The invention relates to a method for treating foods and/or containers for holding foods and to a device for treating foods and/or containers for holding foods. In particular, the invention relates to a method and device for treating luxury foods, especially alcoholic and nonalcoholic drinks. The foods and the containers for holding foods are treated with a process liquid in at least one treatment zone, wherein after being discharged from the treatment zone(s) the process liquid is at least partially recirculated into the treatment zone(s) for re-use in the method. For cleaning and sterilisation, at least some or all of the at least partially circulated process liquid is used to form at least one stream of process liquid, and the at least one resulting stream is filtered by at least one membrane filtration system and/or irradiated by at least one UV irradiation apparatus.
Various variations of methods and devices for treating foods and/or containers are known from the prior art. Often the products, for example foodstuffs, and/or the containers are treated by a tempered process liquid, as is e.g. the case in pasteurisation of food products in so-called pasteurisers. In most cases, water or an aqueous solution is used as the process liquid and acts indirectly on the products or directly on the containers.
To avoid creating large quantities of liquid waste and waste water, the process liquid or process water is often at least partially circulated through the device or the treatment zone(s), i.e. the process liquid is re-used in a circulation procedure. However, this approach entails a high potential for dirtying or contamination of the process liquid, especially an increased risk of the growth of germs or pathogenic micro-organisms. Systems for treating products or containers are usually accessible, the conditions by no means consist of controlled air circulation or the like. There are other sources of dirt and germs in addition to the ambient air, for example the operating staff or other people, conveying elements for the containers and products, any cooling equipment for the process liquid, especially air-conditioned cooling towers, or even the process liquid freshly introduced into the method or device itself. Furthermore, contaminants can enter through the treatment process itself, such as through damage to the containers and contaminants in the process liquid caused by the product or through the detaching of particles such as paint particles or the like from the outside of the containers.
In the past a number of methods have been suggested for removing contaminants from a process liquid. These consist of filtration measures for removal of relatively coarse or large particles, such as glass shards, sand, gravel, and the like. An example is EP 2 722 089 A1. EP 2 722 089 A1 describes a device for thermal treatment of products in containers. The containers are sprinkled or sprayed with a process liquid and the process liquid, e.g. water, is recirculated for at least partial re-use. A gravitational sedimentation device is used to clean the process liquid that can separate out coarse-grained or large particles like glass shards or sand.
The methods known from the prior art describe, for example, filtration methods for separating relatively large particles out of a process liquid using separating devices such as conventional mesh sieves, filter bands, or detachable sieves, or in fact sedimentation devices.
However, the measures known from the prior art are not suitable for removing impurities with relatively small particle sizes from the process liquid. This especially affects particle contaminants that cannot be removed by conventional filter sieves and other separating devices, or e.g. do not or only very slowly precipitate out of a process water stream. Furthermore, micro-organisms and pathogenic germs cannot be removed from the process liquid or process water to a sufficient extent in this way. In particular, these previously known measures do not provide an effective means of preventing or at least reducing the reproduction or growth of micro-organisms and germ colonies. This requires extensive use of germ-deactivating chemicals like chlorine or chlorination methods, which chemicals can for the most part be hazardous to health and the environment. In addition, the use of chemicals for disinfection is typically associated with high costs.
In such devices or systems for treating products or foodstuffs, there are furthermore conditions in at least some areas that promote the growth or reproduction of micro-organisms in the process liquid or process water, for example because of a particularly favourable, growth-promoting temperature. These micro-organisms, for example bacteria, fungal spores, but also viruses, can be introduced into the device by fresh process water but also by operating staff or other persons. In general, it cannot be wholly ruled out that micro-organisms may get on the outside of the containers in the course of the treatment and at least partially remain there even after the treatment process.
Particularly problematic in regard to filtration by conventional sieves is the disadvantageous distribution of particle sizes in a typical process water. In particular, the use of chemicals like surfactants favours very small particle sizes that cannot be removed from the process liquid by conventional separating devices or only to an inadequate extent. Finally, production and treatment in currently known methods for treating products and containers in which the process liquid is at least partially recirculated must be interrupted at relatively short intervals to clean and sterilise the treatment device. Such cleaning and sterilisation processes are typically very laborious and in particular lead to production losses and as a consequence to financial losses.
It is therefore the aim of the invention to develop an improved method and an improved device that can eliminate the deficits still existing in the prior art. In particular, in comparison to the prior art an improved method and improved device for treating products, especially food products, and/or containers is to be provided, in which method or device the process liquid can be at least partially recirculated for re-use in the method, but the disadvantages associated with this due to continuously increasing dirtying or contamination of the process liquid are avoided as much as possible.
The aim of the invention is achieved by providing a method for treating foods and containers for holding foods using a process liquid in at least one treatment zone, in which method at least one membrane filtration system and at least one UV irradiation apparatus are provided for continuous cleaning and sterilisation of the process liquid.
The foods and the containers are introduced into a treatment zone or conveyed through a treatment zone. At least one liquid stream of the process liquid is conducted into the treatment zone or treatment zones to act on the foods or containers, and discharged from the treatment zone again after completed treatment of the food products and containers, wherein the process liquid for treating the foods and containers is at least partially recirculated into the treatment zone or the treatment zones for the purpose of re-use in the method.
In particular, in the continuous, ongoing treatment, at least some or all of the process liquid out of the total process liquid conducted through all existing treatment zones per time unit is used in each time unit to form at least one stream of the process liquid, and the at least one resulting stream of the process liquid is filtered by at least one membrane filtration system and/or irradiated by at least one UV irradiation apparatus in order to clean and sterilise the process liquid, and after the filtration process an irradiated and/or filtered stream is at least partially returned to an element holding or conducting the process liquid and/or to a treatment zone.
Here and below, an element holding or conducting the process liquid or a conduction element for the process liquid means any element that is designed to hold the process liquid or to conduct a liquid stream of the process liquid. These can be, for example, piping, ducts, and the like in which the process liquid is e.g. fed into a treatment zone or discharged from a treatment zone. The term “conduction element” further means, for example but not exclusively reservoirs, tanks, or collection devices for the process liquid arranged inside or outside the treatment zones or the like.
Here and below, a treatment zone means a zone in which the food is brought into contact with the process liquid, preferably indirectly, and/or the containers are brought into contact with the process liquid, preferably directly. The physical and/or chemical and/or other parameters of the process liquid can be adjusted specifically for the relevant treatment purpose. The process liquid can affect the food and the containers for holding food in various ways. For example, to generate the desired interaction the process liquid and a liquid foodstuff to be treated can be conducted in a materially separated manner in a counter current, direct current, or cross flow arrangement in adjacent conduction elements. The desired interaction can be achieved by heat transfer between the food and the process liquid in the sense of a heat exchanger, as for example is usual in the pasteurisation of milk for preservation. Another frequently used method is the pasteurisation of food products in which the food is already in a closed container and the process liquid acts on the outside of the containers. The process liquid can be poured on the outside of the containers or the containers can be sprinkled or sprayed with the process liquid. In another example, dipping methods are also possible in which containers holding food are dipped into the process liquid. Naturally, however, the invented method and invented device can also be used for treatment, e.g. rinsing/cleaning of empty containers. Finally, the term treatment zone means, at least in the broadest sense, also an element holding or conducting the process liquid or a conduction element for the process liquid.
Here and below, a liquid stream of the process liquid means any kind of conducted movement of the process liquid, regardless of how the liquid stream or its conduction are designed. This means that the term “liquid stream” comprises; for example, a stream of a moved process liquid in conduction elements like piping, ducts, reservoirs, tanks, etc. just as much as, for example, a sprinkling or spray stream of the process liquid free falling under ambient air pressure in a treatment zone or a stream of the process liquid in a recooling apparatus or the like.
Through the measures disclosed in claim 1, a method can be prepared that is eminently suitable especially for the removal of impurities or contaminants with a very small particle size such as bacteria colonies from the process liquid and for sterilising the process liquid. This allows a significant improvement to be achieved compared to previously known methods, which are of only limited or even of no use in removing small particles as well as viable and reproducing micro-organisms from an at least partially recirculated process liquid. Advantageously, the cleaning and sterilisation of the process liquid can be performed during ongoing operation and is comparatively efficient and energy-saving.
Furthermore, the membrane filtration per se is effective at removing micro-organisms, as a result of which the combination of membrane filtration and UV irradiation acts in synergy to clearly increase the efficiency of a reduction of reproducing micro-organisms. If the membrane filtration is executed in the form of so-called “ultra-filtration,” i.e. filtration with membranes with pore diameters of approx. 0.2 □m or less, both inorganic and organic small and micro-particles, e.g. bacteria colonies, can be effectively removed from the process liquid.
In principle, a UV irradiation apparatus can be connected in series on the inlet side to a conduction element holding or conducting the process liquid, such as piping. In this case, the entire liquid stream of the process liquid flowing through this conduction element or piping is conducted through the UV irradiation apparatus and irradiated. The same fundamentally also applies to the connection of a membrane filtration system for filtering the process liquid.
Alternatively, a UV irradiation apparatus and/or a membrane filtration system can also be operatively connected parallel to a conduction element holding the process liquid so that a partial quantity of the process liquid out of the liquid stream of the process liquid can be used to form at least one stream of the process liquid per time unit. In this context is can also be advantageous if at least one adjustable splitting means or multiple co-operating splitting means are used to separate out a specifiable quantity of the process liquid from at least one element holding or conducting the process liquid in a controlled manner per time unit and to form at least one stream of the process liquid which can then be irradiated and/or filtered. In this way the partial quantity of process liquid separated out from a liquid stream of the process liquid per time unit can be specified and controlled in a precise manner. It is also advantageous that the partial quantity of process liquid separated out per time unit can be adjusted to the current conditions and varied. In this way capacity bottlenecks can be avoided without having to accept significant compromises on degree of contamination or germ content of the process liquid.
The exact number, type, and location of integration of the membrane filtration system(s) and UV irradiation apparatus(es) and the connection of a membrane filtration system and a UV irradiation apparatus to the conduction elements conducting the process liquid and/or treatment zone(s) can be determined or implemented in due consideration of structural features, process parameters, and the like. However, specific arrangement variations can offer advantages for the method for treating food and containers, which will be explained in more detail below.
For example, additional dirt traps or the like can be arranged in the conduction elements to remove large-grained impurities in the process liquid. For example, a gravitational sedimentation device as described in the previously cited EP 2 722 089 A1 can be used to separate large or large-grained particles.
The measures disclosed in claim 1 further succeed in reducing as much as possible laborious and expensive interruptions in the production or treatment in order to clean the treatment device or at least in significantly lengthening the time intervals between such cleaning processes. In addition, micro- and ultrafiltration and UV irradiation can at least reduce the quantity of chemical stabilisers used to prepare the process liquid, especially the required quantities of surfactants and corrosion inhibitors, and of disinfectants and biocides, and the use of such cleaning chemicals and disinfection chemicals can be at least largely avoided or minimised. Membrane filtration is effective at removing both micro-organisms and other impurities. UV irradiation further increases the efficiency of the method in regard to sterilisation. Membrane filtration can also markedly improve the effectiveness and efficiency of the UV irradiation apparatus(es). Small and micro-particles and suspended solids can cause turbidity of the process liquid, which can significantly reduce the effectiveness of the UV irradiation. A membrane filtration system can significantly reduce the turbidity of the process liquid and therefore avoid efficiency losses in UV irradiation due to UV light absorption, scattering, etc. The turbidity of a liquid can be expressed in, for example, the unit NTU (nephelometric turbidity unit). The process liquid preferably has a turbidity of less than 5 NTU, especially less than 1 NTU.
Small and micro-particles and substances that cause turbidity can be caused, among other ways, in the course of manufacturing the containers by shaping or cutting process steps such as cutting, milling, drilling or the like and/or can get into the process liquid through the containers. In typical devices for treating foods and/or containers, the formation of small and micro-particles is particularly facilitated by the use of chemicals like surfactants.
Thus a significant improvement in environmental friendliness can be achieved and the burden on a facility, such as a purification plant, placed after the method or device can be minimised. In addition, irradiation by UV light is also effective at suppressing the reproduction of at least most types of algae.
The invented measures can also improve olfactory factors as the formation of undesirable or unpleasant smells can be hindered. Various micro-organisms, especially bacteria, are known for generating bad smells as products of their metabolism. The removal or killing of these micro-organisms can largely prevent unpleasant smells.
If bacterial cultures remain in a process liquid for a longer time under simultaneous use of biocides, bacterial strains can “get used to” the biocides being used or bacterial strains resistant to the biocides being used can be formed. This means that biocides can become of limited or even no use in removing micro-organisms from the process liquid over time. Through continuous removal of the micro-organisms from the process liquid and additional UV irradiation of the process liquid, the formation of resistant germs can be hindered and the use of biocides can be minimised overall as efficient and effective means are provided to hinder the growth and reproduction of micro-organisms in the process liquid. Membrane filtration and UV irradiation can, for example, also effectively hinder the growth of biocide-resistant and/or chlorine-resistant bacterial strains.
Naturally other organic and inorganic small and micro-particles can also be removed from the process liquid by the at least one membrane filtration system. This simultaneously results in further improvement in regard to micro-organism growth and to the growth rate of micro-organisms in the process liquid, as organic and inorganic small and micro-particles can often act as good nutritional bases or “breeding grounds,” e.g. for bacteria. The removal of unwanted particle contaminants using membrane filtration can significantly reduce the use of otherwise necessary chemicals for elimination of such contaminants, such as surfactants.
The invented measures can also remove dust-like impurities from the process liquid. Such impurities can, for example, be caused in the course of manufacturing the containers by shaping or cutting process steps like cutting, milling, drilling or the like. The manufacturing of containers can cause e.g. glass of metal dust, especially aluminium dust, which dust can be introduced into the method for treating foods and containers along with the containers.
Finally, the invented measures can effectively hinder dirtying or contamination by germs of the outside of the containers as well as the surfaces of the device for treating the foods and containers by the process liquid itself. This brings further advantages in regard to any secondary treatment or additional cleaning measures, whose extent can at least be reduced. Where appropriate, the invented measures can make secondary cleaning of the containers with cleaning and disinfecting chemicals and/or sterilisation of the containers superfluous.
The additional measure of filling the food to be treated into containers before the treatment, closing the containers, tempering a liquid stream of the process liquid before feeding it into a treatment zone, and treating the foods in a treatment zone through heat transfer using a tempered process liquid in which the process liquid flows around the outside of the containers on the one hand represents a particularly efficient measure for treating foods, since an already filled trade product can be put out after the treatment. In addition, this allows direct contact between the foods and the process liquid to be avoided.
It can further be advisable to set the temperatures of the particular liquid streams of the process liquid separately for each treatment zone in a controlled manner before feeding into a treatment zone and to pasteurise the food products in at least one treatment zone using a heated process liquid. Pasteurisation can achieve a longer shelf life for the foods. The disclosed measures for controlled tempering of the process liquid have the advantage that the overall method for treating the foods and containers is easy to control. In particular, this can prevent unwanted damage to the foods and/or containers because of overly quick or high temperature changes.
It can be useful especially in regard to pasteurisation of food to successively heat up the foods being treated, especially luxury food products, in at least one treatment zone, to pasteurise them in at least one treatment zone, and to cool them in at least one treatment. On the one hand, slow heating in at least one heating zone can guarantee gentle heating of the foods. On the other hand, active cooling in at least one cooling zone after pasteurisation can effectively prevent so-called “over-pasteurisation” because of foods being at a high temperature for too long of a time. Such over-pasteurisation often caused unwanted changes in the food and can negatively influence the flavour and/or smell of the food. The disclosed process steps for sequential treatment of foodstuffs, especially luxury food products, allows well-controlled and gentle process guidance for the foodstuffs. For example, the temperature of the process liquid can be increased step by step for multiple heating zones, in one or more treatment zones the process liquid can be introduced at a pasteurising temperature such as 80 to 85° C. and then the process liquid can be introduced into one or more cooling zones for the foodstuffs or containers, again in the form of zones, with sequentially lower temperatures for cooling the foods or containers.
Alternatively to the stated temperature ranges, which are given as examples for the pasteurisation of food, other temperature ranges can of course also be advisable for other treatment processes. Another example given at this juncture is superheated steam sterilisation, in which the process liquid or process water reaches temperatures above 100° C. such that at least in the sterilisation zones process water acts on the containers in a gaseous state.
It has proven particularly practical if a liquid stream is fed into at least one treatment zone for heating the foods and/or containers at a temperature between 40° C. and 50° C. This provides particularly gentle pre-heating of the food and allows large temperature jumps to be avoided in the course of heating the food.
In an advantageous embodiment of the method, it can be provided that at least one stream filtered by a membrane filtration system is fed into a UV irradiation apparatus and irradiated immediately after the filtration process and a filtered and irradiated stream of the process liquid is fed back into at least one conduction element holding and/or conducting the process liquid and/or at least one treatment zone. In this way it can be ensured that a process liquid with particularly low turbidity can be irradiated by the UV irradiation apparatus, allowing the efficiency of the UV irradiation to be increased once more.
In order to prepare a process liquid with low turbidity, it can also be practical if process liquid with a temperature between 40° C. and 50° C. is used to form at least one stream to be filtered. Particularly good filtration results can be achieved through membrane filtration or ultrafiltration at a process liquid temperature in this range. This is because, among other reasons, blockage of filter membranes due to lubricants such as paraffin or waxes can be avoided in this temperature range. Such lubricants are often used during manufacturing of containers, sometimes remain stuck to the containers after manufacturing, and can be introduced into the process liquid. Through membrane filtration of the process liquid in the stated temperature range, process liquid with particularly low turbidity can be prepared for UV irradiation.
In this connection it can also be provided that the at least one stream be formed by removing process liquid from a tempering-capable flow container for the process liquid. This can increase the efficiency of the membrane filtration and the filtration performance even more.
In regard to cleaning efficiency for the process liquid during continuous treatment, it can be advisable to select the process liquid quantities used to form at least one stream of the process liquid out of at least one conduction element holding and/or conducting the process liquid during continuous treatment per time unit in such a way that the irradiation and/or filtration of the stream or streams allow a removal rate for micro-organisms to be achieved that is larger than the growth rate of these micro-organisms in the process liquid in the same time unit. This in particular allows the total quantity of viable and reproducing micro-organisms in the process liquid to be minimised as much as possible and an increase in the total quantity of micro-organisms in the process liquid during continuous treatment of the foods and/or containers to be effectively prevented.
Surprisingly, it has been shown that the irradiation and membrane filtration per time unit of a relatively small partial quantity of the process liquid out of the total liquid streams of the process liquid conducted through the device and/or the treatment zones per time unit is entirely sufficient to achieve an adequate result. This means that the physical size and/or the number of UV irradiation apparatus(es) and membrane filtration system(s) can be kept comparatively small without having to compromise on the degree of contamination and germ content or bacterial count of the process liquid. In addition, the amount of energy used to clean and sterilise the process liquid can be further reduced.
By recirculating a UV-irradiated and/or micro- or ultrafiltered stream of the process liquid at ambient pressure or in free fall back into at least one conduction element holding or conducting the process liquid and/or into one treatment zone, the advantage is obtained that an additional conveying means for introducing or discharging an irradiated and/or filtered stream into the process liquid is not needed.
It can be advisable here for an irradiated and/or filtered stream of the process liquid to be at least partially fed into a liquid stream of the process liquid moved through a treatment zone after it acts on the foods or containers. This variation of feeding a filtered stream into a treatment zone is advantageous in particular if a liquid stream of the process liquid is introduced into the treatment zone under a certain pre-existing pressure. The pre-existing pressure may be needed, for example to atomise the process liquid in order to spray the containers as evenly as possible in the treatment zone. This variation on introducing a filtered and/or irradiated stream is also advisable, for example, to avoid unwanted influence of the filtered and/or irradiated stream on the foods and containers in the treatment zone. This may happen, for example, because of an unsuitable temperature level of the filtered and/or irradiated stream of the process liquid.
However, it can also be advisable for an irradiated and/or filtered stream of the process liquid to be at least partially fed into a liquid stream of the process liquid moved through a treatment zone before it acts on the foods or containers. This in particular allows a process liquid with very high purity and very low germ content to be provided for treating the foods and containers in a treatment zone.
In the method for treating foods and containers, at least partial feeding of an irradiated and/or filtered stream of the process liquid into a treatment zone arranged at the end of the process to receive the products can be particularly advantageous in order to rinse or clean the outside of the closed containers filled with food product. Such a process step is typically performed near the end of a method for treating foods and containers, then a drying step or other secondary treatment step may potentially still follow. In such a process step for rinsing and washing containers, dirtying and contamination of the process liquid are particularly critical because under some circumstances dirt and germ residues like bacteria or bacterial residues can remain on the surface of the container. This is why feeding a stream that has been UV irradiated and/or filtered and cleaned by a membrane filtration system into such a treatment zone for rinsing containers is advantageous.
In regard to the membrane filtration, it can further be advisable for a stream of the process liquid to be fed into a receiving container after filtration by the membrane filtration system and recirculated back into at least one element holding or conducting the process liquid and/or into a treatment zone and/or into a UV irradiation apparatus via an outlet or equivalent element arranged on the receiving container. In this way a reservoir of process liquid with high purity is collected or prepared that can be used for various purposes.
For example, a practical use for the process liquid filtrate collected in a receiving container can be achieved on one variation of an embodiment of the method by operatively separating a membrane filtration system from the rest of the device for treating foods and/or containers at specifiable time intervals during ongoing operation to clean the filter membranes and by feeding the process liquid filtrate collected in the receiving container through a membrane filtration system by reversing the flow direction through the filter membranes in comparison to filtration, i.e. the membrane filtration system is also cleaned by backflushing the filtrate. During continuous filtration of partial streams of the process liquid, residues naturally form on the filter membranes and modules over time. Particularly small particles can also penetrate into a filter membrane or a pore channel of a filter membrane and remain there. Overall, residues on the membrane surface and/or particles or substances that have penetrated into and remained in a membrane lead to blockages on and in a membrane and therefore to shrinking flow capability and a reduction of the filtration performance of a filter membrane. The disclosed periodic cleaning of the filter membrane module by the collected process liquid filtrate achieved by reversing the flow direction can prevent blockages and closure of membrane pores as much as possible. Backflushing can be additionally assisted by inputting gas, for example by inputting compressed air into a filter membrane module.
Contaminated liquid waste is formed in the course of cleaning by reversing the flow direction through the filter membranes of the membrane filtration system. It can be useful to discharge this liquid waste directly from the device for treating foods and containers and replace it with a corresponding quantity of fresh process liquid.
In connection with the cleaning of the filter membranes of a membrane filtration system by backflushing it can also be advisable to arrange a UV irradiation apparatus between a membrane filtration system and a receiving container. This permits UV irradiation of the process liquid collected in the receiving container during a backflushing/cleaning process for a membrane filtration system and allows a backflushing liquid with particularly low germ content to be used for backflushing the filter membranes. Alternately, the filter membranes of a membrane filtration system can also be backflushed using an externally added rinsing liquid, for example rinsing chemical-containing washing water or drinking water.
In regard to a membrane filtration system, it can also be advantageous to admix chemicals from one or more chemical sources using a dispensing device into a stream of the process liquid to be filtered or a filtered stream or a process liquid collected in a receiving container if needed both in treatment and in filtration and in cleaning for the membrane filtration system. If the dispensing device is suitably arranged, for example in a draining element for a filtered stream of the process liquid or a bypass or backflush piping linked to the draining element, admixing from the same chemical sources can take place both in treatment and in cleaning for the membrane filtration system. The type of chemicals to be used depends on the particular need and the feeding of chemicals can be performed by an operator of the device, or an automatic control device for the device as needed. Since the addition of chemicals is possible in both filtration and cleaning, a flexible, targeted dispensation of chemicals from the same chemical sources can be performed as needed. Examples of chemicals that are suitable for both cases are surfactants for general cleaning or chlorine for disinfection of the filter membranes or other elements of the device for treating foods and containers. Other typically used chemicals include, for example, organic acids for pH value stabilisation, chelating agents, and corrosion inhibitors.
In addition to preparing the process liquid through UV irradiation and membrane filtration, it can be useful to remove or separate dissolved or suspended or dispersed substances through an adsorption device. In particular, in this way unwanted, uncoagulated parts can be removed from the process liquid that cannot be removed by a membrane filtration system.
To ensure the greatest possible process security, it can be advantageous to continuously monitor the degree of contamination of the process liquid using suitable sensors arranged in the conduction elements holding and/or conducting process liquid and/or in the treatment zones. In particular, measurements of turbidity can be useful to determine the purity of the process liquid and the particle concentration in the process liquid. Measuring the turbidity of the process liquid is above all important in regard to assessing the efficiency of the UV irradiation, since turbidity of the process liquid can markedly decrease the effectiveness of UV irradiation, as has already been explained above. Alternatively and/or additionally, measurements on random samples of the process liquid are also useful, especially to record fluctuations in the content of bacterial cultures and determine micro-organism growth rates. Through continuous monitoring of the turbidity of the process liquid at different points or in different zones, sources of contamination can also be localised and targeted counter-measures can be introduced if needed.
Another advantage arises in a design variation in which a stream of the process liquid to be irradiated and/or filtered is formed as needed out of different conduction elements containing or conducting process liquid, is filtered by at least one membrane filtration system, and after the membrane filtration process a filtered stream is fed into at least one conduction element holding or conducting process liquid and/or at least one treatment zone and/or at least one UV irradiation apparatus. It can particularly be advantageous to integrate a membrane filtration system into the device for treating products and/or containers using mechanical switching and/or splitting means in such a way that a membrane filtration system can be assigned different and/or multiple different conduction elements for holding or conducting the process liquid and/or treatment zones. The possibility of inlet-side switching of a membrane filtration system to different sources of process liquid for forming a stream to be filtered allows quick and efficient reactions to zone-specific fluctuations in the quality and degree of contamination of the process liquid in a flexible manner, especially to fluctuations in the particle concentration. This way there exists a fundamental option of switching from one process liquid source to another process liquid source, i.e. of using different liquid streams in different conduction elements to form the stream to be filtered. If desired, however, multiple liquid streams of the process liquid can also be used simultaneously to form a stream of the process liquid to be filtered. In this case, the stream to be filtered is formed by mixing the used/removed partial quantities from the different liquid streams of the process liquid.
Also practical is a variation of the embodiment in which the stream of the process liquid is formed for filtration by a membrane filtration system by switching between or mixing of different liquid streams of the process liquid from different conduction elements depending on measured values obtained by in-line measurements and/or random sample measurements. It can also be advantageous to recirculate a filtered stream of the process liquid into different conduction elements or treatment zones and/or feed it into a UV irradiation apparatus, depending on measured values obtained by in-line measurements and/or random sample measurements, by feeding or distributing the filtered stream of the process liquid into different liquid streams of the process liquid.
However, the aim of the invention is also achieved by providing a device for treating foods and/or treating containers for holding foods using a process liquid.
The device comprises at least one treatment zone for treating the foods and/or the containers, a means of transport for transporting the foods and/or containers through the treatment zone(s), and conduction elements holding and/or conducting process liquid for feeding liquid streams of the process liquid into a treatment zone and conduction elements for discharging liquid streams of the process liquid out of a treatment zone. The device further comprises additional conduction elements for holding and/or conducting the process liquid in the device and at least one conveying means for conveying liquid streams of the process liquid in the conduction elements, wherein the conduction elements are designed and arranged such that the process liquid for treating the foodstuffs can be at least partially recirculated back into the treatment zone or into the treatment zones.
In particular, the device comprises at least one UV irradiation apparatus and at least one membrane filtration system for cleaning and sterilisation of the process liquid by membrane filtration and UV irradiation. The at least one UV irradiation apparatus and the at least one membrane filtration system are operatively connected to the conduction elements and/or to the treatment zones such that at least some or all of the total process liquid conducted through all existing treatment zones per time unit is used to form at least one stream of the process liquid, the resulting stream or resulting streams are filtered by the at least one membrane filtration system and/or irradiated by the at least one UV irradiation apparatus and a filtered and/or irradiated stream of the process liquid can be fed into at least one conduction element and/or at least one treatment zone.
Such a device is particularly suitable for the cleaning and sterilisation of the process liquid. This allows a significant improvement to be achieved compared to previously known devices, which are of only limited or even of no use in removing small and micro-particles as well as viable and reproducing micro-organisms and germs from an at least partially recirculated process liquid. Cleaning and sterilisation using the UV irradiation apparatus(es) and the membrane filtration system(s) can advantageously be performed during ongoing treatment and is also comparatively efficient and energy-saving.
The additional preparation and cleaning of the process liquid by a membrane filtration system can markedly increase the effectiveness and efficiency of the UV irradiation apparatus(es), as the turbidity of the process liquid can be markedly reduced, preventing efficiency losses in the UV irradiation caused by UV light absorption, scattering, etc. Furthermore, a membrane filtration system per se is effective at removing micro-organisms, as a result of which the combination of membrane filtration and UV irradiation acts in synergy to clearly increase the efficiency of a reduction of reproducing micro-organisms. Particularly when so-called “ultrafiltration systems” are used, i.e. membrane filtration systems with filter membranes with pore diameters of approx. 0.2 □m or smaller, both inorganic and organic small and micro-particles, e.g. including bacteria colonies, can be effectively removed from the process liquid.
Both a UV irradiation apparatus and a membrane filtration system can in principle be connected on the inlet side both in series and in parallel with a conduction element holding or conducting the process liquid. In cases of a parallel connection, it can be an advantage to arrange at least one adjustable splitting means and/or multiple co-operating splitting means on the inlet side of a UV irradiation apparatus and/or a membrane filtration system for controlled removal of a specifiable process liquid quantity per time unit out of at least one conduction element holding or conducting the process liquid and for formation of a stream of process liquid to be irradiated and/or filtered. This design feature allows the partial quantity removed from a liquid stream of the process liquid per time unit to be controlled very precisely and adjusted to the particular immediate conditions.
Other advantages arising from the characteristics of the device have already been explained in more detail above in the description of the method that can be executed by the device, and a repeated explanation can be omitted at this point.
In a practical further development of the device, it comprises at least one heating means for heating the process liquid and one cooling means for cooling the process liquid. As a result of this, appropriately tempered liquid streams of the process liquid can be used to purposefully heat and cool the foods and containers.
The further characteristic that at least one treatment zone is designed for application of the process liquid on the outside of closed containers, wherein the process liquid flows around the outside of a closed container, is a particularly efficient construction characteristic for treating foodstuffs, since an already finished and filled trade product can be put out after the treatment. In addition, in this way the risk of recontamination of the foodstuffs in a filling zone placed after the treatment zone(s) can be precluded and/or a filling zone placed after the treatment zones is made superfluous.
In addition, it can be an advantage to arrange at least one treatment zone for heating the foods and/or containers, at least one treatment zone for pasteurising the foods, and at least one treatment zone for cooling the foods and/or containers in succession along the direction of transport of the foods or containers. This design can provide a device for treating foods and containers in which the food can be pasteurised particularly gently and damage to the pasteurised foods can be effectively prevented.
In an advantageous design variation it can be provided that at least one UV irradiation apparatus be operatively arranged immediately after a membrane filtration system such that a filtered stream of the process liquid can be irradiated by a UV irradiation apparatus immediately after membrane filtration. This can further increase the efficiency of the UV irradiation as a process liquid with particularly low turbidity can be prepared for the UV irradiation.
It can further be provided that a feeding element of a membrane filtration system be connected to a tempering-capable flow container for the process liquid. This way the temperature of a stream of process liquid to be filtered can be purposefully set and the filtration efficiency optimised.
It can further be advisable to design the device in such a way that the number and irradiation power of the UV irradiation apparatus(es) and the number and filtration capacity of the membrane filtration system(s) are fixed such that the total process liquid quantity drawn out of at least one element containing and/or conducting the process liquid per time unit for forming at least one stream of the process liquid during continuous treatment can be chosen such that the filtration and irradiation of the stream or the streams can achieve a removal rate of micro-organisms that is greater than the growth rate of the micro-organisms in the process liquid in the same time unit. These characteristics create a device in which the UV irradiation apparatus(es) and the membrane filtration system(s) can keep the total quantity of viable and reproducing micro-organisms in the process liquid as low as possible and an increase in the total quantity of micro-organisms in the process liquid during continuous treatment of the foods and/or containers is effectively prevented.
Another design of the device that can be advantageous is one in which, to recirculate an irradiated and/or filtered stream of the process liquid, draining elements out of at least one UV irradiation apparatus and/or out of at least one membrane filtration system are connected to at least one conduction element and/or at least one treatment zone in such a way that an irradiated and/or filtered stream of the process liquid can be fed into the conduction element(s) and/or the treatment zone(s) under the influence of gravity in free fall. This makes it possible for an additional conveying means for bringing in or away an irradiated and/or filtered stream of the process liquid to be made superfluous, resulting in a structurally simple to realise variation and an operationally efficient and cost-effective variation of the device.
For example, at least one UV irradiation apparatus and/or one membrane filtration system can be operatively connected on the inlet side to an opening in a treatment one such that an irradiated and/or filtered stream of the process liquid can flow off into the treatment zone. The opening in a treatment zone can be placed, for example, on an upper end of the treatment zone such that an irradiated and/or filtered stream of the process liquid can be at least partially fed into a liquid stream of the process liquid that is moved through a treatment zone before it acts on the foods and containers. On the other hand, however, it can also be practical to place such an opening at a lower end of the treatment zone to avoid unwanted, e.g. thermal influence of an irradiated and/or filtered stream on the foods and containers in the treatment zone.
Another advantageous design of the device can be provided by designing at least one treatment zone for rinsing the outside of closed containers filled with foodstuffs, which at least one treatment zone is placed at the end of the treatment zone line in the transport direction of the containers through the treatment zones and which is connected to at least one draining element of a UV irradiation apparatus and/or a draining element of a membrane filtration system in order to rinse the containers by feeding in an irradiated and/or filtered stream of the process liquid. This provides a treatment zone for the final cleaning of the outside of the containers using an irradiated and/or filtered stream of the process liquid in which the outside of the containers can be rinsed by a process liquid with very high purity and low germ content.
In regard to the membrane filtration system(s), a variation of the design in which a receiving container with an overflow is arranged in a draining element of a membrane filtration system can also be of advantage. This way a reservoir of process liquid can be collected and provided to be used for various purposes.
For the purposes of cleaning a membrane filtration system, it can for example be advisable to place closures in the feeding elements and draining elements to operatively separate the at least one membrane filtration system from the rest of the device and to place at least one conveying means in the receiving container and/or backflush piping stretching between the receiving container and the draining element of the membrane filtration system that is designed to transport the process liquid filtrate collected in the receiving container in the opposite direction—compared to the flow direction through the filter membranes during filtration—through the at least one membrane filtration system. In this way, a membrane filtration system can be cleaned through backflushing using the process liquid collected in the receiving containers during ongoing treatment by the device for treating the foods and containers. Thus e.g. blockages in a membrane and the closure of pores of a membrane can be prevented as much as possible without requiring an interruption of treatment by the device. When the filter membranes of a membrane filtration system are cleaned by backflushing, it can also be advisable to place a UV irradiation apparatus between a membrane filtration system and a receiving container. This permits UV irradiation of the process liquid collected in the receiving container during a backflushing/cleaning process for a membrane filtration system and allows a backflushing liquid with particularly low germ content to be used for backflushing the filter membranes.
It can further be practical to discharge the liquid waste accrued in the course of cleaning by reversing the flow direction through the filter membranes of the membrane filtration system, to assign at least one closable liquid waste line to the membrane filtration system, and to place at least one closable feed device in the device to replace the discharged liquid waste with fresh process liquid. This makes it possible to discharge the liquid waste directly from the device for treating foods and containers and replace it with a corresponding quantity of fresh process liquid.
It can also be useful to place a dispensing device in a draining element and/or in the backflush piping of the at least one membrane filtration system through which the process liquid or the process liquid collected in a receiving container can be admixed with chemicals from one or more chemical sources both during filtration and when cleaning the membrane filtration system. By installing a dispensing device connected to the chemical source(s), chemicals like chloride, surfactants, and other active chemicals can be admixed with the process liquid as needed both during filtration and when cleaning a membrane filtration system.
In addition to the inclusion of at least one UV irradiation apparatus and/or one membrane filtration device, a design of the device in which an adsorption device is included can be advantageous. In this way unwanted, uncoagulated parts can also be removed from the process liquid that cannot be removed by a membrane filtration system. For example, carbon compounds can be removed from the process liquid using activated charcoal in such an adsorption device.
For better process security, it can be useful to place sensors in conduction elements and/or in treatment zones for continuous monitoring of the degree of contamination, especially by measuring the turbidity of the process liquid. This way the degree of contamination of the process liquid can be recorded and continuously monitored at least in sections. Inclusion of such sensors is helpful for, among other things, evaluating the efficiency of the UV irradiation apparatus(es). Through continuous monitoring of the turbidity of the process liquid at different points or in different zones of the device for treating foods and/or containers, sources of contamination can also be localised and targeted counter-measures can be introduced if needed.
Another advantageous design can be formed by assigning at least one switching means to a feeding element of a membrane filtration system that is operatively connected to at least two different conduction elements holding the process fluid in such a way that the stream of process liquid to be filtered can be formed as desired either from one of the liquid streams or multiple liquid streams of the process liquid in the conduction elements or from multiple liquid streams of the process liquid. This allows the membrane filtration system to be switched on the inlet side to different sources of the process liquid to form a filtered stream. In this way, for example, quick and efficient reactions are possible to zone-specific fluctuations in quality and degree of contamination of the process liquid, especially to fluctuations in the particle concentration.
Another design that is of advantage can be formed by assigning at least one mixing means to a feeding element of a membrane filtration system that is operatively connected to at least two different conduction elements holding the process fluid in such a way that a stream of process liquid to be filtered can be formed as desired either from one of the liquid streams or multiple liquid streams of the process liquid in the conduction elements or a stream of the process liquid to be filtered by the membrane filtration system can be formed by removing and mixing specifiable partial quantities from multiple liquid streams of the process liquid. This allows simultaneous removal of partial quantities of process liquid from different conduction elements and the formation of a stream of the process liquid to be filtered by mixing the removed partial quantities of process liquid.
However, it can also be advisable to assign at least one switching means to a draining element of a membrane filtration system that is operatively connected to at least one conduction element holding process liquid and/or at least one treatment zone and/or a UV irradiation apparatus in such a way that feeding a filtered stream of the process liquid into the at least one conduction element and/or the at least one treatment zone and/or the irradiation apparatus can be controlled. In this way a filtered stream of the process liquid can be fed as needed into one or more conduction element(s) and/or one or more treatment zone(s) and/or one or more UV irradiation apparatuses. This can be practical, for example, to set specific temperatures in sections for the process liquid in the device for treating foods and containers.
However, another design variation can be of advantage in which at least one splitting means is assigned to a draining element of a membrane filtration system which is operatively connected to at least one conduction element holding the process liquid and/or at least one treatment zone and/or a UV irradiation apparatus in such a way that feeding a filtered stream of the process liquid into the at least one conduction element and/or the at least one treatment zone and/or the at least one UV irradiation apparatus can be controlled or specifiable quantities of the filtered stream of process liquid can be fed into the at least one conduction element and/or the at least one treatment zone and/or the at least one UV irradiation apparatus.
Finally, the aim of the invention is also achieved by using a membrane filtration system and a UV irradiation apparatus for continuous cleaning and sterilisation of a process liquid in a device for treating foods and containers for holding foods using the process liquid. This way the process liquid in the device for treating foods and containers for holding foods can be continuously cleaned and sterilised in a particularly efficient way.
To facilitate better understanding of the invention, it will be explained in detail using the figures below.
Extremely simplified, schematic depictions show the following:
In introduction, let it be noted that in the variously described embodiments, identical parts are provided with identical reference signs or identical part names, and that the disclosures contained in the description as a whole can be carried over analogously to identical parts with identical reference signs or identical part names. Likewise, positional information selected in the description, e.g. above, below, on the side, etc. refer to the directly described and depicted figure and if the position is changed, this positional information carries over analogously to the new position.
The containers 2 can be transported through the treatment zones 4 using suitable means of transport 10 such as conveying means belts or the like, e.g. on two levels from left to right as shown in
Alternately to the embodiment shown in
In the example embodiment shown in
To feed a liquid stream 5 of the process liquid 3 into the relevant treatment zone 4, conveying means 11 can be assigned to the treatment zones 4 as can be seen in the flow diagram depicted in
The example embodiment of a flow diagram of a device 1 shown in
Other methods for treating the foods and containers are also conceivable alternately or additionally to the example embodiments shown in
To cool the process liquid 3, the process liquid 3 can be fed into the cooling means 13 as shown in
As can further be seen from
Of course, the example embodiment shown in
The UV irradiation apparatus 47 and the membrane filtration system 19 shown as examples in
In principle, any given liquid stream 5 of the process liquid can be used to form a stream 20 of the process liquid to be filtered and/or irradiated and/or partial quantities of the process liquid can be taken from any liquid stream 5 to form a stream 20. Likewise, a filtered and/or conducted stream 46, 48 of the process liquid can in principle be returned to any conduction element 8 for the process liquid and/or to any treatment zone 4. However, certain variations of incorporating one or more membrane filtration system(s) 19 and/or UV irradiation apparatus(es) 47 offer advantages that are explained in more detail below using additional example embodiments depicted in the figures.
In the excerpts of the example embodiment shown in
The membrane filtration system 19 shown by way of example in
In the example embodiment shown in
The treatment zone 4 shown on the left in
As indicated in
As is further shown in
Alternatively to the example embodiment shown in
A UV irradiation apparatus suitable for executing the method or for use in the device can in principle be designed in a variety of ways. It is presupposed as generally known that UV irradiation apparatuses with radiation sources that radiate or consist of UV light with a wavelength equal to or smaller than 254 nm are particularly effective. In particular, this so-called UVC light breaks molecular bonds in the DNA of micro-organisms, killing the micro-organisms or at least converting them into a harmless, non-reproducing state. Mercury vapour lamps or amalgam lamps are often used as UVC radiation source(s).
It is preferable for UV irradiation apparatuses to be placed in the device that are intended to flow through the liquid to be irradiated and sterilised, i.e. that are designed as flow apparatuses. Such UV irradiation apparatuses can e.g. comprise a chemical-resistant sheath, made e.g. of rust-proof stainless steel, inside which the UVC radiation source(s) is placed. The sheath can have at least one feeding element and at least one draining element so that the liquid to be sterilised can be fed through the inside of the UV irradiation apparatus or the internal space defined by the sheath and irradiated. The radiation source(s), e.g. medium pressure mercury vapour lamp(s) can or could, for example, be placed in a quartz glass sleeve in the internal space of the UV irradiation apparatus defined by the sheath so that the liquid being irradiated flows around the radiation source(s). Alternately, it can also be provided that the liquid to be irradiated be conducted into the internal space of a UV irradiation apparatus in one or more UV-transparent conduit(s) and irradiated by the radiation source(s) from outside. These kinds of UV irradiation apparatuses are in principle known in the prior art.
It is important here for the irradiation power of a UV irradiation apparatus to be selected so that an effective, germ-reducing dose of the UVC radiation can be applied to the liquid to be irradiated. The effectiveness of a UV irradiation apparatus in regard to reducing germ content is directly dependent on the applied UV dose. The UV light dose is a product of the UV light intensity and irradiation time. Therefore the UV dose of a UV irradiation apparatus depends, among other things, on factors like the flow rate and speed of the liquid through the UV irradiation apparatus, UV translucence, and the turbidity of the liquid. When it comes to long-term effectiveness, however, the formation of deposits on the radiation source and decreasing radiation intensity with increasing lamp age must also be taken into account. It can therefore be practical for the UV irradiation apparatus to include monitoring devices that monitor the radiation output/intensity of the radiation source(s) so that a radiation source can be replaced if the radiation intensity is no longer sufficient.
In regard to the penetration depth of the UVC radiation into the liquid being irradiated, elements can for example be placed in the internal space of the sheath of a UV irradiation apparatus through which a stream conducted through the UV irradiation apparatus can be manipulated. For example, dividing a stream conducted through a UV irradiation apparatus can be useful or specially guiding it through redirecting elements in the internal space of the sheath of the UV irradiation apparatus. In addition, reflecting elements can be useful for better distribution of the UV radiation in the liquid flowing through.
It is preferable for the number and irradiation power of the UV irradiation apparatus(es) 47 and the number and filtration capacity of the membrane filtration system(s) 19 in the device 1 to be fixed or designed such that the total process liquid quantity drawn out of at least one conduction element 8 holding and/or conducting the process liquid per time unit for forming at least one stream 20 of the process liquid 3 during continuous treatment can be chosen such that the filtration and UV irradiation of the stream 20 or the streams 20 can achieve a removal rate of micro-organisms that is greater than the growth rate of these micro-organisms in the process liquid 3 in the same interval or time unit.
It is preferable to feed an irradiated and/or filtered stream 46, 48, 49 of the process liquid into a treatment zone 4 and/or a conduction element 8 without conveying means 11. For this purpose, it can be useful for the draining elements 24 of a UV irradiation apparatus 47 and/or of a membrane filtration system 19 to be connected e.g. to a treatment zone 4 in such a way that at least one filtered and/or irradiated stream 46, 48, 49 of the process liquid can be fed into the treatment zone 4 under the influence of gravity, in free fall. Such an example embodiment is shown in
Alternately to the design depicted in
Alternately to the design depicted in
Also alternately to the design depicted in
As already explained in detail, during filtration the membrane filtration system 19 as per the example embodiment in
The filter membrane modules 31 shown in
The example embodiment shown in
The example embodiment shown in
In the example embodiment shown in
To run a cleaning mode for the filter membrane modules 31, closures 34 are placed in the feeding elements 22 and the draining elements 24 that permit mechanical separation of the membrane filtration system 19 from the other structural elements of the device for treating foods and containers. In addition, at least one conveying means 11 is placed in the receiving container 32 and/or a backflush line 35 extending between the receiving container 32 and the draining elements 24 of the membrane filtration system 19. This way appropriate switching of the three-way valves 29 can reverse the flow direction in the membrane filtration system 19 such that the process liquid 3 flows through the filter membrane modules 31 in the reverse direction 36 than in filtration mode. To drain the liquid waste accrued in the course of cleaning by reversing the flow direction through the filter membranes of the membrane filter system 19, the member filter system 19 is assigned at least one closable liquid waste line 37. A quantity of fresh process liquid 3 equal to the drained quantity of liquid waste can, for example, be provided by the feeding device 17 for fresh process liquid 3 shown in
As further shown in
In connection with the cleaning of the filter membranes of a membrane filtration system 19 by backfiushing it can also be advisable to arrange a UV irradiation apparatus 47 between a membrane filtration system 19 and a receiving container 32, as is shown by way of example in
The measured values of the sensors 41 can be used to assign a UV irradiation apparatus 47 and/or a membrane filtration system 19 to different treatment zones 4 or conduction elements 8 for liquid streams of the process liquid via switching means and directing elements, as shown by way of example in
To switch a membrane filtration system 19 or UV irradiation apparatus 47 to different conduction elements 8, the feeding elements 22 of a UV irradiation apparatus 47 and/or a membrane filtration system 19 can, for example, each be assigned two switching means 42, 42, as shown in
A suitable alternative to the example embodiment shown in
In
Instead of switching means 42, a feeding element 22 of a UV irradiation apparatus 47 and/or a membrane filtration system 19 can also be assigned two mixing means 43, 43 as indicated in
Of course, a UV irradiation apparatus 47 and/or a membrane filtration system 19 can also be assigned more than two switching means 42 and/or mixing means 43, which can accordingly be connected to more than two conduction elements 8. The measured values of the turbidity measurement sensors 41 can, for example, be used to feed a process liquid with relatively low turbidity directly into a UV irradiation apparatus 47. On the other hand, a relatively strongly contaminated or turbid process liquid can be fed into a membrane filtration system 19 based on the turbidity monitoring.
For this purpose, the three switching means 44, 44, 44 in
Instead of switching means 44, a draining element 24 of a membrane filtration system 19 can also be assigned three splitting means 45, 45, 45 as indicated in
The UV irradiation apparatus 47 depicted in
The example embodiments show possible variations of the method and the device for treating foods and/or containers; let it be noted at this juncture that the invention is not limited to the specially portrayed variations of embodiments themselves, but that diverse combinations of the individual variations of embodiments are possible and that this possibility of variation falls within the competence of a person active in this technical field based on the teaching regarding technical action provided by this invention.
Furthermore, individual characteristics or combinations of characteristics from the depicted and described various example embodiments can constitute independent inventive or invented solutions.
The aim underlying the independent invented solutions can be taken from the description.
All information regarding ranges of values in this description should be understood to mean that these include any and all partial ranges, e.g. the statement 1 to 10 should be understood to mean that all partial ranges starting from the lower threshold 1 and the upper threshold 10 are included, i.e. all partial ranges begin with a lower threshold of 1 or larger and with an upper threshold of 10 or less, e.g. 1 to 1.7 or 3.2 to 8.1 or 5.5 to 10.
Above all, the individual embodiments shown in
As a matter of form, let it be noted that, to facilitate a better understanding of the design of the device for treating foods and/or containers, these and their components have in places been portrayed not to scale and/or enlarged and/or scaled-down.
Number | Date | Country | Kind |
---|---|---|---|
A 50935/2014 | Dec 2014 | AT | national |
A 50646/2015 | Jul 2015 | AT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/AT2015/050327 | 12/22/2015 | WO | 00 |