Method and device for spectral expansion for an audio signal

Information

  • Patent Grant
  • 10043535
  • Patent Number
    10,043,535
  • Date Filed
    Wednesday, January 15, 2014
    10 years ago
  • Date Issued
    Tuesday, August 7, 2018
    6 years ago
Abstract
A method and device for automatically increasing the spectral bandwidth of an audio signal including generating a “mapping” (or “prediction”) matrix based on the analysis of a reference wideband signal and a reference narrowband signal, the mapping matrix being a transformation matrix to predict high frequency energy from a low frequency energy envelope, generating an energy envelope analysis of an input narrowband audio signal, generating a resynthesized noise signal by processing a random noise signal with the mapping matrix and the envelope analysis, high-pass filtering the resynthesized noise signal, and summing the high-pass filtered resynthesized noise signal with the input narrowband audio signal. Other embodiments are disclosed.
Description
FIELD

The present invention relates to audio enhancement for automatically increasing the spectral bandwidth of a voice signal to increase a perceived sound quality in a telecommunication conversation.


BACKGROUND

Sound isolating (SI) earphones and headsets are becoming increasingly popular for music listening and voice communication. SI earphones enable the user to hear an incoming audio content signal (be it speech or music audio) clearly in loud ambient noise environments, by attenuating the level of ambient sound in the user ear-canal.


SI earphones benefit from using an ear canal microphone (ECM) configured to detect user voice in the occluded ear canal for voice communication in high noise environments. In such a configuration, the ECM detects sound in the users ear canal between the ear drum and the sound isolating component of the SI earphone, where the sound isolating component is, for example, a foam plug or inflatable balloon. The ambient sound impinging on the ECM is attenuated by the sound isolating component (e.g., by approximately 30 dB averaged across frequencies 50 Hz to 10 kHz). The sound pressure in the ear canal in response to user-generated voice can be approximately 70-80 dB. As such, the effective signal to noise ratio measured at the ECM is increased when using an ear canal microphone and sound isolating component. This is clearly beneficial for two-way voice communication in high noise environments: where the SI earphone wearer with ECM can hear the incoming voice signal reproduced with an ear canal receiver (i.e., loudspeaker), with the incoming voice signal from a remote calling party. Secondly, the remote party can clearly hear the voice of the SI earphone wearer with the ECM even if the near-end caller is in a noisy environment, due to the increase in signal-to-noise ratio as previously described.


The output signal of the ECM with such an SI earphone in response to user voice activity is such that high-frequency fricatives produced by the earphone wearer, e.g., the phoneme/s/, are substantially attenuated due to the SI component of the earphone absorbing the air-borne energy of the fricative sound generated at the user's lips. As such, very little user voice sound energy is detected at the ECM above about 4.5 kHz and when the ECM signal is auditioned it can sound “muffled”.


A number of related art discusses spectral expansion. Application US20070150269 describes spectral expansion of a narrowband speech signal. The application uses a “parameter detector” which for example can differentiate between a vowel and consonant in the narrowband input signal, and generates higher frequencies dependant on this analysis.


Application US20040138876 describes a system similar to US20070150269 in that a narrowband signal (300 Hz t0 3.4 kHz) is analysis to determine in sibilants or non-sibilants, and high frequency sound is generated in the case of the former occurrence to generate a new signal with energy up to 7.7 kHz.


U.S. Pat. No. 8,200,499 describes a system to extend the high-frequency spectrum of a narrow-band signal. The system extends the harmonics of vowels by introducing a non-linearity. Consonants are spectrally expanded using a random noise generator.


U.S. Pat. No. 6,895,375 describes a system for extending the bandwidth of a narrowband signal such as a speech signal. The method comprises computing the narrowband linear predictive coefficients (LPCs) from a received narrowband speech signal and then processing these LPC coefficients into wideband LPCs, and then generating the wideband signal from these wideband LPCs





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates a wearable system for spectral expansion of an audio signal in accordance with an exemplary embodiment;



FIG. 1B illustrates another wearable system for spectral expansion of an audio signal in accordance with an exemplary embodiment;



FIG. 1C illustrates a mobile device for coupling with the wearable system in accordance with an exemplary embodiment;



FIG. 1D illustrates another mobile device for coupling with the wearable system in accordance with an exemplary embodiment;



FIG. 1E illustrates an exemplary earpiece for use with the enhancement system in accordance with an exemplary embodiment;



FIG. 2 illustrates flow chart for a method for spectral expansion in accordance with an embodiment herein;



FIG. 3 illustrates a flow chart for a method for generating a mapping or prediction matrix in accordance with an embodiment herein;



FIG. 4 illustrates use configurations for the spectral expansion system in accordance with an exemplary embodiment; and



FIG. 5 depicts a block diagram of an exemplary mobile device or multimedia device suitable for use with the spectral enhancement system in accordance with an exemplary embodiment.





DETAILED DESCRIPTION

The following description of at least one exemplary embodiment is merely illustrative in nature and is in no way intended to limit the invention, its application, or uses. Similar reference numerals and letters refer to similar items in the following figures, and thus once an item is defined in one figure, it may not be discussed for following figures.


In some embodiments, a system increases the spectral range of the ECM signal so that detected user-voice containing high frequency energy (e.g., fricatives) is reproduced with higher frequency content (e.g., frequency content up to about 8 kHz) so that the processed ECM signal can be auditioned with a more natural and “less muffled” quality.


“Voice over IP” (VOIP) telecommunications is increasingly being used for two-way voice communications between two parties. The audio bandwidth of such VOIP calls is generally up to 8 kHz. With a conventional ambient microphone as found on a mobile computing device (e.g., smart phone or laptop), the audio output is approximately linear up to about 12 kHz. Therefore, in a VOIP call between two parties using these conventional ambient microphones, made in a quiet environment, both parties will hear the voice of the other party with a full audio bandwidth up to 8 kHz. However, when an ECM is used, even though the signal to noise ratio improves in high noise environments, the audio bandwidth is less compared with the conventional ambient microphones, and each user will experience the received voice audio as sounding band-limited or muffled, as the received and reproduced voice audio bandwidth is approximately half as would be using the conventional ambient microphones.


Thus, embodiments herein expand (or extend) the bandwidth of the ECM signal before being auditioned by a remote party during high-band width telecommunication calls, such as VOIP calls.


The relevant art described above fails to generate a wideband signal from a narrowband signal based on a first analysis of a reference wideband speech signal to generate a mapping matrix (e.g., least-squares regression fit) that is then applied to a narrowband input signal and noise signal to generate a wideband output signal.


There are two things that are “different” about the approach in some of the embodiments described herein: One difference is that there is an intermediate approach between a very simple model (that the energy in the 3.5-4 kHz range gets extended to 8 kHz, say), and a very complex model (that attempts to classify the phoneme at every frame, and deploy a specific template for each case). Embodiments herein can have a simple, mode-less model, but where it has quite a few parameters, which can be learned from training data. The second significant difference is that the some of the embodiments herein use a “dB domain” to do the linear prediction.


Referring to FIG. 1A, a system 10 in accordance with a headset configuration is shown. In this embodiment, wherein the headset operates as a wearable computing device, the system 10 includes a first ambient sound microphone 11 for capturing a first microphone signal, a second ear canal microphone 12 for capturing a second microphone signal, and a processor 14/16 communicatively coupled to the second microphone 12 to increase the spectral bandwidth of an audio signal. As will be explained ahead, the processor 14/16 may reside on a communicatively coupled mobile device or other wearable computing device.


The system 10 can be configured to be part of any suitable media or computing device. For example, the system may be housed in the computing device or may be coupled to the computing device. The computing device may include, without being limited to wearable and/or body-borne (also referred to herein as bearable) computing devices. Examples of wearable/body-borne computing devices include head-mounted displays, earpieces, smartwatches, smartphones, cochlear implants and artificial eyes. Briefly, wearable computing devices relate to devices that may be worn on the body. Bearable computing devices relate to devices that may be worn on the body or in the body, such as implantable devices. Bearable computing devices may be configured to be temporarily or permanently installed in the body. Wearable devices may be worn, for example, on or in clothing, watches, glasses, shoes, as well as any other suitable accessory.


Although only the first 11 and second 12 microphone are shown together on a right earpiece, the system 10 can also be configured for individual earpieces (left or right) or include an additional pair of microphones on a second earpiece in addition to the first earpiece.


Referring to FIG. 1B, the system in accordance with yet another wearable computing device is shown. In this embodiment, the system is part of a set of eyeglasses 20 that operate as a wearable computing device, for collective processing of acoustic signals (e.g., ambient, environmental, voice, etc.) and media (e.g., accessory earpiece connected to eyeglasses for listening) when communicatively coupled to a media device (e.g., mobile device, cell phone, etc.). In one arrangement, analogous to an earpiece with microphones but further embedded in eyeglasses, the user may rely on the eyeglasses for voice communication and external sound capture instead of requiring the user to hold the media device in a typical hand-held phone orientation (i.e., cell phone microphone to mouth area, and speaker output to the ears). That is, the eyeglasses sense and pick up the user's voice (and other external sounds) for permitting voice processing. An earpiece may also be attached to the eyeglasses 20 for providing audio and voice.


In the configuration shown, the first 13 and second 15 microphones are mechanically mounted to one side of eyeglasses. Again, the embodiment 20 can be configured for individual sides (left or right) or include an additional pair of microphones on a second side in addition to the first side.



FIG. 1C depicts a first media device 14 as a mobile device (i.e., smartphone) which can be communicatively coupled to either or both of the wearable computing devices (10/20). FIG. 1D depicts a second media device 16 as a wristwatch device which also can be communicatively coupled to the one or more wearable computing devices (10/20). As previously noted in the description of these previous figures, the processor for updating the adaptive filter is included thereon, for example, within a digital signal processor or other software programmable device within, or coupled to, the media device 14 or 16.


With respect to the previous figures, the system 10 or 20 may represent a single device or a family of devices configured, for example, in a master-slave or master-master arrangement. Thus, components of the system 10 or 20 may be distributed among one or more devices, such as, but not limited to, the media device 14 illustrated in FIG. 1C and the wristwatch 16 in FIG. 1D. That is, the components of the system 10 or 20 may be distributed among several devices (such as a smartphone, a smartwatch, an optical head-mounted display, an earpiece, etc.). Furthermore, the devices (for example, those illustrated in FIG. 1A and FIG. 1B) may be coupled together via any suitable connection, for example, to the media device in FIG. 1C and/or the wristwatch in FIG. 1D, such as, without being limited to, a wired connection, a wireless connection or an optical connection.


The computing devices shown in FIGS. 1C and 1D can include any device having some processing capability for performing a desired function, for instance, as shown in FIG. 5. Computing devices may provide specific functions, such as heart rate monitoring or pedometer capability, to name a few. More advanced computing devices may provide multiple and/or more advanced functions, for instance, to continuously convey heart signals or other continuous biometric data. As an example, advanced “smart” functions and features similar to those provided on smartphones, smartwatches, optical head-mounted displays or helmet-mounted displays can be included therein. Example functions of computing devices may include, without being limited to, capturing images and/or video, displaying images and/or video, presenting audio signals, presenting text messages and/or emails, identifying voice commands from a user, browsing the web, etc.


In one exemplary embodiment of the present invention, there exists a communication earphone/headset system connected to a voice communication device (e.g. mobile telephone, radio, computer device) and/or audio content delivery device (e.g. portable media player, computer device). Said communication earphone/headset system comprises a sound isolating component for blocking the users ear meatus (e.g. using foam or an expandable balloon); an Ear Canal Receiver (ECR, i.e. loudspeaker) for receiving an audio signal and generating a sound field in a user ear-canal; at least one ambient sound microphone (ASM) for receiving an ambient sound signal and generating at least one ASM signal; and an optional Ear Canal Microphone (ECM) for receiving a narrowband ear-canal signal measured in the user's occluded ear-canal and generating an ECM signal. A signal processing system receives an Audio Content (AC) signal from the said communication device (e.g. mobile phone etc) or said audio content delivery device (e.g. music player); and further receives the at least one ASM signal and the optional ECM signal. Said signal processing system processing the narrowband ECM signal to generate a modified ECM signal with increased spectral bandwidth.


In a second embodiment, the signal processing for increasing spectral bandwidth receives a narrowband speech signal from a non-microphone source, such as a codec or Bluetooth transceiver. The output signal with the increased spectral bandwidth is directed to an Ear Canal Receiver of an earphone or a loudspeaker on another wearable device.



FIG. 1E illustrates an earpiece as part of a system 40 according to at least one exemplary embodiment, where the system includes an electronic housing unit 100, a battery 102, a memory (RAM/ROM, etc.) 104, an ear canal microphone (ECM) 106, an ear sealing device 108, an ECM acoustic tube 110, a ECR acoustic tube 112, an ear canal receiver (ECR) 114, a microprocessor 116, a wire to second signal processing unit, other earpiece, media device, etc. (118), an ambient sound microphone (ASM) 120, a user interface (buttons) and operation indicator lights 122. Other portions of the system or environment can include an occluded ear canal 124 and ear drum 126.


The reader is now directed to the description of FIG. 1E for a detailed view and description of the components of the earpiece 100 (which may be coupled to the aforementioned devices and media device 50 of FIG. 5 for example), components which may be referred to in one implementation for practicing the methods described herein. Notably, the aforementioned devices (headset 10, eyeglasses 20, mobile device 14, wrist watch 16, earpiece 100) can also implement the processing steps of methods herein for practicing the novel aspects of spectral enhancement of speech signals.



FIG. 1E is an illustration of a device that includes an earpiece device 100 that can be connected to the system 10, 20, or 50 of FIG. 1A, 2A, or 5, respectively for example, for performing the inventive aspects herein disclosed. As will be explained ahead, the earpiece 100 contains numerous electronic components, many audio related, each with separate data lines conveying audio data. Briefly referring back to FIG. 1B, the system 20 can include a separate earpiece 100 for both the left and right ear. In such arrangement, there may be anywhere from 8 to 12 data lines, each containing audio, and other control information (e.g., power, ground, signaling, etc.)


As illustrated, the system 40 of FIG. 1E comprises an electronic housing unit 100 and a sealing unit 108. The earpiece depicts an electro-acoustical assembly for an in-the-ear acoustic assembly, as it would typically be placed in an ear canal 124 of a user. The earpiece can be an in the ear earpiece, behind the ear earpiece, receiver in the ear, partial-fit device, or any other suitable earpiece type. The earpiece can partially or fully occlude ear canal 124, and is suitable for use with users having healthy or abnormal auditory functioning.


The earpiece includes an Ambient Sound Microphone (ASM) 120 to capture ambient sound, an Ear Canal Receiver (ECR) 114 to deliver audio to an ear canal 124, and an Ear Canal Microphone (ECM) 106 to capture and assess a sound exposure level within the ear canal 124. The earpiece can partially or fully occlude the ear canal 124 to provide various degrees of acoustic isolation. In at least one exemplary embodiment, assembly is designed to be inserted into the user's ear canal 124, and to form an acoustic seal with the walls of the ear canal 124 at a location between the entrance to the ear canal 124 and the tympanic membrane (or ear drum). In general, such a seal is typically achieved by means of a soft and compliant housing of sealing unit 108.


Sealing unit 108 is an acoustic barrier having a first side corresponding to ear canal 124 and a second side corresponding to the ambient environment. In at least one exemplary embodiment, sealing unit 108 includes an ear canal microphone tube 110 and an ear canal receiver tube 112. Sealing unit 108 creates a closed cavity of approximately 5 cc between the first side of sealing unit 108 and the tympanic membrane in ear canal 124. As a result of this sealing, the ECR (speaker) 114 is able to generate a full range bass response when reproducing sounds for the user. This seal also serves to significantly reduce the sound pressure level at the user's eardrum resulting from the sound field at the entrance to the ear canal 124. This seal is also a basis for a sound isolating performance of the electro-acoustic assembly.


In at least one exemplary embodiment and in broader context, the second side of sealing unit 108 corresponds to the earpiece, electronic housing unit 100, and ambient sound microphone 120 that is exposed to the ambient environment. Ambient sound microphone 120 receives ambient sound from the ambient environment around the user.


Electronic housing unit 100 houses system components such as a microprocessor 116, memory 104, battery 102, ECM 106, ASM 120, ECR, 114, and user interface 122. Microprocessor (116) can be a logic circuit, a digital signal processor, controller, or the like for performing calculations and operations for the earpiece. Microprocessor 116 is operatively coupled to memory 104, ECM 106, ASM 120, ECR 114, and user interface 120. A wire 118 provides an external connection to the earpiece. Battery 102 powers the circuits and transducers of the earpiece. Battery 102 can be a rechargeable or replaceable battery.


In at least one exemplary embodiment, electronic housing unit 100 is adjacent to sealing unit 108. Openings in electronic housing unit 100 receive ECM tube 110 and ECR tube 112 to respectively couple to ECM 106 and ECR 114. ECR tube 112 and ECM tube 110 acoustically couple signals to and from ear canal 124. For example, ECR outputs an acoustic signal through ECR tube 112 and into ear canal 124 where it is received by the tympanic membrane of the user of the earpiece. Conversely, ECM 114 receives an acoustic signal present in ear canal 124 though ECM tube 110. All transducers shown can receive or transmit audio signals to a processor 116 that undertakes audio signal processing and provides a transceiver for audio via the wired (wire 118) or a wireless communication path.



FIG. 2 illustrates an exemplary configuration of the spectral expansion method 200. The method 200 for automatically expanding the spectral bandwidth of a speech signal can comprise the steps of:


Step 1. A first training step generating a “mapping” (or “prediction”) matrix 206 based on the analysis 203 of a reference wideband signal 201 and a reference narrowband signal 204. The mapping matrix is a transformation matrix to predict high frequency energy from a low frequency energy envelope. In one embodiment a frequency transform 202 is performed on the reference wideband signal 201 and a frequency transform 205 into N Bands is performed on the low bandwidth reference signal 204. In one exemplary configuration, the reference wideband and narrowband signals are made from a simultaneous recording of a phonetically balanced sentence made with an ambient microphone located in an earphone and an ear canal microphone located in an earphone of the same individual (i.e. to generate the wideband and narrowband reference signals, respectively).


Step 2. Generating an energy envelope analysis 209 of an input narrowband audio signal 207. In one embodiment, the narrowband audio signal 207 is frequency transformed at 208.


Step 3: Generating at 210 a resynthesized noise signal by processing a random noise signal 211 with the mapping matrix 206 of step 1 and the envelope analysis 209 of step 2. The resynthesis at 201 provides a wideband noise signal 212.


Step 4: High-pass filtering at 213 the resynthesized noise signal 212 of step 3.


Step 5: Summing at 214 the high-pass filtered resynthesized noise signal with the original input narrowband audio signal 207 to provide a wideband signal 215.



FIG. 3 is an exemplary method 300 for generating the mapping (or “prediction”) matrix 309. There are at least two things that are of note about the method: One is that we're taking an intermediate approach between a very simple model (that the energy in 3.5-4 kHz gets extended to 8 kHz, say), and a very complex model (that attempts to classify the phoneme at every frame, and deploy a specific template for each case). We have a simple, mode-less model, but it has quite a few parameters, which we learn from training data.


In the model, there are sufficient input channels for an accurate prediction, but not so many that we need a huge amount of training data, or that we end up being unable to generalize. In one embodiment, a low bandwidth reference signal 301 and a high bandwidth reference signal 304 are provided as inputs that are both respectively frequency transformed into N bands at 302 and 305 respectively.


The second approach or aspect of note of the method is that we use the “dB domain” (at 303 and 306 respectively) to do the linear prediction (this is different from the LPC approach).


The logarithmic dB domain is used since it has the ability to provide a good fit even for the relatively low-level energies. If you just do least squares at 307 on the linear energy, it puts all its modeling power into the highest 5% of the bins, or something, and the lower energy levels, to which human listeners are quite sensitive, are not well modeled (NB “mapping” and “prediction” matrix are used interchangeably). In one embodiment, a high bandwidth mapping matrix 308 is performed after the least-squares fit at 307 before providing the mapping matrix 309.



FIG. 4 shows an exemplary configuration of the spectral expansion system for increasing the spectral content of two signals:


1. A first outgoing signal 401 where the narrowband input signal is from an Ear Canal Microphone signal in an earphone (the “near end” signal), and the output signal from the spectral expansion system 402 is directed to a “far-end” loudspeaker 403 via a voice telecommunications system.


2. An incoming signal from the same spectral expansion system 402 or a second spectral expansion system 402a processes a received voice signal from a far-end system, e.g. a received voice system from a cell-phone. Here, the output of the spectral expansion system 402 or 402a is directed to the loudspeaker 405 in an earphone of the near-end party.



FIG. 5 depicts various components of a multimedia device 50 suitable for use for use with, and/or practicing the aspects of the inventive elements disclosed herein, for instance the methods of FIG. 2 or 3, though it is not limited to only those methods or components shown. As illustrated, the device 50 comprises a wired and/or wireless transceiver 52, a user interface (UI) display 54, a memory 56, a location unit 58, and a processor 60 for managing operations thereof. The media device 50 can be any intelligent processing platform with Digital signal processing capabilities, application processor, data storage, display, input modality or sensor 64 like touch-screen or keypad, microphones, and speaker 66, as well as Bluetooth, and connection to the internet via WAN, Wi-Fi, Ethernet or USB. This embodies custom hardware devices, Smartphone, cell phone, mobile device, iPad and iPod like devices, a laptop, a notebook, a tablet, or any other type of portable and mobile communication device. Other devices or systems such as a desktop, automobile electronic dash board, computational monitor, or communications control equipment is also herein contemplated for implementing the methods herein described. A power supply 62 provides energy for electronic components.


In one embodiment where the media device 50 operates in a landline environment, the transceiver 52 can utilize common wire-line access technology to support POTS or VoIP services. In a wireless communications setting, the transceiver 52 can utilize common technologies to support singly or in combination any number of wireless access technologies including without limitation Bluetooth™ Wireless Fidelity (WiFi), Worldwide Interoperability for Microwave Access (WiMAX), Ultra Wide Band (UWB), software defined radio (SDR), and cellular access technologies such as CDMA-1X, W-CDMA/HSDPA, GSM/GPRS, EDGE, TDMA/EDGE, and EVDO. SDR can be utilized for accessing a public or private communication spectrum according to any number of communication protocols that can be dynamically downloaded over-the-air to the communication device. It should be noted also that next generation wireless access technologies can be applied to the present disclosure.


The power supply 62 can utilize common power management technologies such as power from USB, replaceable batteries, supply regulation technologies, and charging system technologies for supplying energy to the components of the communication device and to facilitate portable applications. In stationary applications, the power supply 62 can be modified so as to extract energy from a common wall outlet and thereby supply DC power to the components of the communication device 50.


The location unit 58 can utilize common technology such as a GPS (Global Positioning System) receiver that can intercept satellite signals and there from determine a location fix of the portable device 50.


The controller processor 60 can utilize computing technologies such as a microprocessor and/or digital signal processor (DSP) with associated storage memory such a Flash, ROM, RAM, SRAM, DRAM or other like technologies for controlling operations of the aforementioned components of the communication device.


It should be noted that the methods 200 in FIG. 2 or 3 are not limited to practice only by the earpiece device shown in FIG. 1E. Examples of electronic devices that incorporate multiple microphones for voice communications and audio recording or analysis, include, but not limited to:

    • a. Smart watches.
    • b. Smart “eye wear” glasses.
    • c. Remote control units for home entertainment systems.
    • d. Mobile Phones.
    • e. Hearing Aids.
    • f. Steering wheels.


Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown.


Where applicable, the present embodiments of the invention can be realized in hardware, software or a combination of hardware and software. Any kind of computer system or other apparatus adapted for carrying out the methods described herein are suitable. A typical combination of hardware and software can be a mobile communications device or portable device with a computer program that, when being loaded and executed, can control the mobile communications device such that it carries out the methods described herein. Portions of the present method and system may also be embedded in a computer program product, which comprises all the features enabling the implementation of the methods described herein and which when loaded in a computer system, is able to carry out these methods.


While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all modifications, equivalent structures and functions of the relevant exemplary embodiments. Thus, the description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the exemplary embodiments of the present invention. Such variations are not to be regarded as a departure from the spirit and scope of the present invention.


For example, the spectral enhancement algorithms described herein can be integrated in one or more components of devices or systems described in the following U.S. Patent Applications, all of which are incorporated by reference in their entirety: U.S. patent application Ser. No. 11/774,965 entitled Personal Audio Assistant, filed Jul. 9, 2007 claiming priority to provisional application 60/806,769 filed on Jul. 8, 2006; U.S. patent application Ser. No. 11/942,370 filed 2007 Nov. 19 entitled Method and Device for Personalized Hearing; U.S. patent application Ser. No. 12/102,555 filed 2008 Jul. 8 entitled Method and Device for Voice Operated Control; U.S. patent application Ser. No. 14/036,198 filed Sep. 25, 2013 entitled Personalized Voice Control; U.S. patent application Ser. No. 12/165,022 filed Jan. 8, 2009 entitled Method and device for background mitigation; U.S. patent application Ser. No. 12/555,570 filed 2013 Jun. 13 entitled Method and system for sound monitoring over a network; and U.S. patent application Ser. No. 12/560,074 filed Sep. 15, 2009 entitled Sound Library and Method.


This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.


These are but a few examples of embodiments and modifications that can be applied to the present disclosure without departing from the scope of the claims stated below. Accordingly, the reader is directed to the claims section for a fuller understanding of the breadth and scope of the present disclosure.

Claims
  • 1. A method for automatically expanding a spectral bandwidth of an audio signal comprising the steps of: a first training step of generating a mapping matrix, by a digital signal processor, the mapping matrix being a transformation matrix to predict high frequency energy from a low frequency energy envelope, the first training step consisting of simultaneously recording a sentence by an ambient microphone and by an ear canal microphone located in an earphone, wherein the ambient microphone captures a reference wideband signal and the digital signal processor performs a frequency transform on the wideband signal, wherein the ear canal microphone captures a reference narrowband signal and the digital signal processor performs a frequency transform on the narrowband signal into a plurality of bands, wherein the mapping matrix is based on an analysis of the frequency transform on the wideband signal and the frequency transform on the narrowband signal into a plurality of bands;generating, by the digital signal processor, an energy envelope analysis of an input narrowband audio signal;generating, by the digital signal processor, a resynthesized noise signal by processing a random noise signal with the mapping matrix and the envelope analysis;high-pass filtering, by the digital signal processor, the resynthesized noise signal; andsumming, by the digital signal processor, the high-pass filtered resynthesized noise signal with the input narrowband audio signal to automatically expand the spectral bandwidth of the input narrowband audio signal to produce a summed signal with spectral enhancement;reproducing by a loudspeaker the summed signal with spectral enhancement.
  • 2. The method of claim 1, wherein the reference wideband and narrowband signals consist of a simultaneous recording of a phonetically balanced sentence.
  • 3. The method of claim 1, where the input narrowband audio signal is taken from the ear-canal microphone within the occluded ear canal and located in the earphone.
  • 4. The method of claim 1, where the input narrowband audio signal is taken from a received speech audio signal in a speech telecommunications system.
  • 5. The method of claim 1, where the summed signal is directed to a speech telecommunications system.
  • 6. The method of claim 1, where the summed signal is directed to a voice controlled device.
  • 7. The method of claim 1, where the mapping matrix is generated from a least squares fit analysis of the reference wideband and reference narrowband signals.
  • 8. The method of claim 1, where the mapping matrix is generated by a linear regression model, where the input reference wideband signals and reference narrowband signals are first converted to a frequency domain representation using a Fast Fourier Transform, and secondly each frequency band envelope is converted to a decibel domain representation to perform a linear prediction.
  • 9. A non-transitory computer readable medium containing instructions for spectral enhancement, the execution of the instructions by one or more processors of a computer system causing the one or more processors to perform operations comprising: generating a mapping matrix, the mapping matrix being a transformation matrix to predict high frequency energy from a low frequency energy envelope, generating of the mapping matrix consisting of simultaneously recording of a sentence by an ambient microphone and by an ear canal microphone, wherein the ambient microphone captures a reference wideband signal and the digital signal processor performs a frequency transform on the wideband signal, wherein the ear canal microphone captures a reference narrowband signal and the digital signal processor performs a frequency transform on the narrowband signal into a plurality of bands, wherein the mapping matrix is based on an analysis of the frequency transform on the wideband signal and the frequency transform on the narrowband signal into a plurality of bands;generating an energy envelope analysis of an input narrowband audio signal;generating a resynthesized noise signal by processing a random noise signal with the mapping matrix and the envelope analysis;high-pass filtering the resynthesized noise signal;summing the high-pass filtered resynthesized noise signal with the input narrowband audio signal to produce a summed signal with spectral enhancement; andreproducing by a loudspeaker the summed signal with spectral enhancement.
  • 10. A system for automatically expanding the spectral bandwidth of an audio signal comprising: one or more processors;a memory having instructions and being operatively coupled to the one or more processors, the instructions when executed by the one or more processors performs the operations of: generating a mapping matrix, consisting of simultaneously recording of a sentence by an ambient microphone and by an ear canal microphone, wherein the ambient microphone captures a reference wideband signal and the digital signal processor performs a frequency transform on the wideband signal, wherein the ear canal microphone captures a reference narrowband signal and the digital signal processor performs a frequency transform on the narrowband signal into a plurality of bands, wherein the mapping matrix is based on an analysis of the frequency transform on the wideband signal and the frequency transform on the narrowband signal into a plurality of bands;generating an energy envelope analysis of an input narrowband audio signal;generating a resynthesized noise signal by processing a random noise signal with the mapping matrix and the envelope analysis to provide a resynthesized noise signal;high-pass filtering the resynthesized noise signal to provide a high-pass filtered resynthesized noise signal; andsumming the high-pass filtered resynthesized noise signal with the input narrowband audio signal to provide a wideband signal to produce a summed signal with spectral enhancement;reproducing by a loudspeaker the summed signal with spectral enhancement.
  • 11. The system of claim 10, wherein the mapping matrix is a transformation matrix predicting high frequency energy from a low frequency energy envelope.
  • 12. The system of claim 10, wherein the summing provides the wideband signal as the output to the loudspeaker for reproducing the audio signal with an expanded spectral bandwidth.
  • 13. The system of claim 12, where the mapping matrix is generated from a least squares fit analysis of the reference wideband signal and reference narrowband signal.
  • 14. The system of claim 12, where the mapping matrix is generated by a linear regression model, where the input reference wideband signals and reference narrowband signals are first converted to a frequency domain representation providing frequency band envelopes, and secondly each frequency band envelope is converted to a decibel domain representation.
  • 15. The system of claim 10, wherein the system further includes a smart watch having one or more microphones.
  • 16. The system of claim 10, wherein the system further includes a set of smart glasses having one or more microphones.
  • 17. The system of claim 10, wherein the system further includes a mobile phone having one or more microphones.
  • 18. The system of claim 10, wherein the system further includes a hearing aid having one or more microphones.
  • 19. The system of claim 10, wherein the system further includes steering wheel having one or more microphones.
  • 20. The system of claim 10, wherein the system is formed in an earpiece device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. provisional patent application No. 61/752,569 filed 15 Jan. 2013 and further claims the benefit of U.S. provisional patent application No. 61/920,321 filed 23 Dec. 2013. The disclosure of both aforementioned applications are incorporated herein by reference in their entirety.

US Referenced Citations (79)
Number Name Date Kind
5978759 Tsushima et al. Nov 1999 A
6289311 Omori et al. Sep 2001 B1
6681202 Miet et al. Jan 2004 B1
6683965 Sapiejewski Jan 2004 B1
6829360 Iwata et al. Dec 2004 B1
6895375 Malah et al. May 2005 B2
7181402 Jax et al. Feb 2007 B2
7233969 Rawlins et al. Jun 2007 B2
7397867 Moore et al. Jul 2008 B2
7433910 Rawlins et al. Oct 2008 B2
7454453 Rawlins et al. Nov 2008 B2
7546237 Nongpiur et al. Jun 2009 B2
7599840 Mehrotra et al. Oct 2009 B2
7693709 Thumpudi et al. Apr 2010 B2
7727029 Bolin et al. Jun 2010 B2
7792680 Iser et al. Sep 2010 B2
7831434 Mehrotra et al. Nov 2010 B2
7953604 Mehrotra et al. May 2011 B2
7991815 Rawlins et al. Aug 2011 B2
8090120 Seefeldt Jan 2012 B2
8162697 Menolotto et al. Apr 2012 B1
8190425 Mehrotra et al. May 2012 B2
8199933 Seefeldt Jun 2012 B2
8200499 Nongpiur et al. Jun 2012 B2
8206181 Steijner et al. Jun 2012 B2
8332210 Nilsson et al. Dec 2012 B2
8358617 El-Maleh et al. Jan 2013 B2
8386243 Nilsson et al. Feb 2013 B2
8437482 Seefeldt et al. May 2013 B2
8554569 Chen et al. Oct 2013 B2
8639502 Boucheron et al. Jan 2014 B1
8731923 Shu May 2014 B2
8771021 Edeler Jul 2014 B2
8831267 Annacone Sep 2014 B2
20020116196 Tran Aug 2002 A1
20030093279 Malah May 2003 A1
20040076305 Santiago Apr 2004 A1
20040138876 Kallio et al. Jul 2004 A1
20050004803 Smeets et al. Jan 2005 A1
20050049863 Gong Mar 2005 A1
20060190245 Iser Aug 2006 A1
20070055519 Seltzer et al. Mar 2007 A1
20070078649 Hetherington et al. Apr 2007 A1
20070237342 Agranat Oct 2007 A1
20080031475 Goldstein Feb 2008 A1
20080037801 Alves Feb 2008 A1
20080208575 Laaksonen Aug 2008 A1
20080219456 Goldstein Sep 2008 A1
20080300866 Mukhtar Dec 2008 A1
20090048846 Smaragdis et al. Feb 2009 A1
20090129619 Nordahn May 2009 A1
20090296952 Pantfoerder Dec 2009 A1
20100074451 Usher et al. Mar 2010 A1
20100158269 Zhang Jun 2010 A1
20100246831 Mahabub et al. Sep 2010 A1
20110005828 Ye et al. Jan 2011 A1
20110019838 Kaulberg et al. Jan 2011 A1
20110112845 Jasiuk et al. May 2011 A1
20110188669 Lu Aug 2011 A1
20110282655 Endo Nov 2011 A1
20120046946 Shu Feb 2012 A1
20120121220 Krummrich May 2012 A1
20120128165 Visser et al. May 2012 A1
20120215519 Park et al. Aug 2012 A1
20120321097 Braho Dec 2012 A1
20130013300 Otani Jan 2013 A1
20130024191 Krutsch Jan 2013 A1
20130039512 Miyata et al. Feb 2013 A1
20130052873 Riezebos et al. Feb 2013 A1
20130108064 Kocalar et al. May 2013 A1
20130195283 Larson et al. Aug 2013 A1
20130210286 Golko Aug 2013 A1
20130244485 Lam et al. Sep 2013 A1
20130322653 Tsai et al. Dec 2013 A1
20140072156 Kwon Mar 2014 A1
20140321673 Seo et al. Oct 2014 A1
20150117663 Hsu et al. Apr 2015 A1
20150156584 Chen et al. Jun 2015 A1
20150358719 Mackay et al. Dec 2015 A1
Related Publications (1)
Number Date Country
20140200883 A1 Jul 2014 US
Provisional Applications (2)
Number Date Country
61752569 Jan 2013 US
61920321 Dec 2013 US