1. Field of the Invention
The invention relates to a method for the simultaneous cleaning of a plurality of pipe conduits or pipe conduit systems, particularly in each case having different pipe cross sections, wherein the cleaning takes place with a liquid cleaning medium, which is taken from a reservoir by means of a feed pump and fed to the systems to be cleaned, as well as to a device for carrying out such a method.
2. Description of Related Art
In this case use is made of the well-known method of “CIP”, that is to say “Cleaning in Place”. CIP for cleaning pipe systems has long been the prior art for several decades for cleaning food-filling equipment for example. Although food-filling equipment or filling machines for short are mentioned below, the present invention is not to be limited, in any way, to just these machines, so that any pipe conduits or pipe conduit systems can be cleaned with the method according to the invention.
It is characteristic in this case for various cleaning media from a decentralized supply unit (in brief: CIP equipment) to be mixed, maintained at the right temperature and kept at the ready, in order whenever there is a cleaning requirement to transport the required medium by means of a pump and a pipe conduit system to the system to be cleaned.
Early CIP equipment supplied the cleaning media (temperature and concentration) on demand for the system to be cleaned in a fixed sequence and duration, which was determined by a program stored in the CIP equipment.
The cleaning medium during the cleaning process was pumped through the system to be cleaned, then, however, drained into the sewers. This method is called “lost” cleaning, since the cleaning medium is not recycled.
In order to achieve environmentally friendly and economic production processes, so-called CIP re-circulation cleaning with “stacking” of cleaning solutions was developed, wherein the cleaning media (usually caustic and/or acid solutions) were returned to the CIP via pipes and re-used there for as long a time as the cleaning strength was sufficient.
The well-known methods of the CIP equipment, however, could be improved:
The object of the invention, therefore, is to configure and further refine the method specified initially and described above in detail, as well as a corresponding device for cleaning pipes, so that the quantity of the necessary cleaning medium and the cleaning period can be minimized without compromising the aseptic conditions.
As regards the method, the object is achieved according to a first solution in that the cleaning medium stream is fed to the first system to be cleaned and after leaving the first system to be cleaned is divided into two component streams, one component stream of which is used for cleaning the second or further system and the other component stream is again fed to the reservoir.
Alternatively, the object is solved by a method wherein the cleaning medium stream is firstly fed to the second or further system to be cleaned and only thereafter is divided into component streams, one of which is again added to the second component stream and the other is again fed to the reservoir.
Further alternatively, it is provided for that the cleaning medium stream is firstly divided into two component streams, the first of which is again fed to the reservoir and the second cleaning medium stream is firstly divided into component streams, one of which is fed to the second or further system to be cleaned and the other is again fed to the reservoir.
These alternative modes of operation are particularly advantageous since they can be achieved in alternation without constructional expansion or technical circuit complexity. Because, in a further embodiment of the invention, the second or further system to be cleaned is assigned a feed pump, whose direction of rotation only has to be reversed in order to select the two alternative methods described.
A corresponding device according to the invention is characterized in that the second or further system to be cleaned is assigned a feed pump, whose speed and direction of rotation are variable for defining or regulating the cleaning process, in that the pipe for the first component stream is constructed as a pressure holding unit, and in that a throttle valve is arranged in the return pipe of the component streams.
In accordance with a further preferred teaching of the invention the speed of this pump and thus the flow-rate of the cleaning medium are variable in both directions, in order to be able to achieve optimum cleaning efficiency.
It is particularly advantageous if the feed pump assigned to the second or further system to be cleaned can be used both for transporting the cleaning medium and for transporting the product. This is particularly advantageous, since—in reverse—particularly if a device according to the invention is retrofitted an already existing feed pump can be used for the cleaning process.
Advantageously, the flow-rate of cleaning medium is controlled by regulating the speed of the two pumps in the CIP equipment and the system to be cleaned.
A further teaching of the invention makes provision for the cleaning medium stream, before entering the first system to be cleaned, to be firstly divided into two component streams, the first of which is returned to the reservoir and the second is fed to the first system to be cleaned. Thus direct re-circulation of the cleaning medium occurs here. By reducing the first component stream it is possible to influence the temperature, concentration or quantity of the cleaning medium for the main stream carrying out the cleaning of the systems.
The method according to the invention in this case is particularly economic with regard to the cleaning medium, since the divided first component stream can be used (again) if there is a shortage of cleaning medium in the systems to be cleaned for refilling the cleaning system.
Advantageously, the strength (caustic solution/acid concentration) of the cleaning medium is adjustable.
It goes without saying that the CIP equipment can be equipped with a plurality of reservoirs for different cleaning media. This is sufficiently known from the prior art and is therefore to apply accordingly for the method according to the invention or the corresponding device, without detailed reference having to be made thereto.
The device according to the invention can be used also and particularly if the pipe cross-sections of the systems to be cleaned have various sizes. As a result of the pipe circuit according to the invention two or more systems with different flow-rates or nominal sizes can be cleaned simultaneously, irrespective of the discharge rate of the feed pump of the CIP equipment.
Preferably, the device according to the invention has sensors to meter the flow-rates and/or for measuring temperature or conductance. ‘Conductance’ is understood to mean the acid/caustic solution concentration of the cleaning medium.
The following advantages result according to the invention;
The invention is described below in detail on the basis of a drawing illustrating simply advantageous exemplary embodiments. In the drawing there are shown:
It is pointed out that in all figures the pipes are only illustrated as lines, the arrows indicating the flow direction of the cleaning medium.
Component stream TS3 via the pipe 8, which serves here as a bypass, is returned to the pipe 6 between sub-system A and sub-system B (internal re-circulation). Component stream TS4 flows back via a throttle valve 12 to the CIP equipment. This quantity, which leaves the sub-systems A, B or B′, decides the quantity of fresh cleaning medium to be fed into the sub-systems A, B or B′ from the CIP equipment. The remaining component stream TS2 via a pipe 5 reaches the sub-system to be cleaned A and from there as component stream TS2′ via a pipe 6 further reaches the sub-system B. A broken line indicates that there may be further sub-systems B′ to be cleaned apart from the sub-system B. A feed pump 7 arranged in the region of the sub-systems B, B′ ensures the necessary flow of the cleaning medium, assisted by the feed pump 2 of the CIP equipment. This main cleaning flow TS2′ is accelerated or retarded by the integral feed pump 7 and divided once again (component streams TS3 and TS4).
In the first exemplary embodiment according to
It is quickly evident that the two sub-systems A and B can have different nominal sizes. Due to the fact that although the component stream TS2′, having already left the sub-system A, can enter the sub-system B or B′, the reverse case is impossible, it is reliably prevented that lumpy material present in the pipes with larger nominal size of the sub-system B or B′ can reach the sub-system A and lead to blockages there.
The same applies to the alternative mode of operation, which is illustrated in
After leaving sub-systems to be cleaned B or B′ the component stream TS3* via the pipe 6 is again added to the component stream TS2′.
By comparing the two principle flow-charts from
In terms of content
The cleaning medium in the example illustrated leaves the feed pump 2 of the CIP equipment at a rate of 7 m3/h (both alternatives) and after the first division is transported further as component stream TS1 at a rate of 2 m3/h and as component stream TS2 at a rate of 5 m3/h.
In the case of the flow-chart in accordance with
As previously mentioned the stream is divided underneath the feed pump 7 into the component streams TS3 (20 m3/h) and TS4 (5 m3/h), wherein the component stream TS4 (5 m3/h) together with the component stream TS1 (2 m3/h) comprising a quantity of cleaning medium at a rate of 7 m3/h is fed to the CIP equipment.
This is different in the alternative illustration of
In both
Number | Date | Country | Kind |
---|---|---|---|
10 2007 022 798 | May 2007 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3448745 | Seeley | Jun 1969 | A |
6227215 | Akazawa | May 2001 | B1 |
20040187897 | Kenowski et al. | Sep 2004 | A1 |
20040216779 | Targosz et al. | Nov 2004 | A1 |
Number | Date | Country |
---|---|---|
3809473 | Oct 1988 | DE |
0138218 | May 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20090000647 A1 | Jan 2009 | US |