This invention relates to a method of heating inductively an article made of a thin sheet by a high-frequency current, and an apparatus thereof, applicable to an occasion, for example, when the article made of the thin sheet composing a vehicle body is heated for hardening.
A thin metal sheet is used as material for composing members for a vehicle body, other equipment or apparatus. In order to give required strength to a demarcated and predetermined region in the article produced of the thin sheet, the whole of the predetermined region is heated to a temperature equal to or more than a target temperature for hardening. As apparatuses with which the heating is performed by an induction heating method using a high-frequency current, apparatuses in patent documents 1 and 2 mentioned below are known.
In an apparatus in patent document 1, an inductive portion of a heating inductor to which a high-frequency current is applied is movable in relation to an article made of a thin sheet, and the inductive portion is moved in relation to the article made of the thin sheet to thereby heat a region of the article made of the thin sheet whereto the inductive portion is moved, by an inductive eddy-current. According this apparatus, though a heating temperature can be adjusted in accordance with a setup of a moving speed, processes to move the inductive portion for every heating work of respective articles are required, and, therefore, it takes time to process only one piece of the article and a lot of articles can be hardly processed in a short time effectively.
In contrast with the above, an inductive portion of a heating inductor in the apparatus of patent document 2 corresponds to the whole of the region to be heated in an article made of a thin sheet. Therefore, according to the apparatus of patent document 2, a bulk heating can be realized, whereby the whole of the region to be heated can be heated simultaneously only by applying a high-frequency current to a heating inductor. The apparatus can treat respective articles in a short time, as compared with the apparatus in patent document 1, as a result, working efficiency can be improved.
When an inductive portion of a heating inductor can heat inductively the whole of a region to be heated in an article simultaneously, an advantage that a bulk heating is available can be obtained. However, if an article is made of a thin sheet, different from a case the article is made of material having enough thickness, an eddy of an inductive eddy-current is not generated in the thickness direction, and only generated along the plane surface in the region to be heated of the thin sheet. Therefore, an adjustment of intensity of the inductive eddy-current in every portion of the plane surface of the regions to be heated, which is available when the eddy is generated in the thickness direction is difficult to be performed. If an unevenness of temperature increase occurs in the region to be heated, it is hard to deal with that.
A heat transfer path diverted in the thickness direction is hardly generated because of the thin sheet, thus the unevenness of temperature increase is hardly be alleviated as compared with a thick sheet.
On the ground of the above, when the article of which predetermined region receives a heating processing is produced using thin sheet as material, the unevenness of the temperature increase tends to occur in the event. Hence it is difficult to heat only the predetermined region to a temperature equal to or more than a target temperature with small unevenness of the temperature increase, in other words, with small temperature difference, namely, it is difficult to set up a region to be heated as desired, at the same time, to heat the region with small temperature difference in the region.
As for a way for solving such problems it is conceivable to decrease the temperature of a portion where is heated excessively by mean of intensive heat radiation or enforced heat cooling, however, other problems such as need for complicated equipment or increase of equipment costs arise. Besides, it is considered that heat input to respective portions of the region to be heated is adjusted by controlling a heat inductor arranged in plural systems separately, however, the problem of the equipment cost increase also arises by this means.
On the other hand, it is possible to adopt a way that the range including the whole of the region to be heated is heated, allowing unevenness of temperature increase to occur by increasing a heat input amount, and, after that, a temperature difference is allowed to decrease during a lapse of time. Though the means has an advantage that specific equipment is not necessary, different from the above way, however, it results in losses of time and energy.
The present invention is made in consideration of the above. It is an object of the present invention to provide an induction heating method of an article made of a thin sheet, and an apparatus thereof, in which the reduction of an unevenness of temperature increase at the end of a heating work can be attained without specific equipment, securing shortening of working time, which is an advantage of a bulk heating.
The present invention is made by the present inventors who obtain the following knowledge relating to a heating of an article made of a thin sheet using an induction heating method.
While temperature of a region to be heated of an article made of a thin sheet is increased by an induction heating, a period that a power application of a high-frequency current to a heating inductor is stopped, or a period that the application current is reduced is set up, to thereby stop or suppress a heat input to the region to be heated, a temperature difference occurring in the region to be heated decreases. After that, by reincreaing a temperature of the region to be heated by resuming the power application of the high-frequency current to the heating inductor, the whole of the region to be heated is heated to a temperature equal to or more than a target temperature. The temperature difference in the region to be heated at the end of temperature increase is small, and an unevenness of temperature increase can be reduced as compared with a case that an intermediate step for reducing a temperature difference is not set up during the temperature increase.
In
When the region to be heated begins to be heated by the induction heating and the temperatures of the respective portions A to D do not reach a magnetic transformation point TM shown in
When the temperature increases at the respective portions A to D progress and the temperature at the portion A reaches the magnetic transformation point TM, the relative permeability μ at the portion A is decreased suddenly. Thus, the impedance ωL at the portion A becomes smaller than the electric resistance R, iL becomes larger than iR, namely, the impedance ωL can not be ignored, as a result, the temperature increase at the portion A is depressed because the generation of the Joule heat decreases.
After that, the temperatures at the portions B to D reach the magnetic transformation point TM at respective times of t′B, t′C, t′D in
After that, the temperatures of the portions A to D increase by the Joule heat based on the electric resistance R at the portions A to D. A rate of enlargement of the temperature differences becomes small as compared with the status before the temperatures reach the magnetic transformation point TM, because concerns of the electric resistance R at the respective portions A to D become small due to the impedances ωL at the respective portions A to D, or a rate of temperature increase of the electric resistance R lowers when the temperatures exceed the magnetic transformation point TM.
When the temperatures at all portions A to D exceed a target temperature TZ shown in
The case in which an intentional immediate step for reducing the temperature differences at the respective portions A to D is not set up is described above,
When the region to be heated is heated to a time t1, temperature differences at the respective portions A to D are enlarged gradually as described above until the time t1. If the induction heating is stopped from the time t1 to a time t2, the temperature differences of the respective portions A to D decrease during this suspension of the induction heating by a natural heat uniformization due to a heat transfer effect. After that, when the induction heating is resumed, the temperature differences of respective portions A to D are enlarged gradually, however, the temperature differences at the time t2 are smaller than the difference at the time t1, therefore the temperature difference at portions A to D is ΔT when the temperature of the respective portions A to D exceed the magnetic transformation point TM at the time tA to tD and all portions A to D reach the temperature exceeding the target temperature TZ to finish the induction heating. The temperature difference ΔT is smaller than the temperature difference ΔT′ in
To put it differently, in the case of
In the case of
Furthermore, since the highest temperature of the region to be heated in the case of
Additionally, in the case in
A method of induction heating and apparatus thereof relating to the present invention is invented based on the principle of the heating work in
An induction heating method of an article made of a thin sheet according to the present invention for heating a region to be heated inductively to a temperature equal to or more than a target temperature higher than a magnetic transformation point by applying a high-frequency current to a heating inductor having an inductive portion for heating inductively the whole of the region to be heated demarcated in the article made of the thin sheet simultaneously, includes a step of increasing temperature for increasing the temperature of the region to be heated by an induction heating using the heating inductor, a step of reducing a temperature difference to be set at least one time for reducing the temperature difference in the region to be heated by stopping or reducing the power application of the high-frequency current to the heating inductor after the step of increasing temperature, and a step of reincreasing temperature for reincreasing the temperature of the region to be heated by resuming the power application of the high-frequency current to the heating inductor after the step of reducing the temperature difference to thereby the whole region to be heated to a temperature equal to or more than the target temperature.
In the induction heating method, the step of reducing the temperature difference may be once, or several times. When it is set up several times, after a former step ends, the temperature of the whole of the region to be heated is increased, and a following step starts after the temperature is increased again.
Besides, a time when the step of reducing the temperature difference is set up may be before the temperature of the region to be heated reaches a magnetic transformation point, or may be after it reaches the magnetic transformation point, or may be just on the magnetic transformation point.
In the induction heating method of an article made of a thin sheet relating to the present invention, when the region to be heated is hardened, the following step to the step of reincreaseing the temperature is to be a quenching step for quenching the whole of the region to be heated which is heated up to a temperature equal to a temperature equal to or more than the target temperature. Accordingly, the region to be heated can be hardened.
An induction heating apparatus of an article made of a thin sheet of the present invention includes a heating inductor having an inductive portion corresponding to the whole region of a region to be heated demarcated in the article made of the thin sheet, and a power supply device whereby a high-frequency current is applied to the heating inductor to increase the temperature of the region to be heated to a temperature equal to or more than a target temperature higher than the magnetic transformation point by the induction heating, in which the power supply device has a current controller for stopping or reducing temporarily the power application of the high-frequency current to the heating inductor before the temperature of the region to be heated reaches the target temperature.
In this apparatus, the power application of the high-frequency current to the heating inductor is stopped or reduced temporarily by the current controller before the region to be heated reaches the target temperature, and the power application of the high-frequency current to the heating inductor is resumed by a current controller, as a result, the induction heating method of the article made of the thin sheet can be realized
The current controller in the apparatus for stopping or reducing temporarily the power application of the high-frequency current to the heating inductor may be automatic using computer programs or relay circuits, or may be manual having a switch and the like operated manually.
An inductive portion of the heating inductor may extend straight in the longitudinal direction of the region to be heated. If the width of the region to be heated is large, the inductive portion can extend in the longitudinal direction, turning in zigzags across the width of the region to be heated.
When the current controller is automatic, the current controller can be optional.
As a first example, the current controller is a timer type controller having a timer for stopping or reducing temporarily the power application of the high-frequency current to the heating inductor when a time measured by the timer comes to a predetermined elapsed time from the start of the power application of the high-frequency current to the heating inductor.
As a second example, the current controller is an actual temperature measurement type controller which has a temperature measurer for measuring the temperature of the region to be heated, for stopping or reducing temporarily the power application of the high-frequency current to the heating inductor when the temperature of the region to be heated measured by the temperature measurer becomes a predetermined temperature.
As a third example, the current controller is an impedance-knowing type controller having a frequency tracker for tracking a frequency of the high-frequency current of the heating inductor corresponding to an impedance of the region to be heated, for stopping temporarily or reducing temporarily the power application of the high-frequency current to the heating inductor when a resonant frequency of the high-frequency current tracked by the frequency tracker becomes a predetermined frequency.
The current controller is composed of an inverter whereby the power supply device feeds the high-frequency current to the heating inductor, and a control device for controlling the inverter, applicable when the inverter and the control device are prepared as separate devices, and also applicable when the inverter and the control device are not separated, being integrated.
Furthermore, the structure of the heating inductor can be optional. As one example thereof, the heating inductor is constituted by plural numbers of good conductors of which inductive portions extend along the extending direction of the region to be heated being arranged side by side in the direction perpendicular to the extending direction of the region to be heated so as to cover the region to be heated, and these good conductors being connected in parallel.
According to the constitution, when a temperature difference due to a difference of electrical resistance occurs in the region to be heated, the good conductors arranged corresponding to a portion having a high temperature, namely the portion whereat the electrical resistance is large have a high impedance, as a result, the current flowing through the good conductors becomes small, and the good conductors arranged corresponding to a portion having a low temperature, namely the portion whereat the electrical resistance is small have a low impedance, as a result, the current flowing through the good conductors becomes large. Therefore, an inductive eddy-current decreases at the portion having a high temperature, and the inductive eddy-current increases at the portion having a low temperature. Accordingly, the temperature difference of the region to be heated is corrected to be leveled, and the unevenness of the temperature increase will be reduced further in conjunction with the effect by the step of reducing the temperature difference described above.
When the region to be heated is hardened in the present invention, an induction heating apparatus of an article made of a thin sheet of the present invention includes a quencher for quenching at least the region to be heated after said region to be heated reaches a temperature equal to or more than the target temperature.
The quencher can be the means in which coolant is sprayed to the region to be heated from one side of the article made of the thin sheet, or in which the coolant is sprayed to the region to be heated from both sides of the article made of the thin sheet.
In an article made of a thin sheet of the present invention in which the whole of a region to be heated is heated inductively to a temperature equal to or more than a target temperature higher than the magnetic transformation point, the heating of the region to be heated to a temperature equal to or more than the target temperature includes a step of increasing temperature for increasing the temperature of the region to be heated by the induction heating, a step of reducing the temperature difference to be set at lease one time for reducing the temperature difference at the region to be heated by stopping temporarily or reducing temporarily the induction heating after the step of increasing the temperature, and a step of reincreasing temperature for reincreasing the region to be heated by resuming the induction heating to thereby increase the temperature of the whole of the region to be heated to a temperature equal to or more than the target temperature after the step of reducing the temperature difference.
In the article made of the thin sheet, the region to be heated is quenched after it is heated to a temperature equal to or more than the target temperature in order to harden the region to be heated.
The present invention described above can be applicable to heat a demarcated region to be heated of an article made of a thin sheet. The region to be heated can be one part of the article, or the whole of the article.
In addition, a thin sheet indicates a sheet material having a thickness in which an inductive eddy-current is hardly generated, the thickness thereof is 3.2 mm or less, to say more narrowly, 2.3 mm or less. The thin sheet is a metal sheet which causes a magnetic transformation whereat a relative permeability decreases suddenly, such as various types of steel sheet of which carbon content are different to each other (including a high-tensile steel), a ferritic stainless steel sheet, and a martensitic stainless steel sheet. The metal sheet can be the one whereto surface treatment such as galvanizing is applied.
Furthermore, the proper time or the length of time for beginning the temporary stop or the temporary reduction of the power application of the high-frequency current to the heating inductor for the step of reducing the temperature difference as described above can be determined in accordance with various factors such as material or thickness of the thin sheet, a target temperature, voltage, current, and frequency of the high-frequency current. Besides, whether the power application of the high-frequency current is stopped or reduced temporarily can be determined in accordance with these factors.
The present invention can be applicable, in general, to the case when heating an article formed into a prescribed shape by pressing or the like a thin sheet, it is also applicable when an article kept in the flat shape as a thin sheet is heated. Further, after the article kept in the flat shape as the thin sheet is heated, the article can be press formed and the like, or after the article kept in flat shape as the thin sheet is heated, the article is hardened by quenching, and then, can be press formed and the like.
Furthermore, the article made of the thin sheet to which the present invention is applied may be the one used as member of optional machine, device, and apparatus, and examples thereof are a reinforcing member for a center pillar composing a vehicle body of a four wheeled vehicle, an impact beam of a door, and a floor frame and a front side frame of a vehicle body.
According to the present invention, an effect that reduction of an unevenness of a temperature increase at the end of a heating work can be achieved without any specific equipment, securing shortening of working time as an advantage of a bulk heating.
Hereinafter, some embodiments of the present invention will be described with reference to the drawings. An article 1 made of a thin sheet in the embodiments described as follows is disposed in a center pillar composing the body of a four-wheeled vehicle, which is a reinforcing member to give the center pillar enough strength against a side collision. The article 1 is produced by press forming a thin steel sheet.
As shown in
The article 1 to which a heating work is performed, as shown in
The two inductive portions 4A connected by a connecting portion 4B shown in
In addition, the inductive portions 4A have a size corresponding to the whole region of the regions to be heated 2. Therefore, an induction heating apparatus of the present invention is an apparatus for a bulk heating whereby the whole region of the regions to be heated 2 can be heated simultaneously.
When a switch of the power supply device 6 is turned on, the high-frequency current begins to be applied to the heating inductor 4 by the power supply device 6, thereby an inductive eddy-current is generated in the regions to be heated 2 by an electromagnetic induction effect of the inductive portions 4A, where a Joule heat is generated to increase the temperature of the regions to be heated 2.
In the present invention, after a step of increasing the temperature, the switch of the power supply device 6 is turned off to thereby stop temporarily a power application of the high-frequency current to the heating inductor 4. Namely, a step of reducing temperature differences between respective portions of the regions to be heated 2 during the temperature increase is set up.
In order to finish the step of reducing the temperature differences, the application of the high-frequency current to the heating inductor 4 is started again by turning on the switch of the power supply device 6 again. Thereby a step of reincreasing the temperature starts by reheating inductively the regions to be heated 2. The step of reincreasing the temperature ends by turning off the switch of the power supply device 6 after the temperature of the whole region of the regions to be heated 2 reaches a temperature equal to or more than the target temperature, namely, after the temperature of the whole of the regions to be heated 2 reaches a temperature equal to or more than the temperature necessary to harden the whole region so as to have the hardness with certain strength.
At the same time as the step of reincreasing the temperature ends, the coolant is sprayed from the cooling tubes 7 as the quencher on the regions to be heated 2 to thereby be quenched and hardened. After that, the article 1 is sent to next processes of a painting process and the like by releasing the clamp of the clamp device.
An article used in the experiment is formed by pressing a steel sheet having 0.16% in carbon content 1.4 mm in thickness into a hat shaped cross section as described in
In
First, a case of the experiment in
In a case of the experiment in
In the experiment of
According to this embodiment as described above, the step of reducing the temperature differences of the regions to be heated 2 is set up by stopping temporarily the application of high-frequency current to the heating inductor 4 during the temperature increase, and, as a result, the temperature differences of the regions to be heated 2 can be made small at the end of the heating work for increasing the temperature of the whole of the regions to be heated 2 to a temperature equal to or more than the target temperature, in other words, an unevenness of temperature increase of the regions to be heated 2 at the end of the heating work can be reduced.
In addition, the effect of reducing the unevenness of the temperature increase can be realized without providing a specific means such as cooling a part of the regions to be heated 2 to the induction heating apparatus, therefore the effect is operative in aspects of a set-up cost or energy efficiency. Since the effect can be realized by providing a short time of several seconds during which the high-frequency current is not applied to the heating inductor 4, in the middle of temperature increase, a reduction of working hours as an advantage of the bulk heating which heats the whole region of the regions to be heated 2 by the inductive portions 4A of the heating inductor 4 can be secured almost as a whole.
Since the temperature differences of the regions to be heated 2 are small when the whole region of the regions to be heated 2 reaches the target temperature, the highest temperature does not become the temperature exceeding widely the target temperature. Therefore, if a thin sheet as material of the article 1 is, for example, a sheet material including surface coating material such as galvanizing, the surface coating material is in no danger of vanishing by the heating.
Furthermore, since a leveling of the temperatures of the whole regions to be heated 2 at the end of heating can be achieved, occurrence of an unexpected change of material composition caused by increase in temperature in some parts, occurrence of distortion caused by quenching for the hardening, and occurrence of residual stress after the hardening can be suppressed.
Regarding the power supply device 6 of the embodiment in
The control device 20 for controlling the inverter 18 is provided with a timer 24, which measures time of a heating work started at the regions to be heated 2 of the article 1 by a power application of the high-frequency current to the heating inductor 4. When the time from a start of the heating work of the article 1 comes to the predetermined time stored in the timer 24, based on an order from the timer 24, the control device 20 sends a control signal to the inverter 18 for instructing a stop of a power feeding to the matching transformer 19 from the inverse converter 22 to thereby start the step of reducing the temperature differences as described above, for stopping temporarily the power application of the high-frequency current to the heating inductor 4. Further, when the time from the start of the heating work of the article 1 comes to the predetermined time stored in the timer 24, based on the order from the timer 24, the control device 20 sends a control signal to the inverter 18, for instructing a restart of a power feeding to the matching transformer 19 from the inverse converter 22 to thereby finish the step of reducing the temperature differences.
According to the embodiment in which the current controller of the power supply device 16 is the timer type controller 25 composing of the timer 24 and the like, the start and the end of the step of reducing the temperature differences can be automated by the timer 24.
After the heating work is started, the temperature of regions to be heated 2 measured by the sensor 27 becomes the temperature whereat the heating of the regions to be heated 2 should be stopped temporarily, based on an order from the comparator 28, the control device 20 sends a control signal to the inverter 18, for instructing a stop of a power feeding to the matching transformer 19 from the inverse converter 22 to thereby start the step of reducing the temperature differences for stopping temporarily the power application of the high-frequency current to the heating inductor 4. In addition, when the temperature measured by the sensor 27 lowers to the temperature whereat the heating of the regions to be heated 2 should be restarted, based on the order from the temperature comparator 28, the control device 20 sends the control signal to the inverter 18, for instructing a restart of the power supply to the matching transformer 19 from the inverse converter 22 to thereby the step of reducing the temperature differences ends.
According to the embodiment in which the current controller of the power supply device 26 is the actual temperature measurement type controller 29 composed of the sensor 27 and the temperature comparator 28 and the like, the start and the end of the step of reducing the temperature differences can be performed accurately, based on the actual temperature of the regions to be heated 2.
The step of reducing temperature differences as described above is the step of stopping temporarily the power application of the high-frequency current to the heating inductor 4, however, the temperature differences of the regions to be heated 2 can be decreased by reducing the power application of the high-frequency current to the heating inductor 4. Therefore, the step of reducing the temperature differences can be a step of reducing temporarily the power application of the high-frequency current to the heating inductor 4. About 10% reduction in an electric current level can make the temperature increase of the regions to be heated 2 substantially zero.
The inverter 18 of a power supply device 36 in
The resonant frequency detector 38 detects the resonant frequency of the high-frequency current of the heating inductor 4 obtained by the frequency tracking operation, under a standard that the phase difference becomes zero, and the detected resonant frequency is sent to a frequency comparator 39 of the control device 20. The frequency comparator 39 stores two predetermined frequencies. A first frequency is a frequency for an occasion when the power application of the high-frequency current to the heating inductor 4 should be reduced temporarily, and a second frequency is a frequency for an occasion when the application of the current to the heating inductor 4 should be restart at the original current level of the high-frequency current, in short, a frequency for the occasion when the application status is brought back to the original application status before the temporary reduction is performed. The resonant frequency of the high-frequency current of the heating inductor 4 sent to the frequency comparator 39 from the resonant frequency detector 38 is compared with the first and second frequencies.
The resonant frequency of the high-frequency current of the heating inductor 4 corresponds to an impedance of the regions to be heated 2, and the impedance corresponds to the temperature of the regions to be heated 2.
When the resonant frequency of the high-frequency current of the heating inductor 4 is sent to the frequency comparator 39 from the resonant frequency detector 38, the frequency comparator 39 knows indirectly the impedance of the regions to be heated 2 via the resonant frequency. Thus, the frequency tracker 40 and the frequency comparator 39 and the like compose the impedance-knowing type controller 41.
After the start of a heating work of the article 1, when a resonant frequency of the high-frequency current of the heating inductor 4 which is sent to the frequency comparator 39 from the resonant frequency detector 38 coincides with the first frequency stored in the frequency comparator 39, the control device 20 sends the control signal to the inverter 18, for instructing the reduction of the power feeding from the inverse converter 22 to the matching transformer 19, based on the order from the frequency comparator 39, to thereby start the step of reducing the temperature differences for reducing temporarily the power application of the high-frequency current to the heating inductor 4. After that, when the resonant frequency of the high-frequency current of the heating inductor 4 which is sent to the frequency comparator 39 from the resonant frequency detector 38 coincides with the second frequency stored in the frequency comparator 39, the control device 20 sends the control signal to the inverter 18, for instructing a restart of a power feeding from the inverse converter 22 to the matching transformer 19 in at original current level, to thereby finish the step of reducing the temperature differences.
According to the embodiment shown in
The step of reducing the temperature differences of the embodiment in
According to this embodiment, if an unevenness of a temperature increase occurs in the regions to be heated 2 which has a certain dimension in the width direction of the article 1, a current applied to the good conductor 44A arranged in response to a high-temperature portion of which electrical resistance is rather large becomes rather small, a current applied to the good conductor 44A arranged in response to a low-temperature portion of which electric resistance is rather small becomes rather large. As a result, a heat input to the high-temperature portion is suppressed and a heat input to the low-temperature portion is intensified. Accordingly, the temperature differences of the regions to be heated 2 are corrected to be leveled, and the unevenness of the temperature increase at the end of the heating work will be reduced further in conjunction with the effect by the step of reducing the temperature differences described above.
Note that a power supply device of the embodiment in
The present invention can be utilized for heating inductively an article made of a thin sheet by a high-frequency current for performing a hardening and the like to the article made of the thin sheet composing a vehicle body.
Number | Date | Country | Kind |
---|---|---|---|
2003-186325 | Jun 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/08987 | 6/25/2004 | WO | 2/14/2005 |