The content of Application No PCT/CH2004/000101, filed Feb. 25, 2004 in Switzerland is incorporated here by reference.
The present invention relates to a method for processing induced voltage signals supplied by measurement turns arranged on a synchronous machine, and also to the associated device, which make it possible to detect and measure the stator and rotor errors in the magnetic circuits of said synchronous machine.
In a synchronous machine with salient poles which has a large number of poles, the air gap, that is to say the space between the rotor and the stator, is extremely small with respect to the outer diameter of the rotor of the machine. For this reason, it is virtually impossible to ensure perfect centering of the rotor in the stator.
Moreover, the stator has the overall shape of a hollow cylinder with a wall of very small thickness compared to the diameter of the rotor, and is fixed to the carcass of the machine at a number of anchoring points. Consequently, the stator represents the smallest mechanical structure of the machine; it is therefore susceptible to deformation.
A rotor of very large diameter, despite dynamic balancing, may have a residual unbalance. Moreover, this rotor consists of a large number of poles which each have a field coil. After a certain period of use of the machine, there is a risk of a partial short-circuit of one or more of these field coils.
The aforementioned stator and rotor errors in the magnetic circuits give rise to a non-uniform distribution of the induction below each pole, thus creating considerable magnetic forces which may be up to several hundred tons and can cause in some cases sticking of the rotor in the stator, leading to considerable damage to the machine.
In order to control these errors, most existing monitoring devices use capacitive sensors to measure the air gap of the machine at several locations on the inner periphery of the stator. These devices have two major drawbacks:
In the publication “Luftspaltüberwachung von Vollpol-synchrongeneratoren unter Berücksichtigung paralleler Wicklungszweige”, published in “Electrical Engineering Vol. 78; No. 1; December 1994; pp. 29-31; by M. W. Janssen”, the author proposes the use of measurement turns placed at the stator of the machine to capture the flux in the air gap so as to study the damping factor due to the damping winding and to the parallel branches of the armature winding. This study is limited to determining this damping factor and does not propose any solution for determining the actual value of the eccentricity, nor the non-compensated attraction effect which results therefrom.
A first object of the invention is therefore to propose an improved method for processing signals measured on the machine, which makes it possible to determine the type and value of the stator and rotor errors in the magnetic circuits.
Another object of the invention is to propose an improved device for continuously monitoring and processing signals measured on the machine, which makes it possible to determine the type and value of the stator and rotor errors in the magnetic circuits.
These objects are achieved by a method as described in claim 1 and by a device as described in claim 11, particular embodiments being described in the dependent claims.
One particular embodiment of the method according to the invention and of the associated device according to the invention are described below, this description being given with reference to the appended drawing which comprises the following figures, in which:
When the machine does not have any errors and is perfectly centered, the induction in the air gap of the empty machine, as shown in
in which:
vBmax amplitude of the vth-order harmonic
vΦB: phase of the vth-order harmonic
αr: geometric angle in a universal set related to the rotor
It can be seen that, in addition to the vth-order fundamental=p, p being the number of pairs of poles of the machine, the induction curve has higher-order harmonics due to the recessing of the stator and to the salience of the poles of the rotor.
When the rotor rotates at a constant angular speed Ω, the induction in the air gap as a function of the angle αs in a universal set related to the stator can be written:
The aforementioned stator and rotor errors in the magnetic circuits, regardless of whether these are mechanical such as an eccentricity or deformations or electrical such as one or more insulation errors in the field coils, give rise to a non-uniform distribution of the induction below each pole, thus creating considerable magnetic forces which may be up to several hundred tons and can cause in some cases sticking of the rotor in the stator, leading to considerable damage to the machine.
It should be noted that there is generally a combined eccentricity resulting from the juxtaposition of a static eccentricity and a dynamic eccentricity.
It can be seen that, in the examples shown in FIGS. 3 to 5, the air gap of the machine is not constant but rather varies as a function of the angle αs and as a function of time. This variation gives rise to a modulation of the induction in the air gap, according to the laws which will be explained below.
In the general case where the bore, respectively the stator, is deformed and where the center of rotation of the rotor can move with respect to the stator, the induction in the air gap satisfies the following equation:
B(αs)=Bi(αs)·Λα(αs)·Λr(αs) [3]
in which:
where:
ηΛa max: amplitude of the stator-related error harmonic
ηΦΛa: phase of the stator-related error harmonic
η: order of the stator-related error harmonic
where:
KΛr max: amplitude of the rotor-related error harmonic
KΦΛ: phase of the rotor-related error harmonic
K: order of the rotor-related error harmonic
By replacing [2], [4] and [5] in [3], the following is obtained:
The image of the induction in the air gap may be captured by installing a plurality of individual measurement turns or loops which are distributed along the periphery of the stator, these individual turns each surrounding a portion of the yoke of the stator by passing successively into the air gap of the machine and into the ventilation slots, as seen in
Said figure shows a portion of the stator 10 comprising a number of teeth 100 separated by the recesses 101. Over the length of the stator, there are a number of ventilation slots 102 which make it possible to discharge the heat produced during operation of the machine. A measurement loop 2, in this case comprising a single turn 20, has been installed as mentioned above on this portion of the stator. A number of measurement loops 2 as above are regularly arranged around the periphery of the stator. Given that it involves measuring an induced voltage u which is said to be an image of the induction B(αs) at the measurement location, other arrangements of the measurement loop 2 may also be envisaged, for example with said loop surrounding one or more teeth 100. In this case, the induced voltage which is measured will remain an image of the induction in the air gap at this location and will not differ from the following equations or relations other than by a constant coefficient.
If an arrangement as shown in
u=B(αs)·V·L [7]
in which
Under these conditions, the induced voltage u at the terminals of the turn is directly the image of the induction in the air gap.
By replacing the expression [6] of B(αs) in [7], the following is obtained:
If αsi is the angular position of the turn i on the periphery of the stator, the induced voltage at the terminals of this turn i is given by:
Processing of the induced voltage signals at the terminals of the measurement turns makes it possible to deduce the variation in the air gap of the machine as a function of the angle αs and as a function of time.
In order to be able to be processed, the signals ui, respectively u1, u2 and u3, are firstly sent to filtering means 30 which form part of processing means 3 shown in
fn=p·Ω/2π [10]
p: number of pairs of poles of the machine
The filtered signals uf1, uf2 and uf3 are sent to envelope extraction means 31 which are shown in
The signals ei at the output of the envelope extraction means 31 appear in the form:
From equation [12], it can be seen that, for a given value αsi, ei depends only on time.
The temporal mean value eim of these signals, calculated over a period of rotation of the machine, is equal to:
Let ems be the spatial mean value of the temporal mean values eim of all the turns installed on the periphery of the machine
The errors related to the stator magnetic circuit are consequently determined by
Likewise, the errors related to the rotor can be deduced from [12] and [13]:
It will be noted that the function Λr(αs) is the same for any of the measurement turns. Consequently, a simplified measurement device, which is able to measure only this function, respectively only an error concerning the rotor, could comprise just a single measurement turn or loop arranged at a single location on the periphery of the stator.
Knowing the distribution of the induction in the air gap and also the design values such as the axial length La and the bore radius R, it is easy to then determine the magnetic force F between the stator and the rotor of the machine over a portion of or over the entire bore from the magnetic pressure per unit surface σ:
σ=B2/2μ0 [17]
and
F=La·R·∫α
Referring to
These results make it possible for a computer 33 to calculate the types and values of the errors of the synchronous machine and also the non-compensated radial magnetic force which results therefrom according to relations [1] to [18] given above.
Thus, harmonic analysis of the function eim/ems from [15] makes it possible to determine the errors coming from the stator, whereas that of the function ei/eim from [16] makes it possible to determine the errors coming from the rotor. In general, the order of the harmonic determines the type of error whereas the amplitude of the harmonic determines the amplitude of the error.
In the case of analyzing stator-related errors, the presence of a 1st-order harmonic indicates a static eccentricity between the rotor and the stator, as shown in
In the case of analyzing rotor-related errors, the presence of a 1st-order harmonic indicates a dynamic eccentricity between the rotor and the stator, as shown in
The presence of a higher-order harmonic indicates an error related to the excitation circuit, the amplitude of this harmonic indicating the relative value of this error with respect to the mean induction in the air gap.
An eccentricity of the rotor relative to the stator gives rise to the appearance of a considerable non-compensated magnetic force. Therefore, the presence of a 1st-order harmonic, when analyzing both stator-related errors and rotor-related errors, indicates that the rotor is subject to a non-compensated magnetic force. From relations [17] and [18], it is possible to determine the value of this force, knowing the dimensions of the rotor and also the induced voltages ui which are the images of the induction at the measurement location.
Usually, analysis of the stator-related errors and rotor-related errors reveals the presence of a number of harmonics, thereby indicating the simultaneous presence of several types of error on the machine.
As mentioned above, the presence of an error of one or the other of these types gives rise to a non-uniform distribution of the induction below each pole, thus creating considerable magnetic forces which may be up to several hundred tons and can cause in some cases sticking of the rotor in the stator, leading to considerable damage to the machine. Consequently, the detection of one or the other of these errors may give rise to an alarm which stops the machine automatically or upon intervention by the operator.
This device comprises measurement means 2 comprising a number of measurement turns or loops 20 distributed around the periphery of the stator, signal processing means 4 according to the invention and also communication means 5 which can transmit the measurement results to outside the machine. The three aforementioned means 2, 4 and 5 are supplied with power by power supply means 6 which are able to supply the necessary power to the device, this power possibly coming from outside the machine via power supply cables or being taken directly on the machine by capturing the magnetic flux that is produced.
The signal processing means 4 of the device mounted on the machine and shown in
This device may be supplemented by means (mentioned above and not shown in the figure) which can generate and transmit an alarm, this alarm possibly serving to stop the machine.
The installation of two identical monitoring devices as described above at each axial end of a synchronous machine furthermore makes it possible to monitor the parallelism between the axes of the stator and rotor.
Number | Date | Country | Kind |
---|---|---|---|
03004796.3 | Mar 2003 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH04/00101 | 2/25/2004 | WO | 7/26/2006 |