The invention relates to a method and device for transporting and rotating sheet-form print material.
Typically, devices of the type named are used in a print further-processing device to move stacks of sheet-form print materials that will be bound, or are already bound, from one processing station to the next or to stack them in a storage unit. What is important is that the sheet-form print materials in the stack do not lose their alignment to each other, since otherwise errors would occur during, for example, the outside edge processing of the stack of sheet-form print materials. Another error that could otherwise occur is that punched holes, e.g. for a wire comb binding, plastic comb binding or spiral binding can slip, which leads to later problems when threading through a corresponding binding element.
In these cases, the rotation of a stack of sheet-form print materials is usually especially complicated since the stack of sheet-form print materials is exposed to torques that necessitate adequately protecting the individual sheet-form print materials against slipping. In addition, turning and transporting of stacks of sheet-form print materials generally require a relatively large amount of space; for a combined movement, the space requirement increases even more.
A number of devices for transporting and rotating books in sheets are known from the prior art. European Patent Application EP 1 122 198 A2 shows e.g. a turning device for books in sheets. In this process, a book in sheets is transported between two endless transport belts that are mounted on a turning unit. As soon as the book in sheets is located completely between the two endless transport belts, the book in sheets is fastened in this position, the entire turning device is rotated 180°, the book in sheets is released again and transported further. However, the device shown there is not very suitable for unbound stacks of sheet-form print materials since the book in sheets must first ascend a slope between two transport bands. In this case, the axis of rotation is parallel to one of the outside edges of the book in sheet's pages.
The German OLS DE 36 08 870 A1 shows another conveyor device in which stacks of sheet-form print materials that are securely fastened to holding elements are turned 180°. The force of the rotation is provided to the device from a lifting roller that can optionally be connected to a fixed curved rail and be fastened at the axis of rotation via a lever. The axis of rotation is normal to the plane of the sheet-form print materials and has a slight deviation from the vertical.
In further processing devices having the most compact construction possible, the spatial requirement and energy requirement of the individual components play a critical role. A transport device for stacks of sheet-form print materials or books in sheets takes up a lot of space within the system. The space cannot be used by other units within the system, in order not to have conflicts between a stack of sheet-form print materials that is passing by and the transport device holding them unless there is a complicated synchronizing of the units that at times use the same space within the system.
During rotation of a stack of sheet-form printed materials, the required space for the transport/rotation unit considerably increases. The smallest spatial requirement is generally needed if the axis of rotation is normal to the surface of the sheet-form print materials and at a right angle to the transport device for the stack of sheet-form print materials.
According to various aspects of the invention, methods and devices are provided for transporting and rotating sheet-form print material.
Various aspects of the invention are presented in
The transport unit 30 is mounted on the carriage guide 20 so that it can move. A belt connection 34 (see
The transport unit 30 holds a rotation unit 40, presented in
Referring again to
On frame 31, seven rollers 36 are mounted in ball bearings, preferably plastic injection-coated ball bearings with round running surfaces. Rollers 36 are each assigned to eccentrics (not shown) that are known to the person skilled in the art, by means of which the positions of rollers 36 are individually adjustable in order to compensate tolerances in manufacturing and installation and to ensure that rollers 36 roll within carriage guide 20 in a manner that is as free of friction as possible.
On frame 31 of the transport unit 30, two stops 37, 38 are mounted for the limit positions of the rotary movement of gripper 60 and limit the movement of the gripper. The stops 37 and 38 are optional. In addition, positioning pins 33 having conical tips are mounted on frame 31 of transport unit 30 into which rotation unit 40 is inserted so that rotation unit 40 has a defined position with respect to transport unit 30. The conical tips of the positioning pins 33 make installation of rotation unit 40 and transport unit 30 easier and ensure exact alignment between rotation unit 40 and transport unit 30.
The second timing pulley 45 runs on a shaft 46, which can be coupled on the other side with a connection 47 on gripper 60. For exact positioning between rotation unit 40 and gripper 60, four pins 48 are used that extend into gripper 60.
Rotation unit 40 has a frame 50 in which rotation unit 40 is connected to transport unit 30. Rotation unit 40 also has guide pins 51 to ensure exact positioning between rotation unit 40 and transport unit 30.
In addition, rotation unit 40 has a spring unit 49. Since gripper 60 is preferably positioned exactly horizontally. The position of the gripper 60 is defined by the aforementioned stops 37, 38 on the transport unit. The stops 37, 38 and rotation unit 30, especially lever roller 41 and guide 21 (FIG. 4), are dimensioned to provide a small interference with the guide 22 that forces the lever 42 to turn somewhat further upon installation so that the gripper 60 is tensioned against the stops 37, 38 and the lever roller 41 is tensioned against the guide 21. In such manner, any looseness due to tolerances and/or expansions in the system is compensated for by the spring unit 49.
At this point, in a first position of lever 42, the function of spring unit 49 will be described using the guides 21, 22 and cam surfaces 25, 26 that lever roller 41 contacts. If transport unit 30 and rotation unit 40 are located on the other side of carriage guide 20 (the right side of FIG. 4), lever 42 is turned 91° relative to a beginning position on the opposite side of the carriage guide 20 (the left side of FIG. 4), and the roller 41 moves from a position below the guide 22 mounted below to above the guide 21. Since in this case gripper 60 has turned, the tension relationships in belt 44 reverse and lever roller 41 is pressed from below (underneath) onto guide 22, comparable to the first case described. In other words, the roller 41 is pressed onto curved section 21 from above, and onto guide 22 from underneath.
During the movement in the first transport direction 1, lever roller 41 is guided in the area of the cam section 24 along first cam surface 25 and in this process the lever 42 is swiveled 91°, which leads to a rotation of the gripper 60 by essentially 180°. As soon as gripper 60 is swiveled through the center, lever roller 41, because of the changed weight ratios, contacts the second cam surface 26 in the area of the intermediate section 24. Rotation of gripper 60 further than 180° is prevented by stops 37, 38 already mentioned above. Then lever roller 41 runs against the guide 22. On the return path in second transport direction 2 (opposite to transport direction 1), the movement of lever roller 41, and thus of gripper 60, reverses.
If transport unit 30, together with rotation unit 40 and gripper 60, is located on the right side of guide 21 pictured in
As shown in
Because of the concentration of the movement of gripper 60 within the intermediate section 24, independent of the format of the stack of sheet-form print materials 70, the gripper 60 can continuously be turned at the same location and without an additional drive for rotation of the gripper 60. The entire turning movement is derived completely from drive 10 of transport unit 30.
According to a preferred embodiment of the invention, the force needed to rotate the gripper that hold the stack of sheet-form materials is derived completely from translational transport movement along a cam. It is especially advantageous that the movement of the lever along with the lever roller may be transmitted by a set of gears. Because of this, the rotation of the gripper of essentially 180° can be achieved by a smaller rotation of the lever, which leads to a simpler structure, especially in the area of the cam. A significant advantage in the use of a set of gears for transmission of the curve movement is that the rotation of the gripper may be carried out at a different angular speed than that of the lever. Because of this, the rotation of the gripper can be accelerated considerably. In an advantageous manner, the transmission has the ratio of 1 to 2 between movement of rotation of the lever to rotation movement of the gripper.
In an advantageous embodiment according to an aspect of the invention, the rotation unit may be installed in the transport unit so that it can be detached. This is advantageous for maintenance work that may be needed, repairs or replacement of the rotation unit and also makes installation of the device according to the invention easier. Advantageously, the transport unit may have guiding elements onto which the rotation unit is installed so that the rotation unit has a defined position with respect to the transport unit. Because of this, an especially fast, precise and repeatable installation of the rotation unit in the transport unit may be possible.
In an especially advantageous embodiment according to an aspect of the invention, the cam has a short curved section on which the rotation unit completely executes a rotation of the gripper by essentially 180°. Because of this, the entire rotation of the gripper and, thus, of the stack of sheet-form print materials may be carried out at a specified location.
This may be advantageously in the center of the transport path of the stack of sheet-form print materials so that the rotating gripper have as much room as possible to carry out the rotation. At the same time, the space required for rotation is nevertheless concentrated in a small spatial area because of this measure according to the invention. Because of the concentration of the movement in a specific spatial area, the specification for a space requirement that is small overall, for one thing, can be addressed. For another thing, stacks of sheet-form print materials having all different dimensions that are provided for use with the device according to the invention can be rotated uniformly at the same location without significant fluctuations resulting in the spatial area of the stack of sheet-form print materials. The space provided for executing the rotation of the stack of sheet-form print materials, and the rotation of the gripper connected with it, specifies the maximum dimensions of the sheet-form printed materials that can be used with the device according to the invention.
Advantageously, the cam section may be optimized with respect to the moments of inertia of the gripper. The gripper, or a different clamping device for a stack of sheet-form print materials, may be located in a loaded condition, in which at least the rotation but possibly also the transport of the stack of sheet-form print materials from a first position to a second position takes place within a higher level device. Otherwise, the gripper or another clamping device for a stack of sheet-form print materials are in an unloaded condition, especially in order to come back from the second position, in which the stack of sheet-form print materials were released, to the first position in order to accept a new stack of sheet-form print materials.
The mass moments of inertia of the gripper are different from the mass moments of inertia of the combination of gripper and load, namely by the mass moment of inertia of the stack of sheet-form print materials.
An optimization may be provided in that the cam section is formed such that the rotation of the loaded gripper is executed at lower accelerations than the rotation of the unloaded gripper. If the movement of the loaded gripper is defined as movement in a first transport direction and in the opposite transport direction as a second transport direction, the optimization can advantageously be achieved in that the increase in slope of the cam in the first transport direction is lower at first than the increase in slope in the second transport direction. Because of this, there is an asymmetrical structure of the cam section that takes into account the mass ratios that are asymmetrical between the loaded and the unloaded gripper. Because of the slower acceleration of the stack of sheet-form print materials during rotation achieved by these measures, the required holding force of the gripper that is necessary to press the individual sheet-form print materials of the stack against each other during rotation can be decreased to avoid slipping of the individual pages of the sheet-form print material.
For example, this is important if, after transport and rotation from the gripper, the stack of sheet-form print materials will be subjected to a binding process, e.g. binding using a wire comb, plastic comb or spiral binding. In this process, an appropriate binding element will be threaded through a series of holes provided in the individual pages. The series of holes in the individual sheet-form print materials are caused to line up in the stack. If the individual series of holes are displaced during the rotation, this can lead to considerable complications during the following binding step. Therefore, secure clamping of the individual pages and thus the rotation of the stack of sheet-form print materials that is as gentle as possible is of great importance.
Advantageously, the guide may have a guide surface formed on just one side outside the intermediate section. Because of this, with a suitable design of the rotation unit, this can be taken upward out of the transport unit while the transport unit is still in connection with the carriage guide. In turn, this may make maintenance and/or installation easier.
In an advantageous embodiment according to an aspect of the invention, the rotation unit may have a spring unit that pre-stresses the lever along with the lever roller against the guide. This is especially advantageous with a one-sided design of the guide since because of this, continuous contact of the lever roller with the guide may be ensured.
In an advantageous manner, the rotation unit may have a spring unit that is dimensioned in such a way that the mass inertias of the loaded gripper are absorbed at the end of rotation. This is used in turn for a gentler braking of the rotation operation having the advantages described above. In this case, it is especially advantageous if this spring unit is the same spring unit that also pre-stresses the lever roller on the guide.
In an advantageous embodiment according to an aspect of the invention, the transmission is a timing belt drive with a timing belt and two timing belt pulleys. A timing belt is suitable, on the one hand, for damping the movements because of its elasticity, and, on the other hand, the teeth prevent the belt from slipping on the pulleys.
Although the invention was described in reference to preferred exemplary embodiments, the invention is not restricted to them, but can undergo changes and adaptations within its area of applicability.
Number | Date | Country | Kind |
---|---|---|---|
102 24 303 | May 2002 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4798278 | Cornacchia | Jan 1989 | A |
5201399 | Dietrich | Apr 1993 | A |
6296246 | Boorsma | Oct 2001 | B1 |
6527100 | Ballestrazzi et al. | Mar 2003 | B2 |
20010010282 | Ballestrazzi | Aug 2001 | A1 |
Number | Date | Country |
---|---|---|
36 08 870 | Mar 1986 | DE |
1 122 198 | Dec 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20040069594 A1 | Apr 2004 | US |