The present invention is based on a method and a device for waking users of a CAN bus system.
For example, the ISO standard family 11898-1 through -5 describes the Controller Area Network (CAN) as well as an extension of the CAN designated as “time-triggered CAN” (TTCAN). The media access control method used in the CAN is based on a bit-wise arbitration. The user stations are simultaneously able to begin transmitting a message over the bus. The messages sent have an identification which is transmitted after a single “start of frame” bit. In the bit-wise arbitration, while sending the bits belonging to the identification, are simultaneously able to ascertain the logical state (0 or 1) of the bus. If the value of a bit sent by a first user station does not correspond to the ascertained logical state of the bus, another user station has obviously sent a message having a higher priority, and the first user station therefore ends its send access to the bus. The bit-wise arbitration thus achieves a non-destructive transmission of that message via the bus that wins the arbitration process.
With the increasing electronization of modern vehicles, and the advent of additional systems for the improvement of driving safety, for example, or driver convenience, the requirements with respect to the consumption of electric power are growing constantly. At the same time, the necessity exists of limiting the power usage, in order to take into account ecological and legal requirements. Even against the background of the increased introduction of electrically driven vehicles, it is indicated that power usage by control and regulating systems and safety and convenience systems should be kept within limits, since the electric power used has a direct effect on the vehicle's distance range.
For that reason, it is provided in new vehicles that one should put individual bus users or groups of bus users completely or partially at rest if the function exerted by them or the respective subfunctionality is not required. Along with that comes the requirement to wake up again or to activate bus users that are at rest, wholly or partially, when the function or the subfunctionality that is at rest is required again.
In this connection, German Patent Application DE 103 58 584 A1 discusses a device and a method for selectively waking up users of a bus system, in which a detecting arrangement, particularly a counter, is provided which detects at least one predefined signal property of the signals transmitted on the bus system and initiates the further wake-up procedure once a specifiable number has been reached.
Patent Application DE 102 25 578 A1 discusses a method and a device for the selective activation of bus users, which is distinguished by providing a separate voltage regulator for the protocol controller present in the bus user. Because of that, when bus communication takes place, the protocol controller may first be awakened without the associated application controller, the former then being available for comparing the messages present on the bus to one or more previously stored reference messages. If there is agreement, the application controller and with that, the entire bus user is awakened.
In the devices from the related art, after the waking process has taken place, the information as to by which signal or which message the waking process was triggered, is no longer present. This may be of disadvantage, particularly if different messages are supposed to lead to different properties of the awakened bus users. For example, if different waking messages for waking different subfunctionalities are to be drawn upon, the related art then does not supply satisfying results in every respect, since after the waking process has taken place, no information is available on the content of the message that has led to the waking up. If it were present, this information could be used to adjust the waking process depending on the reason for the waking, that is, depending on the requested functionality.
The present invention is therefore based on an object of providing a possibility, after a wake-up process has taken place, of continuing to provide the content of the successful wake-up information. This object is attained by the device and the associated method according to the independent claims.
In the following, the present invention and its advantages will be described with reference to drawings and exemplary embodiments. Advantageous developments are described by the dependent claims. The subject matter of the present invention is not limited to the represented and described exemplary embodiments.
In one advantageous application case, the door control device in a motor vehicle could contribute a subfunction to various vehicle functionalities, such as to the functionality of central locking of the operation of the door lock, for certain safety functionalities an automatic locking of the window, or, for convenience functionalities, a certain rearview mirror adjustment, such as automatically folding it away. Different ones of these functionalities are activated depending on the current status of the vehicle. The central locking could be turned off, for example, above a certain limit speed, or a safety functionality could first be activated above a speed threshold. A convenience functionality, such as the folding away of the rearview mirror could be made executable only at a standstill. Accordingly, depending on the vehicle state, different subfunctions or contributions of the door control device are required, and under suitable circumstances, the door control device may be put completely into an at-rest state. When waking up the door control device, it is meaningful to be able to activate subfunctions separately. For this purpose, it is advantageous if the information is present at the door control device as to by which wake-up message or for which functionality the waking process was carried out.
A further example is parking systems whose functionalities have to be provided in different ways, as a function of the vehicle state. For example, the sensors and the evaluation unit are usually completely activated when shifting into reverse takes place. In normal driving operation, on the other hand, the sensors are possibly not needed at all or only partly, depending on the speed, perhaps for measuring a parking space or for monitoring the blind spot, and the evaluation control unit has to carry out deviating or restricted functionalities. Here too, it may therefore be useful to be able to activate subfunctions of the parking system separately, starting from the at-rest state. Again, for this purpose, it is advantageous if the information is present at the parking control device as to by which wake-up message or for which functionality the waking process was carried out.
Additional advantageous possibilities of use of the device, according to the present invention, in the vehicle are also conceivable.
Starting from a method and a device for waking up users of a CAN bus system from the related art, in which a suitable first arrangement is provided for selectively evaluating the wake-up information received, and in which the wake-up process is initiated only if the wake-up information that is specified or specifiable for the respective user station is present, it is advantageous in the case of the device, according to the present invention, that a storage arrangement is provided so that, in the case in which the wake-up process is initiated, the wake-up information evaluated for this may be stored.
It is also of advantage that, in the device, a suitable further arrangement is provided so that, as a function of the stored wake-up information, different subfunctionalities of the user station and/or different application controllers and/or different operating modes of the at least one application controller are activated.
These additional arrangement(s) may be configured so that at least one application controller of the user station has provided to it reading access to the stored wake-up information. Thereby one may achieve rapid availability of the wake-up information to the application controller. In another specific embodiment, the additional arrangement(s) may also be configured so that the stored wake-up information is supplied to the communication controller. Thereby the wake-up information reaches that application controller delayed in time, as a normal bus message, which reduces the expenditure for establishing the method in the application controller.
In the case mentioned last, the further arrangement includes at least one coder for converting the stored wake-up information to a serial input signal for the communication controller. A changeover switch for changing over the input signal for the communication controller between the signal present on the bus and the serial signal generated by the coder is of advantage, in order to avoid collisions between incoming bus signals and the wake-up information provided by the coder at the input to the communication controller.
The first arrangement that is provided selectively to evaluate the wake-up information received, advantageously include a decoder which enters the serial message in a receiving storage area, the receiving storage area, a filter storage unit and a comparator unit. In this way, a rapid and reliable comparison is made possible of the message received with the entries of the filter storage unit.
The present invention will now be described in greater detail on the basis of the figures.
Application controller 113 and 123, in the example shown here, together supply functionality A, application controllers 124 and 134 together supply functionality B and application controller 145 supplies alternatively function C or D. In another specific embodiment, an application controller could naturally also contribute to a plurality of functionalities.
The advantage of the present invention may be illustrated using bus user 120 as an example. If it is assumed that, under certain circumstances, functionalities A and B would not be needed, the bus user may be switched off in these driving situations or put in an at-rest state, since he is not needed. Now, if a situation occurs in which functionality A is required, one of the active users, for instance, user 110, sends out a wake-up message. Bus user 120 is in an at-rest state. His bus-connecting unit 121, which represents the device according to the present invention, observes in the at-rest state the message traffic on the bus. It analyzes the wake-up message received and determines that a wake-up message relevant to bus user 120 is involved. Accordingly, it activates communication controller 122 and one or more application controllers. Moreover, it provides the content of the wake-up message received in a memory area provided for this. Because the wake-up information is available in the bus user, selectively only application controller 123, which is required for carrying out functionality A, is able to be awakened, while application controller 124 remains in the at-rest state.
A further possibility of using the device according to the present invention may be shown on the example of bus user 140: as was shown before, application controller 145 is able to carry out alternatively functionality C or D. Starting from a situation in which neither of the two functionalities is required, bus user 140 is in an at-rest state. Now, if a situation arises in which functionality C is required, a bus user sends out a corresponding wake-up message, which is evaluated by device 141 in bus user 140 according to the present invention, and is stored in a suitable memory area, according to the present invention. Application controller 145 is started and is now able to evaluate or read in the wake-up information stored, and take up associated functionality C. If functionality D is requested, a deviating wake-up message is sent out and stored according to the present invention. Application controller 145 evaluates stored wake-up information or it is supplied to it by device 141, according to the present invention, and as result it takes over deviating functionality D.
In normal operating mode, device 121 receives bus signals via reception unit 260 and passes these on via interface unit 240 and line RxD serially to the communication controller. In the sending case, the device receives on line RxD serial signals from the communication controller and transmits these via sending unit 270 to the bus lines. In the at-rest state of the bus user, for example, only reception unit 260 and control unit 210 are active with wake-up unit 220. Waking up the bus user is possible by various waking signals: the bus user may be activated, for instance, by the local waking terminal. Waking up by a bus message is of interest for the present invention. If a message is received in the at-rest state, it is passed on via reception unit 260 to wake-up unit 220, is decoded there and stored, in its entirety or partially, and is compared to one or more specified wake-up messages. In the case of agreement, the bus user is awakened through interface unit 250 and the INH terminal, which is in connection with a suitable arrangement, such as a voltage regulator.
Because the wake-up information has been stored and is available to the bus user, the wake-up process may be made a function of the content of the wake-up information. Thus, different application controllers may be activated as a function of the wake-up information, for example, or different functions may be carried out by the application controller. This may possibly be implemented in that, via interface unit 250, two voltage regulators are actuated which wake up two application controllers by supplying them with voltage. Alternatively, two interface units may also be provided for this. Each of the application controllers, during the wake-up process or after its end, scans the content of the memory area which includes the wake-up information.
If different application controllers are to be activated as a function of the wake-up information, in the case of agreement, the active state is maintained, while in the case of non-agreement the respective application controller takes on an at-rest state again, by outputting, for instance, a command for reducing the supply voltage via a suitable interface to the appropriate voltage regulator. If different functions are to be activated as a function of the wake-up information on the application controller(s), as a contribution to certain vehicle functionalities, the active state of all application controllers is maintained, but different programs are executed by the one or the plurality of application controllers as a function of the content of the storage area that includes the wake-up information.
By contrast, the reading out of reception storage area 330 by the application controller, in order to obtain information on wake-up information that has led to a waking-up has the disadvantage that reception storage area 330 is able to be overwritten by subsequently received messages that represent no wake-up messages relevant to the bus user. By the transfer of the wake-up information to wake-up information storage area 350 after successful checking by comparator unit 320, in contrast to this, the advantageous effect is achieved that the message, which has led to the wake-up of the bus user, is still available to the application controller, even after the arrival of further messages.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 079 412 | Jul 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/063657 | 7/12/2012 | WO | 00 | 4/17/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/010900 | 1/24/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6728892 | Silvkoff | Apr 2004 | B1 |
20070230484 | Hu | Oct 2007 | A1 |
20090213915 | Wagner | Aug 2009 | A1 |
20100127857 | Kilmurray | May 2010 | A1 |
Number | Date | Country |
---|---|---|
102 25 578 | Dec 2003 | DE |
2 339 778 | Jun 2011 | EP |
2 339 789 | Jun 2011 | EP |
0120434 | Mar 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20140245052 A1 | Aug 2014 | US |