflow mail items in the sorting process of the second sorting pass.
All the control steps also required in respect of further described details of the invention can be initiated by the process device, which is then correspondingly prepared.
The device advantageously contains a circulating conveyor to transport the mail items from one segment to the other segment. The mail items can be transported reliably and swiftly from one segment to the other.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a method and a device for sorting flat mail items, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawing in detail and first, particularly, to
It is expedient for the mail items P1, P2, P3, . . . Pn−1 if they are brought into contact with the moving belt 12 with a certain feed pressure. To set the feed pressure a parting blade 20 and a subsurface conveyor belt 22 are provided, which can be moved in a manner that can be regulated very precisely in the stacking direction—in other words the direction in which the stack grows in the storage region 4—according to the arrows 24, 26, when the storage module 2 is in insertion mode. The parting blade 20 is used to generate the feed pressure on the moving belt 12 antiparallel to the stacking direction.
The storage module 2 also has a support roller arrangement 28, which is swung back into an inactive state in the insertion mode shown in
In order to be able to ensure that the at least largely vertical orientation of the mail items stored in the storage region 4 is reliably maintained even as the storage module 2 continues to be emptied, the subsurface conveyor belt 22 is driven as shown by an arrow, thereby displacing the mail items stored in the storage region 4 in conjunction with the pretensioned parting blade 20.
In the exemplary embodiment shown in
After separation the mail items 52 are fed to the circulating conveyor and pass the read device 54a, which captures the delivery addresses of the mail items 52 optically and forwards corresponding data to the process device 58. An assignment of delivery addresses to addresses is stored in the process device, so that every mail item can be assigned an address in the address space, in other words for example a number from 1 to Nn. The addresses are n-digit numbers xxx where 0≦x≦N−1. The mail items 52 are now assigned respectively to one of the N right-hand storage modules 46a-j according to the last digit of their address, with the left-hand storage module 46k serving as an overflow module and remaining free of mail items 52 at first.
It can happen that the process device 58 cannot determine a delivery address from the data transmitted by the read device 54 and the corresponding mail item 52 can then not be assigned an address and therefore a storage module 46a-j. These mail items 52 are then assigned to the storage module 46k. In
The number of mail items 52 sorted in the sorting according to round order operation is determined from the outset in such a manner that it is less than the storage capacity of all the storage modules 46a-k put together. If the mail items 52 were distributed uniformly to the Nn addresses, the storage modules 46a-j would be uniformly occupied, e.g. up to 80%, so that 20% serves as reserve for non-uniform distribution. If the non-uniform distribution is greater, at some point one of the storage modules 46a-j is filled to such a degree that it is marked as closed by the process device 58. The marking can be an electronic identifier in the process device 58. The degree of fill of the storage modules 46a-j can be captured by corresponding sensors for determining the degree of fill or by the process device 58 alone, which estimates the degree of fill of a storage module 46a-j based on the mail items 52 stored in it.
In the exemplary embodiment shown in
From this point mail items 52 with an address having a 5 as the last digit are allocated to the storage module 46k and deposited there. Unidentified mail items 52 also continue to be deposited in this overflow module, as shown by the bottom mail item 52 shown with a broken line in
It is now possible to examine the unrecognized mail items 52 again to determine whether they can be identified before the second sorting pass. To this end the mail items 52 are moved from the overflow module into a storage module 48a-k of the second segment 44, for example into the storage module 48k, so that mail items 52 can be withdrawn from the storage module 48k and others can be stored again in the storage module 46k at the same time.
The mail items 52 are then transferred by the circulating conveyor from the second segment 44 back to the first segment 42 and pass the read device 54a on the way to the first segment 42. Hitherto unrecognized mail items 52 with sufficiently legible delivery addresses are then deposited according to their delivery address or address in storage modules 46a-j and mail items 52 that still cannot be read and overflow mail items are stored in the storage module 46k again.
The subsequent second sorting pass is described with reference to the diagram in
The third sorting pass is then executed in the same manner as the second, with the mail items 52 being sorted into the first segment 42 based on the first digit of their addresses. The mail items 52 can now be removed in order from the storage modules 46a-j and are then present in the required order. The unidentified mail items 52 are separated in this process and can be collected first and sorted manually into the others by the delivery operator.
The device 60 contains two segments 42, 44, each with just N=10=M storage modules 46a-48j, there being no separate overflow module present. Mail items 52 with insufficiently readable delivery addresses are assigned the address 000, so that they are stacked into the storage module 46a, as shown by the broken lines. In the example shown in
The second sorting pass is shown schematically in
After the third sorting pass, as shown in
A further sorting method is described below with reference to
Overflow mail items remain in the first segment 42, so the second segment 44 remains free and can optionally be used for other processes. They are sorted into the next storage module 46e in emptying order, as shown by the broken lines. No further mail items 52 assigned originally to the storage module 46e, in other words having a 4 as the last digit of their address, can then be sorted into the storage module 46e which is occupied in a secondary manner. They are therefore sorted into the next storage module 46d, likewise shown by the broken lines. Again no further mail items 52 assigned originally to the storage module 46d can be sorted into it, so they are again sorted into the next storage module 46c, etc. Since when a compartment overflows, generally only a small proportion of mail items are still to be sorted, only relatively few mail items 52 are sorted in a secondary manner. If the downstream storage modules 46a-e for the next sorting pass are not sufficient, a storage module 48a-j of the second segment 44 can be used, before the last storage module 46a is reached.
In the next sorting pass the storage modules 46a-j are emptied, as shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2007 058 580 | Dec 2007 | DE | national |
This application is a divisional of U.S. patent application Ser. No. 12/329,204, entitled Method and Device for Sorting Flat Mail Items and filed on Dec. 5, 2008, and claims the priority, under 35 U.S.C. §119, of German application DE 10 2007 058 580.4, filed Dec. 5, 2007; the prior applications being herewith incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4643090 | McKrell et al. | Feb 1987 | A |
5901855 | Uno et al. | May 1999 | A |
5981891 | Yamashita et al. | Nov 1999 | A |
6279750 | Lohmann | Aug 2001 | B1 |
6566620 | Lohmann | May 2003 | B1 |
6943312 | Zimmermann | Sep 2005 | B2 |
7414218 | Wheeler et al. | Aug 2008 | B2 |
7671293 | Fry et al. | Mar 2010 | B2 |
7820932 | Stemmle | Oct 2010 | B2 |
20020023861 | Mileaf et al. | Feb 2002 | A1 |
20050218046 | Mileaf et al. | Oct 2005 | A1 |
20060037888 | Wheeler et al. | Feb 2006 | A1 |
20060070929 | Fry et al. | Apr 2006 | A1 |
20090050541 | Berdelle-Hilge | Feb 2009 | A1 |
20100114364 | Hahn et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
197 09 232 | Nov 1997 | DE |
196 29 125 | Jan 1998 | DE |
100 39 419 | Oct 2001 | DE |
197 14 184 | Jan 2002 | DE |
102007019948 | Oct 2008 | DE |
0 193 012 | Sep 1986 | EP |
0 870 551 | Oct 1998 | EP |
1 961 493 | Aug 2008 | EP |
03015938 | Feb 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20120241363 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12329204 | Dec 2008 | US |
Child | 13489874 | US |