The present invention relates to a method and a device for the alignment of sheet-shaped substrates in a printing machine, in particular in an electrophotographically operating printing machine.
In printing technology and, in particular in digital multi-color printing technology, it is known to exactly align sheet-shaped substrates, before they are being printed, with respect to their position in advance direction and their position transverse to advance direction, and to align them in view of potential skewing. A device and a method for the alignment of sheet-shaped substrates are known, for example, from document U.S. Pat. No. 6,663,103 B2. The device described therein comprises several pairs of rollers on various axles that are parallel to each other and at a distance from each other in the advance direction of the sheets, said pairs of rollers performing different alignment operations. In this device and method, the technical problem arises that, because the axles of the pairs of rollers that are parallel to each other and at a distance from each other in advance direction of the sheets, the devices takes up a large amount of space. Furthermore, when a transfer takes place between the pairs of rollers that are at a distance from each other in advance direction, an alignment error—that had already been corrected previously—may be introduced.
In addition, a method and a device for the alignment of sheet-shaped substrates in a printing machine is known from document DE 691 24 755 T2. In the device described therein, two pairs of transport rollers, which are spaced apart in a direction transverse to the advance direction of the sheet, are provided. Each of the pairs of transport rollers comprises one driving roller and one counter-pressure roller, both being arranged on a common carriage. The drive motors for the driving rollers are also located on the common carriage. In order to achieve a correction of the skew of a sheet, the driving rollers may be actuated, for example, at different rotational speeds and/or at different points in time. In order to achieve a correction of a sheet position transverse to its advance direction, the aforementioned carriage, which supports the pairs of transport rollers as well as the drive motors for the driving rollers, can be shifted in transverse direction. To achieve this, the carriage is located on a carriage guide so as to be transversely shiftable, and a motor is provided which controls the shift of the carriage along the guide. The motor must be designed in a relatively strong manner because it needs to move the entire carriage, including the drive motors for the driving rollers. In addition, the entire assemblage of the carriage must be designed in highly robust manner in order to prevent that vibrations occurring as a result of the shifting of the carriage will impair the sheet alignment and/or the integrity of the carriage.
Considering known prior art, the object of the invention is to provide a method and a device for the alignment of sheet-shaped substrates in a printing machine, which avoids one or more disadvantages of the aforementioned literature references.
This object is achieved with a device for the alignment of sheets in a printing machine comprising two pairs of rollers for the alignment of the sheets in their advance direction, for the alignment transverse to their advance direction and with respect to skewing, whereby each pair of rollers consists of a driving roller and a counter-pressure roller that is supported in a freely rotatable manner, whereby respectively one drive unit is provided for each of the two driving rollers, whereby each of the drive units consists of a motor and a drive shaft linked therewith, whereby the driving roller is non-torsionally accommodated on a its drive shaft, and whereby a shifting unit comprising a drive motor for sliding the driving rollers along their drive shaft is provided, said shifting unit being fitted in such a manner that it moves both driving rollers in a synchronized manner along their drive shaft. By shifting the driving rollers on their drive shafts, it is possible to substantially reduce the design size of the motor for a shift in the direction transverse to the advance direction than is the case in the aforementioned DE 69 124 755 T2. Moreover, with such a shift of the driving rollers along their drive shaft, substantially smaller forces come into action, so that fewer vibrations are to be expected in the device, thus allowing a design of the device that may be less rugged in view of vibrations than is the case in the aforementioned device. Preferably, at least one connector is provided which rigidly links the driving rollers in longitudinal direction of the drive shafts in order to provide a synchronous shift of the driving rollers along their drive shaft. Consequently, it is achieved that a distance between the driving rollers remains the same during a transverse shift of the sheet. Advantageously, a bearing is interposed between the connector and respectively one of the driving rollers in order to permit a relative rotation between the connector and the driving roller. Specifically, the drive motor of the shifting unit is linked with the connector in order to provide the transverse shift via the connector which, as a rule, is located between the two driving rollers.
In a preferred embodiment in accordance with the invention, the running surfaces of the driving rollers and/or of the counter-pressure rollers have a cam contour extending transverse to the advance direction. By means of such a cam contour, it can be achieved that a clamping point between the driving roller and the counter-pressure roller remains in essentially the same position, independent of the position of the axes of rotation of the driving rollers and the counter-pressure rollers. This is important, because a proper sheet skew correction requires that the exact distance between each of the clamping surfaces be known and that, even during a shift of the driving rollers relative to the counter-pressure rollers or even during a joint shift, the distance must not change. Preferably, the cam contour defines a circular cam having a center located in a plane that bisects the running surfaces in a direction transverse to the sheet advance direction.
Advantageously, the counter-pressure rollers are supported in a freely rotatable manner on a common axis, as a result of which a simple design is achieved for the arrangement of the counter-pressure rollers. Advantageously, an additional shifting unit for shifting the counter-pressure rollers synchronously with the driving rollers is provided in order to avoid a relative movement between the sheet and the counter-pressure rollers in case of a transverse shift of the sheet. In this case, the additional shifting unit is preferably linked with the common axle in order to shift said axle along its longitudinal direction. By shifting the common axle, it is possible to implement a particularly simple construction of the shifting unit. In order to ensure the synchronism of the driving rollers of the counter-pressure rollers, the additional shifting unit is preferably linked with the drive motor of the shifting unit.
In an alternative embodiment in accordance with the invention, the counter-pressure rollers are stationarily held in the device in longitudinal direction of the drive shafts of the driving rollers. In this embodiment, no shifting unit is required, thus simplifying the overall design of the device. In this case, the counter-pressure rollers preferably have an extension in longitudinal direction of the drive shafts of the driving rollers, said extension corresponding to a maximum shift range of the driving rollers to ensure that an opposing counter-pressure roller is provided over the entire transverse shift of the driving rollers. Advantageously, the coefficient of friction of the running surfaces of the driving rollers is greater, with respect to a sheet to be transported, than that of the counter-pressure rollers, in order to permit a proper transverse shift of the sheets without damaging the surface of said sheet.
In one embodiment in accordance with the invention, a control unit for controlling the shifting of the driving rollers is provided, said control unit being suitable for shifting the driving rollers out of a starting position and returning them into said position after a shifting operation. As a result of this, a specific starting position may be assumed for the specific positioning of the sheet, thus substantially simplifying the control of the device. Preferably, a sensor is provided for the detection of the starting position of the driving rollers in order to ensure that a specific starting position is used as the starting point each time.
Advantageously, the counter-pressure rollers are biased in the direction of the driving rollers in order to ensure a good clamping action between the driving and counter-pressure rollers during an alignment and a positioning of the sheets, even in the case of varying sheet thicknesses. Advantageously, this bias is created via a spring element that is centrally arranged with respect to the common axle that supports the counter-pressure rollers, whereby a particularly simple construction of the device can be achieved.
In order to be able to permit a free feeding of a sheet between the driving and counter-pressure rollers, the driving rollers are preferably configured as segmented rollers, whereby these have at least one segment that is cut out of their circumferences in order to release the sheets. This segmentation also permits a free downstream transport of a sheet between the rollers by means of an external handling device, should this be desired. The cut out segment preferably takes up approximately ⅕ to ⅛ of the circumference of the driving roller. For good guidance of a sheet inside the device, at least two guide baffles are provided which, between them, define a sheet-guiding gap that is located in the same plane as a contact region of the two pairs of rollers.
In one embodiment in accordance with the invention, the device comprises an upper part that supports the driving rollers and a lower part that supports the counter-pressure rollers, whereby the upper part and the lower part can be moved relative to each other in order to permit access to a sheet-moving section in the device. Preferably, at least one guide baffle is supported on the upper part and essentially one guide baffle is supported on the lower part in order to limit the sheet-moving section. Advantageously, the upper part and the lower part can be pivoted relative to each other along a pivot axis, whereby, in a particularly simple manner, access can be provided to the sheet-moving section. Preferably, a drive element for shifting the counter-pressure rollers extends in the region of the pivot axis between the upper and lower parts in order to prevent the drive element from impairing a pivoting between the upper and lower parts. Of course, this is only necessary when the drive element extends between the upper part and the lower part, for example, when the drive element is linked to a motor mounted to the upper part. Alternatively, a separate drive unit for a linear shift of the counter-pressure rollers could be provided on the lower part. In this case, this separate drive unit can preferably be actuated in such a manner that shifting of the driving rollers and counter-pressure rollers is synchronous.
Preferably, the device comprises a plurality of sensors for the detection of a position and for the alignment of a sheet in the device, whereby, for example, skew sensors, cross-track position sensors and transport direction sensors are provided. Advantageously, a control unit is provided which is suitable to control individually the rotation of the driving rollers, as well as their joint shifting along their drive shaft, as a function of a sheet position and/or of a sheet alignment. To do so, the control unit is preferably connected to a plurality of sensors.
The object to be achieved by the invention is also achieved by means of a method for the alignment of a sheet in the device of the aforementioned type in that, a skew of a sheet in the device is initially detected, a rotary motion of the driving rollers is individually controlled as a function of the detected skew in order to perform a skew correction, if necessary. Subsequently, a position of the sheet transverse to its advance direction is detected and a shift of the driving rollers along their drive shafts is controlled so as to move the sheet into a pre-specified position transverse to its advance direction. With the use of an appropriate control of the rotary motion of the driving rollers, as well as their shift on their drive shaft, it is possible to effect a skew alignment as well as a transverse alignment of the sheet.
Advantageously, in order to detect a skewed position of the sheet, the position of the leading edge of the sheet is detected at least at two points that are at a distance from each other transverse to the advance direction. Based on the time difference between the detection of the respective leading edges, with the distance between the detection points and the transport speed of the sheet being known, it is possible to detect the skewed position of a sheet in a simple and accurate manner.
In one embodiment of the invention, the leading edge of the sheet is first detected by two sensors that are upstream of the driving rollers—viewed in advance direction of the sheet—and that are at a distance from each other transverse to the advance direction. Based on the difference in time when the leading edge is detected by the sensors, the driving rollers are controlled so as to grasp the sheet in each case at essentially the same distance from the leading edge. For example, this is achieved in that a rotation of the driving rollers is started at different points in time (corresponding to the time difference in the detection of the leading edge by the sensors). Subsequently, once the sheet has been grasped by the driving rollers, the leading edge of the sheet can be detected again by two sensors that are at a distance from each other in a direction transverse to the advance direction. Considering the advance direction of the sheet, these sensors would be arranged downstream of the driving rollers in order to permit detection of the leading edge after being grasped by the driving rollers. Based on a time difference in the detection of the leading edge, now the speed of rotation of the respective driving rollers can be controlled in order to perform a skew correction of the sheet. However, the driving rollers could also be actuated based on the detection of the leading edge by a single upstream or a downstream pair of sensors—viewed in advance direction.
At least one line sensor is used for the detection of the position of the sheet in a direction transverse to its advance direction, said line sensor permitting an accurate position transverse to the advance direction of the sheet across a broad operating range. Preferably, two sensors are used in order to facilitate the detection of an exact position when different sheet formats are used and in order to achieve, in particular, a centering of the sheet transverse to its advance direction, independent of the transverse dimensions of the sheet.
For a skew correction of the sheets, on the one hand, the rotary motion of the driving rollers is preferably started at different points in time and, on the other hand, the driving rollers are preferably actuated at different speeds of rotation.
For a correction of a potential skewed position of a sheet, it is possible to simultaneously perform a rough or temporary co-correction of a transverse position of the sheet by means of an appropriate transverse shift of the driving rollers. As a result of this simultaneous skew alignment or skew correction by means of an alignment or of a correction of a transverse position, a sheet can be aligned particularly quickly. Even if a subsequent correction regarding the transverse position were to become necessary following the correction of the skewed position, this correction could be performed quicker than if it were completely performed as a correction of the transverse position following a correction of a potential skewed position.
Advantageously, the driving rollers are actuated in such a manner that the cut out segments are in the same position of rotation following a skew correction of the sheet, so that, subsequently, the sheet will be released at the same time with the rotation of the driving rollers being synchronous at that point. Advantageously, the position of the respective sheet is detected in its advance direction, and the rotary motion of the driving rollers is controlled so as to bring the sheet into a pre-specified position in said sheet's advance direction. Such a position alignment in advance direction preferably occurs following a skew alignment and after an alignment with respect to the transverse position by means of a corresponding—then synchronous—actuation of the driving rollers. In this case, the synchronous actuation of the rotary motion of the driving rollers preferably includes a concurrent change of the speed of the rotary motion, which may also include a stop of the rotation followed by a re-start. Preferably, the position alignment in advance direction is, however, achieved in that the rotation of the driving rollers need not be stopped at any time while they are in an engagement with the sheet.
In a particularly preferred embodiment in accordance with the invention, the position of the sheet in advance direction is adapted, for its electrophotographic printing, to the leading edge of an already running electrophotographic imaging of electrophotographic printing form, this also being referred to as the paper-follows-image process. As a result of this, the electrophotographic imaging of an electrophotographic printing form can be initiated already before an appropriate alignment of the sheet and, subsequently, the sheet can be aligned in advance direction with respect to this imaging. Alternatively, it is possible, of course, to omit a position alignment in advance direction and to adapt an electrophotographic imaging of an electrophotographic printing form to a position detection of the sheet, this also being known as the image-follows-paper process.
The object of the invention is also achieved by a printing machine comprising a device of the aforementioned type, in which case the device is arranged upstream of at least one printing unit of the printing machine.
Preferably, such a printing machine is an electrophotographic printing machine and the device can be controlled in such a manner that it adapts the position of a sheet for its electrophotographic printing to the position of an already running electrophotographic imaging of an electrophotographic printing form of the printing machine.
Hereinafter, the invention will be explained in detail with reference to exemplary embodiments of the invention and with reference to drawings.
a and 5b schematic side views of a pair of transport rollers, in different positions of rotation;
a and 10b different examples of axial misalignments between the pairs of transport rollers of a device for the alignment of sheets;
a schematic view of a pair of rollers in accordance with the present invention; and,
b an axial misalignment of a pair of rollers in accordance with
The device 1 consists of an upper part 3 as well as of a lower part 4, between which a sheet transport plane is being defined. A cross-sectional plane A divides the device into left and right halves that are symmetrical regarding many components. In order to provide upper and/or lower limits of the sheet transport plane, a guide baffle 6 is provided on the upper part 3, and a guide baffle 7 is provided on the lower part 4.
In the region of a pivot axis that is formed by two pivot pins 9, the upper part 3 and the lower part 4 can be pivoted relative to each other in order to permit access to the sheet transport plane. The pivot pins 9 are located on a front end, viewed in transport or advance direction (see the arrow B in
The upper part 3 supports two driving rollers 20a,20b which form two pairs of transport rollers—as will be explained in detail hereinafter—with corresponding counter-pressure rollers 22a,22b on the lower part 4. A schematic side view of such a pair of transport rollers 20a,22a is illustrated in two different positions in
As it appears on the schematic side views in accordance with
Each of the driving rollers 20a,20b is accommodated in a non-torsional manner on a corresponding shaft 29a,29b. In this arrangement, each driving roller 20a,20b is accommodated on its own shaft 29a,29b. The respective shafts 29a,29b are rotatably supported on their inner ends—with respect to the transverse center plane A—by means of an appropriate holding clamp 30. The shafts 29a,29b are non-torsionally connected with a belt pulley 32a,32b on their outer ends—with respect to the transverse center plane A of the device 1. Between its outer ends, the shafts 29a,29b may also be rotatably supported in one or more locations, as is indicated, for example at 34.
Each of the belt pulleys 32a,32b is linked with the output of a motor 38a,38b via a belt 36a,36b. Consequently, each of the driving rollers 20a,20b can be individually actuated as to its direction of rotation via a corresponding motor 38a,38b.
Together, the respectively connected shafts 29a,29b, the belt pulleys 32a,32b, the belts 36a,36b and the motors 38a,38b form together respectively a rotary drive for one of the driving rollers 20a,20b, whereby two separate drivetrains, i.e., one for each driving roller 20a,20b, are provided.
In their receiving section for the driving rollers, each of the shafts 20a,20b has contours, which permit a non-torsional connection between the shafts 29a,29b and the drive shafts 20a,20b. However, the contours have a form that does not impair a linear shift of the driving rollers on the respective shaft 29a,29b. Each of the driving rollers 20a,20b is connected with a bearing cage 39 or designed in one piece therewith. Contained in the bearing cages 39 are not specifically illustrated bearings in order to permit a good linear shift of the respective driving rollers 20a,20b on the respective shaft 29a,29b.
In order to permit an appropriate linear shift of the driving rollers 20a,20b on their shafts 29a,29b, a linear shifting unit 45 is provided. The linear shifting unit 45 comprises a motor 47 that is connected to a deflecting roller 50 via a belt 48 (
Consequently, the linear shifting unit 45 is disposed to be able to shift the driving rollers 20a,20b in linear direction and in a synchronous manner on their shafts 29a,29b, as will be explained in detail hereinafter.
As previously described, the counter-pressure rollers 22a,22b, which, together with the driving rollers 20a,20b, form a pair of transport rollers, are provided on the lower part 4 of the device 1. Each of the counter-pressure rollers 22a,22b is supported so as to be freely rotatable on a common axle 68. The axle 68 is biased—in the direction of the upper part 3—in the center between the two counter-pressure rollers 22a,22b via a biasing unit 70 that, for example, comprises a spring 71. As a result of this, the counter-pressure rollers 22a,22b are biased relative to their driving rollers 20a,20b. A not specifically illustrated abutment limits the movement of the counter-pressure rollers 22a,22b in the direction of the driving rollers. Alternatively, it is possible, of course, to separately bias the counter-pressure rollers via their own biasing units in the direction of the upper part.
The counter-pressure rollers 22a,22b can be laterally shifted via a linear shifting unit, i.e., corresponding to the linear shift of the driving rollers 20a,20b. The linear shifting unit 72 comprises a cable pull 79 which is rigidly connected with the biasing unit 70 and the axle 68 supporting the counter-pressure rollers 22a,22b. In order to permit a controlled linear shift, the biasing unit 70 and/or the axle 68 are guided in the lower part 4 of the device 1 in a not specifically illustrated manner.
The cable pull 79 extends over the deflecting rollers 80 on the lower part 4 and the deflecting rollers 82 on the upper part 3 between the upper and lower parts of the device 1. The deflecting rollers 82 area arranged on the upper part in such a manner that the cable pull 79 extends through the pivot pins 9. As a result of this, it can be ensured that the cable pull 79 extending between the lower and upper parts does not impair the pivoting of the two parts with respect to each other. In the region of the lower part 4, the cable pull 79 extends in transverse direction over the lower part 4 and is linked with the biasing unit 70 and the axle 68 in this region. In the region of the upper part 3, the cable pull 79 extends essentially along the pivot axis between the upper and lower parts, again transversely with respect to the device 1. In an intermediate region, the cable pull 79 is deflected via appropriate deflecting rollers 84 and guided in a driven manner in this region around one of the deflecting rollers 55. Via the latter, the cable pull 79 is thus linked with the motor 47. Therefore, a rotary motion of the motor 47 causes a corresponding movement of the cable pull 79 and, via the latter, a corresponding movement of the counter-pressure rollers 22a,22b. In this arrangement, the linear shifting units 45, 72 are configured in such a manner that the driving rollers 20a,20b and the counter-pressure rollers 22a,22b are shifted synchronously. Alternatively, it would also be possible to provide a separate motor for a linear shift of the counter-pressure rollers, said motor being mounted, for example, to the lower part. In this case, the cable pull 79 could be omitted and, in particular, it would not be necessary to provide such an element extending between the upper and the lower parts.
In the region, in which the cable pull 79 is guided around a deflecting roller 55, said deflecting roller 55 has a tab 86, the position of which is sensed by an appropriate sensor 88. Based on the detected position of the tab 86, it is possible—as is obvious to the person skilled in the art—to determine a shifting position of the deflecting rollers 55 and thus a corresponding shifting position of the driving 20a,20b and counter-pressure rollers 22a,22b in the device 1. Of course, it is also possible to provide other means for carrying out a position determination for the driving rollers and/or the counter-pressure rollers.
In the region of the sheet transport plane, the device 1 has a first—not illustrated—pair of sensors consisting of two sensors, in particular, edge sensors, which are at a distance from each other transverse to the advance direction of a sheet. The first pair of sensors—viewed in advance direction of a sheet through the device 1—is arranged upstream of the respective pairs of transport rollers, each pair consisting of a driving roller 20a,20b and of a counter-pressure roller 22a,22b. As a result of this, a detection of a leading edge of the sheet becomes possible before said sheet enters between the rollers of the pair of transport rollers. Furthermore, a second—not illustrated—pair of sensors, in particular, edge sensors, consisting of two sensors arranged at a distance from each other transverse to the advance direction of a sheet are provided in the region of the sheet transport plane. The second pair of sensors is arranged, in advance direction of a sheet through the device 1, downstream of the respective pairs of transport rollers, each pair consisting of a driving roller 20a,20b and of a counter-pressure roller 22a,22b. As a result of the detection of a leading edge of a sheet at different times at the respective sensors of a pair of sensors, a skew error of the sheet can be detected, as has been known in the art. Each of the sensors is linked with a not illustrated control device. Although the first pair of sensors was described as being located in the region of the sheet transport plane of the device 1, it should be noted that a corresponding pair of sensors may also be provided in an upstream device.
Furthermore, the device 1 comprises lateral edge sensors which, for example, are configured as line sensors 90 (
The sensors are connected to a control unit which, by using the sensor data, is capable of actuating the motors 38 and/or the motor 47 in order to enable a rotation of the driving rollers 20a,20b and, optionally, a linear shift of the driving rollers 20a,20b and of the counter-pressure rollers 22a,22b.
The operation of the above-described device will be explained in detail hereinafter. First, a sheet to be printed is fed from the left (as in
However, if a skewed position should exist, which is detected by the chronologically different detection of the leading edge of the sheet at the spaced-apart sensors, then the driving rollers 20a,20b will be differently actuated. In particular, the start of rotation of the respective driving rollers will initially be controlled—by using the chronologically different detection of the leading edge of the sheet by the first pair of sensors—in such a manner that the driving rollers 20a,20b grasp the sheet at substantially the same distance from the leading edge of the sheet.
Subsequently, the leading edge of the sheet is detected by the second pair of sensors at two points that are at a distance from each other in a direction transverse to the advance direction. Now the skew of the sheet is determined on the basis of the detection of the leading edge of the sheet at different times by the second pair of sensors, a known distance between the sensors, and a known advance speed of the sheet. Based on the determined skew, the driving rollers 20a,20b are now actuated at different speeds in order to correct the skewed position of the sheet in a known manner by way of said driving rollers.
Following an appropriate correction of the skewed position of the sheet, the lateral edges of the sheet are detected by the corresponding line sensors 90. If the lateral edge detection indicates that the sheet is properly positioned in a direction transverse to the advance direction of the sheet through the device 1, no shifting of the driving and counter-pressure rollers 20a,20b, 22a,22b in a direction transverse to the device 1 occurs. If, however, a corresponding detection at the lateral edge sensors 90 indicates that the sheet is not properly positioned in transverse direction, the control unit actuates the motor 47 accordingly in order to provide a transverse shift of the driving rollers 20a,20b as well as of the counter-pressure rollers 22a,22b until a corresponding proper transverse positioning of the sheet has occurred. Instead of a sequential correction of the skew and the transverse position, it is also possible to perform—at least partially at the same time—a correction of these two parameters. For example, it is possible—already before and/or during a skew correction—to perform a lateral edge detection that is to be used for the correction of the transverse position.
Finally, the leading edge of the sheet is detected again. On the basis of this detection and by the appropriate actuation of the rotary motion of the driving rollers 20a,20b, the movement of the sheet in advance directing is controlled in such a manner that said sheet is transferred to a downstream device for a continuous transport at a pre-specified time. Consequently, the sheet is finally positioned—as a function of time—in its advance direction. This positioning takes place via a corresponding control of the speed profile of the rotary motion of the driving rollers. In so doing, the rotary motion may also be stopped in the extreme situation, whereby, however, preferably a stopping of the rotary motion is to be avoided. At the time of transfer to the downstream device, the driving rollers 20a,20b are preferably positioned in such a manner that the segment cutouts 24 face the counter-pressure rollers in order to permit a continued transport that is hindered to the least-possible degree. The sheet is then transported at a pre-specified speed by the downstream device out of the device 1 in order to feed said sheet to a subsequent printing operation. In so doing, the transport of the sheet out of the device 1 can be adapted to an already running electrophotographic imaging of an electrophotographic printing form—this also being known as a paper-follows-image process—for example, by means of a corresponding control of the time of transfer. In so doing, the sheet movement is adapted to an already completed imaging in an electrophotographic printing process. Alternatively, however it is also possible to omit a control of the transfer time by a position control in advance direction of the sheet when the printing process is adapted to a position of the sheet—this also being known as an image-follows-paper process.
Finally, the driving rollers 20a,20b are moved back into the starting position, in which the segment sections 24 face the counter-pressure rollers 22a,22b and in which the driving rollers and the counter-pressure rollers 20a,20b, 22a,22b are in a pre-specified position in transverse direction of the device 1. In this case, the pre-specified position is selected in such a manner that the driving rollers 20a,20b and the counter-pressure rollers 22a,22b are arranged symmetrically with respect to the transverse center plane A of the device 1.
Referring to
Again, the device 1 has an upper part 3 and a lower part 4, between which a sheet transport plane is defined. Again, a guide baffle 6 is provided on the upper part 3, and a guide baffle 7 is provided on the lower part 4.
Again, the upper and lower parts 3, 4 can be pivoted relative to each other in the region of a pivot axis formed by appropriate pivot bearings 9. Likewise, a locking device 12 of the same type and manner is provided in order to interlock the upper part and the lower part with each other.
Again, the upper part 3 supports two driving rollers 20a,20b which, with the appropriate counter-pressure rollers 22a,22b on the lower part 4, form two pairs of transport rollers.
The driving rollers 20a,20b are accommodated non-torsionally on a corresponding shaft 29, whereby, again, each driving roller 20a,20b is accommodated on its own shaft 29a,29b.
Again, the respective shafts 29a,29b are rotatably supported on their inner ends—viewed with respect to a transverse center plane A—via an appropriate holding clamp 30 that is best seen in the sectional view in accordance with
Furthermore, each of the shafts 29a,29b is provided with a tab 106 that can be detected by an appropriate sensor 108 in order to be able to determine a rotary position of the shaft 29a,29b and thus of the driving rollers 20a,20b.
Via an appropriate belt 36a,36b, each of the belt pulleys 32a,32b is connected with the output of a corresponding motor 38a,38b. Consequently, as in the previous exemplary embodiment, each of the driving rollers 20a,20b can be actuated regarding its direction of rotation via a corresponding motor 38a,38b.
As is best recognized in the sectional view in accordance with
In order to enable a corresponding linear shift of the driving rollers 20a,20b on their shafts 29a,29b, again, a linear shifting unit 45 having the same design as the linear shifting unit 45 of the first exemplary embodiment is provided. In particular, the linear shifting unit 45 comprises a motor 47, which is connected with a deflecting roller 50 via an appropriate belt. This deflecting roller 50, in turn, is connected to two additional deflecting rollers 55 via a belt 52. In this arrangement, the deflecting rollers 50, 55, as is best seen in
As in the case of the previous exemplary embodiment, the counter-pressure rollers 22a,22b, which form a pair of transport rollers together with the driving rollers 20a,20b, are provided on the lower part 4 of the device 1. The counter-pressure rollers 22a,22b are again supported in a freely rotatable manner on a common axle 68. The axle 68 is again biased in the direction of the upper part 3, namely between the two counter-pressure rollers 22a,22b, via a biasing unit 70, which comprises a spring 71, for example. In contrast with the previous exemplary embodiment, however, the counter-pressure rollers 22a,22b are stationarily held on the lower part 4 in the embodiment in accordance with
Consequently, the device in accordance with
As is further obvious from
a shows a pair of transport rollers consisting of a driving roller 20 with a ball-shaped running surface and a counter-pressure roller 22 with a running surface configured as a circular cylinder. It should be noted here that the counter-pressure rollers 22 according to
In respect to the position and number of sensors, the embodiment in accordance with
Likewise, the operation of the device 1 in accordance with
In the above embodiments, the driving rollers 20a,20b are non-torsionally, and in a linearly shiftable manner, arranged on their shafts 29a,29b. In an alternative embodiment of the invention, however, it would also be possible to arrange the driving rollers so as to be non-torsional and not shiftable in a linear manner on their shafts 29a,29b. In this case, the shafts 29a,29b could be arranged so as to be shiftable in a linear manner in the upper part 3 of the device. Furthermore, the shafts 29a,29b could be arranged so as to be accommodated in a linearly shiftable manner in the respective belt pulleys 32a,32b, while they continue to be connected therewith in a non-torsional manner. The remaining design of the device 1 could be maintained unchanged. As a result of this, the design of the driving rollers 29a,29b could be substantially simplified. In particular, the bearing cages 39, which could be provided on the belt pulleys in an equivalent manner, could be omitted. As a result of this, the total weight of the elements that are to be transversely shifted for a transverse alignment could be reduced even further, if necessary. A weight reduction would result if the shafts 29a,29b had a lower weight than the bearing cages 39 and the linear bearings 112 accommodated therein, these having previously been shifted as a unit with the driving rollers 20a,20b.
Previously, the invention was explained in detail with reference to preferred embodiments, without being restricted to specifically illustrated embodiments. Individual features of different embodiments may be interchanged freely and or combined, provided compatibility exists.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 044 825 | Sep 2006 | DE | national |
10 2007 040 131 | Aug 2007 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/008056 | 9/17/2007 | WO | 00 | 3/18/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/034567 | 3/27/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5078384 | Moore | Jan 1992 | A |
5094442 | Kamprath et al. | Mar 1992 | A |
5322273 | Rapkin et al. | Jun 1994 | A |
6598870 | Hanano | Jul 2003 | B2 |
6676123 | Sahlmann | Jan 2004 | B2 |
20040046313 | Herrmann et al. | Mar 2004 | A1 |
20050082747 | Tamura et al. | Apr 2005 | A1 |
20060214364 | Clark et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
10023940 | Nov 2001 | DE |
1279632 | Dec 2004 | EP |
1-34836 | Feb 1989 | JP |
Number | Date | Country | |
---|---|---|---|
20090311022 A1 | Dec 2009 | US |