Method and device for treating surfaces using a glow discharge plasma

Information

  • Patent Application
  • 20030185982
  • Publication Number
    20030185982
  • Date Filed
    March 21, 2003
    21 years ago
  • Date Published
    October 02, 2003
    21 years ago
Abstract
In a process for treating a surface with the aid of a glow discharge plasma sustained in a gas of substantially ambient pressure between two electrodes (10, 10′) unwanted effects of plasma filaments occurring in such a plasma are prevented by positioning the surface (17) to be treated in an edge region (14′) of the plasma, i.e. on one side of a plasma space (14) defined by the electrode faces (11, 11′) beyond a pair of aligned edges (13, 13′) of the electrode faces (11, 11′), at a distance of a few millimeters from these edges (13, 13′) and facing these edges (13, 13′). The treatment gas or treatment gas mixture is fed to the plasma space (14) from a second side opposite the edge region (14′) in which the surface (17) to be treated is positioned. During treatment a substrate (16) whose one surface (17) is to be treated is either stationary or is advanced in a direction substantially perpendicular to the electrode faces (11, 11′), e.g. on the circumferential surface of a correspondingly arranged rotating drum.
Description


[0001] The invention concerns a method and a device according to the generic part of the corresponding independent claims. Method and device according to the invention serve for treating surfaces with reactive particles generated in a glow discharge plasma, in particular for treating surfaces being highly sensitive to thermal loading. The plasma used in the inventive method and device is a so called one atmosphere glow discharge plasma, i.e. a plasma sustained in a gas at pressures in the range of ambient pressure (ca. 0.5 to 1.5 bar or 50,000 to 150,000 Pa).


[0002] Glow discharge plasmas are sustained in a gas e.g. with the aid of an alternating electric field of a suitable voltage and frequency by which the gas is partially ionized to contain ions and electrons in addition to neutral atoms, molecules and radicals. The glow discharge plasma is usually sustained between two plate electrodes being correspondingly energized and having two substantially parallel electrode faces between which the plasma is located.


[0003] Surfaces are treated with reactive particles produced in a glow discharge plasma in order to e.g. change the surface energy (change of wettability), in order to sterilize the surface, in order to etch the surface or in order to deposit a material layer on the surface. The gas or gas mixture to be broken down in the plasma and possibly the plasma parameters are selected according to the desired effect of the plasma treatment.


[0004] Usually, the gas or gas mixture to be broken down in the plasma for the above mentioned surface treatment processes has a reduced pressure in the order of 1 mbar (100 Pa) or less and the surface to be treated is either exposed to the plasma directly by being positioned between the two electrodes (direct plasma treatment) or it is positioned away from the plasma and the gas is made to flow from between the electrodes onto the surface to be treated (remote plasma treatment). Remote plasma treatment is chosen e.g. for geometric reasons, for shielding the surface to be treated from the light emission in the plasma or for surface treatment with a selection only of the reactive particles occurring in the plasma (selection of longer living particles).


[0005] Reduced pressure glow discharge plasma has a relatively low power density and a high uniformity. Therefore, it is highly suited to treat surfaces sensitive to thermal loading. However, as the pressures used are very low, devices suitable for such surface treatment need to be vacuum tight and are correspondingly complicated and costly in particular if large surfaces as for instance webs of film are to be handled or if large amounts of items are to be handled with relatively short cycle times (without venting of a plasma chamber in each treatment cycle).


[0006] One exemplified application of surface treatment with the aid of a plasma is a process in which thin plastic film (of e.g. low density polyethylene, polypropylene, amorphous or biaxial oriented polyester, cast or biaxially oriented polyamide with a film thickness of e.g. 80 μm) is coated with a layer of silicon oxide in order to reduce the gas permeability of the film (barrier layer). The process is a plasma enhanced vapor deposition process and the gas mixture contains beside oxygen and an inert gas e.g. a vaporized organosilicon compound. Similar processes are used for depositing barrier layers of silicon nitride, silicon carbide or carbon (amorphous or crystalline). For the coating with carbon the treatment gas mixture contains light hydrocarbons such as methane, ethylene, ethane etc.


[0007] For carrying out such processes, e.g. a rotating drum serving as one electrode and a counter electrode with a correspondingly concave electrode face are arranged in a vacuum chamber and the plastic web is advanced between the two electrodes being positioned on the rotating drum while the gas mixture is fed to the space between the two electrodes. Usually, both a feed roll of film as well as a web roll for taking up the coated web are positioned within the vacuum chamber also.


[0008] It is also known that glow discharge plasmas can be sustained in gases at substantially ambient pressure. Plasma sustained in air of ambient pressure is used for producing ozone. For this process it does not matter that such one atmosphere plasmas are highly filamentary which however renders them unsuitable for surface treatment, in particular for treatment of sensitive surfaces. In the publications U.S. Pat. No. 5,387,842, U.S. Pat. No. 5,456,972, U.S. Pat. No. 5,403,453 and U.S. Pat. No. 5,414,324 which are included here by reference, the University of Tennessee Research Corporation discloses methods for producing more uniform one atmosphere glow discharge plasmas (plasmas sustained in a gas of substantially ambient pressure). The uniformity of these plasmas is achieved by carefully matching voltage and frequency to the character and the pressure of the used gas or gas mixture. According to the disclosure, such plasmas are suitable for treating surfaces by positioning the surface to be treated between two correspondingly energized plate electrodes.


[0009] However, it shows that the uniformity of such one atmosphere plasmas is very sensitive to small parameter changes (power, frequency, gas composition, gas pressure, geometry etc.) such that it is hardly possible to sustain such a plasma in a continuously working system over a longer period of time strictly without filaments. According to the later publication of the University of Tennessee Research Corporation (WO-99/40758), “it becomes difficult to prevent occasional plasma filaments from developing at the edges of the workpiece, the electrode edges, or the edges of the web when a workpiece is directly exposed to the plasma”, i.e. when the workpiece is positioned between the two plate electrodes. Such occasional filaments become particularly troublesome in the above named barrier coating application in which each filament punches a hole into the plastic film resulting in a hole in the produced barrier coating also and therefore resulting in a leak which, even if microscopically small, outweighs the effect of the barrier layer over a large area of the coated surface. Therefore, it seems hardly possible to achieve top quality barrier properties in a direct plasma treatment using a one atmosphere plasma.


[0010] For this reason, the named publication WO-99/40758 suggests to treat surfaces with reactive particles generated in a one atmosphere glow discharge plasma in remote plasma processes, in particular in the case of thin and heat-sensitive plastic films and fabrics. However this again renders a device for carrying out the process more complicated and restricts the availability of some of the reactive particles, in particular the availability of very short lived such particles.


[0011] It is the object of the invention to create a method and a device for surface treatment using a one atmosphere glow discharge plasma which method and device are to reduce the disadvantage of direct plasma exposure as used according to the state of the art (exposure between the electrodes) without the complications of remote exposure as used according to the state of the art. Method and device according to the invention are to be suitable in particular for treating a surface of thin plastic film material, in particular for coating such film material in form of a web with a barrier layer. Method and device according to the invention are to be simple and are to allow high quality treatment, in particular treatment without the negative effects of plasma filaments.


[0012] This object is achieved with the method and the device as defined in the claims.


[0013] According to the inventive method the surface to be treated is not positioned in the space between the two plate electrodes used for sustaining the plasma but just outside of this space, i.e. to one side of the space between the electrode faces, beyond two aligned edges of the electrode faces, at a small distance from these edges and facing these edges. This means that the surface to be treated is positioned in an edge region of the plasma in which the alternating electric field has still a power density sufficient for sustaining the plasma but in which the field lines do not extend at right angles to the electrode faces but are curved between the two aligned edges of the two electrode faces (fringing field).


[0014] The treatment gas or treatment gas mixture is advantageously fed to the space between the electrode faces from an edge region opposite to the location of the surface to be treated and is flown towards the surface to be treated.


[0015] The inventive device comprises two plate electrodes. These are temperature controlled, i.e. kept at a predetermined temperature (−80 to 300° C.) and they have a dielectric coating of high dielectric strength (10 to 80 kV/mm). The faces of the two electrodes are facing each other substantially in parallel and have at least one pair of. aligned edges. The device further comprises means for energizing the two plate electrodes with an alternating voltage suitable for braking down a treatment gas or treatment gas mixture at substantially ambient pressure to form a plasma in the space between the electrode faces. This plasma visibly extends not only in the space between the electrode faces but also in an edge region protruding beyond pairs of aligned edges of the electrode faces. The device further comprises positioning means for positioning a substrate with a surface to be treated such that the named surface is located in an edge region of the plasma and is facing towards the space between the electrodes. The feed means for feeding the treatment gas or treatment gas mixture to the space between the two electrode faces advantageously from a side of this space opposite to the position of the surface to be treated.


[0016] The surface to be treated may be positioned at any angle relative to the electrode faces. Advantageously it is positioned substantially perpendicular to the electrode faces, in parallel with a pair of aligned edges of the two electrode faces and at a small distance of a few millimeters (1 to 10 mm) from these. A small surface to be treated may be positioned stationary in this edge region of the plasma for a time sufficient for the desired plasma treatment. A larger surface is advantageously advanced continuously in a direction substantially perpendicular to the electrode faces and at a speed sufficiently small for exposing each part area of the surface to be treated to the plasma for a time sufficient for the desired plasma treatment.


[0017] If the substrate to be treated is a web of film material it is advantageous to design the positioning means of the inventive device as a rotating drum and advancing the web positioned on the circumferential surface of the drum through the edge region of the plasma space. The electrode pair is arranged relative to this drum such that the electrode faces extend substantially radially from the drum and the aligned pair of edges of the two electrode faces extends parallel to the drum axis at a length corresponding at least to the width of a web to be treated. The distance between the circumferential surface of the drum and the aligned edges of the electrode faces facing towards the drum is chosen such that the substrate being positioned on the drum is advanced through the edge region of the plasma space, i.e. at a few millimeters distanced from the aligned edges. At least the circumferential surface of the rotating drum is made of an electrically insulating material. A metal drum body is electrically grounded, floating or kept at a predetermined voltage by suitable means. Furthermore, the drum has a controlled temperature suitable for the material to be treated.


[0018] Experiments show that positioning a surface to be treated as described above in the edge region of the plasma space (fringing field) reduces damage caused by plasma filaments drastically and still allows treating speeds (e.g. deposition rates) which are in the same order of magnitude as for plasma exposure between the electrodes.


[0019] When coating a thin plastic film with a barrier layer of e.g. silicon oxide, silicon nitride, silicone carbide or carbon (amorphous or crystalline) according to the inventive method the coated film material has a constant and high barrier quality. The constancy of the barrier quality is thought to be due to the absence of plasma filaments in the edge region of the plasma space in which the surface to be treated is exposed to the plasma. Thanks to the absence of plasma filaments, damage to the substrate and the coating is prevented and deposition is highly regular.


[0020] For a surface treatment necessitating a relatively long exposure time, it is advantageous to arrange a plurality of electrode pairs in succession around the section of the drum circumferential surface carrying the web to be treated and such to carry out the plasma treatment in successive treatment steps. It is possible also to vary the gas or gas mixture used in the successive treatment steps and such achieving a multistep treatment consisting of e.g. a surface pretreatment step followed by a plurality of coating steps in which a plurality of different layers is deposited on top of each other on the substrate surface.


[0021] However, the inventive method is not only applicable for coating surfaces in a plasma enhanced deposition process but also in other plasma enhanced processes such as e.g. per se known processes for modification of surface energy in order to improve wetability, ink printing or subsequent coating or processes for decontaminating, cleaning or sterilizing surfaces, in particular heat-sensitive surfaces.






[0022] The inventive device is described in detail in connection with the following Figures, wherein:


[0023]
FIG. 1 shows schematically a plasma sustained between two plate electrodes and the position of a surface to be treated according to the inventive method as well as an advantageous position for the gas feed means;


[0024]
FIG. 2 shows schematically an exemplified embodiment of the inventive device designed for plasma treating one surface of a web in a continuous process;


[0025]
FIG. 3 shows schematically a further exemplified embodiment of the inventive device designed for a multistep treatment of one surface of a web.






[0026]
FIG. 1 shows the principle of the inventive method. Between two plate electrodes 10 and 10′ with two electrode faces 11 and 11′ being arranged substantially parallel to each other at a distance d between each other a plasma is lighted and sustained by energizing the electrodes with per se known suitable energizing means 12 comprising e.g. power supply, high voltage transformer and matching network. The electrode faces 11 and 11′ have aligned edges, in particular one pair of such aligned edges 13 and 13′. The aligned edges of the two electrode faces define a plasma space 14 between them, whereby the plasma sustained between the two electrode faces 11 and 11′ visibly protrudes over pairs of aligned edges 13 and 13′ of the electrode faces in edge regions 14′ (fringing field).


[0027] The device further comprises means for feeding a treatment gas or treatment gas mixture to the plasma space 14, 14′ and means for positioning a substrate 16 with a surface 17 to be treated. The positioning means is designed for positioning the surface 17 to be treated within an edge region 14′ of the plasma space and facing towards the space between the electrodes 10 and 10′. Advantageously the surface 17 to be treated is positioned substantially perpendicular to the electrode faces 11 and 11′ and substantially parallel to the nearest pair of aligned edges 13 and 13′.


[0028] The feed means are designed for feeding a treatment gas or treatment gas mixture to the plasma space 14, 14′ from a side opposite the edge region 14′ in which the surface 17 to be treated is positioned. Advantageously the gas is made to flow from the feed means towards the surface 17 to be treated (arrow A). The feed means is e.g. designed as a gas feed tube 18 running parallel to a pair of aligned edges of the electrode faces and having equidistanced gas exit openings. For feeding a gas mixture it might be advantageous to provide a plurality of parallel feed tubes for feeding components of the mixture separately.


[0029]
FIG. 2 shows an exemplified embodiment of the inventive device the embodiment being suitable for plasma treating one surface of a web material 19. The device comprises as discussed above a pair of electrodes 10 and 10′ and a gas feed tube 18. It further comprises a rotating drum 20 serving as means for positioning the surface to be treated in an edge region of the plasma being sustained between the electrodes 10 and 10′. The web is fed to the drum from a feed roll 21, runs over part of the circumferential surface of the drum 20 to be treated in the edge region of the plasma being sustained between the electrodes 10 and 10′, and after treatment is rolled up on the roll 22.


[0030] If the treatment gas is not air and the presence of air is having a negative effect on the treatment the device or at least a part of it is to be encased in a housing 23 comprising exhaust means. In most cases it will not be necessary to design the housing tight in no case is it necessary to design it vacuum tight.


[0031]
FIG. 3 shows a further exemplified embodiment of the inventive device. This device is similar to the device according to FIG. 2 with the exception that instead of only one pair of electrodes for sustaining a plasma it comprises e.g. three such pairs 30, 31 and 32 and is suitable for treating a web 19 in a three step plasma treatment process, the three steps being the same or different from each other.


[0032] A device designed substantially as illustrated in FIG. 2 is e.g. operated with the following parameters:
1Distance between electrode faces: 1 to 10 mmDistance between edge of electrode faces and surface to be 1 to 10 mmtreated:Applied voltage:10 to 20 kVApplied frequency: 1 to 10 kHz


[0033] Gas mixture for silicon oxide deposition: oxygen, nitrogen, hexamethyldisiloxane Results for silicon oxide barrier coating deposition on PET film of 12 μm thickness:
2Results for silicon oxide barrier coating deposition on PET film of 12 μmthickness:Thickness of coating:30-130 nmOxygen permeation without coating:120 cm3/(day m2 atm)Oxygen permeation with coating:20 to 0.01 cm3/(day m2 atm)


[0034] The oxygen permeation of a film with a barrier layer deposited according to the inventive method with the aid of atmospheric plasma compares well with the permeation of corresponding coatings deposited with the aid of vacuum plasma. It is at least twenty times better than permeation of the same film with a barrier layer produced in atmospheric plasma with the substrate being positioned between the electrodes.

Claims
  • 1. Method for treating a surface (17) with the aid of a treatment gas or treatment gas mixture being broken down in a glow discharge plasma sustained between two substantially parallel opposite faces (11, 11′) of two suitably energized electrodes (10, 10′) defining a plasma space (14), characterized in that the surface (17) to be treated is positioned in an edge region (14′) of the plasma space (14) beyond two aligned edges (13, 13′) of the electrode faces (11, 11′), said surface (17) facing towards these edges (13, 13′) and being positioned at a distance from these edges (13, 13′), wherein the power density in the edge region 14′ is sufficient for sustaining a plasma.
  • 2. Method according to claim 1, characterized in that the treatment gas or treatment gas mixture has a pressure of between 50,000 and 150,000 Pa.
  • 3. Method according to one of claims 1 or 2, characterized in that the treatment gas or treatment gas mixture is fed to the plasma space (14) from a side opposite the edge region (14′) in which the surface (17) to be treated is positioned and is flown through the plasma space (14) towards the surface (17) to be treated.
  • 4. Method according to one of claims 1 to 3, characterized in that the surface (17) to be treated is positioned in the edge region (14′) substantially perpendicularly to the faces (11, 11′) of the electrodes (10, 10′).
  • 5. Method according to claim 4, characterized in that the surface (17) to be treated is advanced in a direction perpendicular to the electrode faces (11, 11′) during treatment.
  • 6. Method according to one of claims 5, characterized in that the surface (17) to be treated is one of the two surfaces of a web (19) of plastic film.
  • 7. Method according to one of claims 1 to 6, characterized in that at least part of the components of the treatment gas mixture are fed to the plasma space (14) separately.
  • 8. Method according to one of claims 1 to 7, characterized in that the surface treatment is a chemical vapor deposition in which a barrier layer of silicon oxide, of silicon nitride, of silicon carbide or of carbon is deposited.
  • 9. Method according to one of claims 1 to 7, characterized in that the surface treatment is a multistep vapor deposition in which a plurality of layers is deposited.
  • 10. Method according to one of claims 1 to 7, characterized in that the surface treatment comprises surface energy modification, surface decontamination, surface cleaning or surface sterilization.
  • 11. Device for treating a surface (17) with the aid of a glow discharge plasma being sustained between two plate electrodes (10, 10′), the device comprising at least one pair of two electrodes (10, 10′) with one electrode face (11, 11′) each, the two electrodes (10, 10′) being arranged with their faces (11, 11′) opposite to each other and substantially parallel to each other and defining a plasma space (14), and the device further comprising suitable energizing means (12) for energizing the at least one electrode pair (10, 10′) in order to break down a gas in the space between the faces (11, 11′) of the electrodes (10, 10′) of the pair to form a glow discharge plasma, and the device further comprising feed means for feeding a treatment gas or a treatment gas mixture to the space between the electrode faces (10, 10′) and positioning means for positioning the surface (17) to be treated in the plasma, characterized in that the positioning means are designed for positioning the surface (17) to be treated beyond a pair of aligned edges (13, 13′) of the electrode faces (11, 11′) at one side of the plasma space (14), at a distance from said pair of edges (13, 13′) and facing said pair of edges (13, 13′), said distance being matched to device parameters such that the plasma is sustained in the position of the surface to be treated.
  • 12. Device according to claim 11, characterized in that the positioning means is designed such that the distance between the surface (17) to be treated and the pair of aligned edges (13, 13′) facing towards the surface (17) to be treated is between 1 and 10 mm.
  • 13. Device according to one of claims 11 or 12, characterized in that the feed means are designed for feeding the treatment gas or treatment gas mixture to the plasma space (14, 14′) from a further side of the plasma space (14) opposite to the side of the positioning means and for flowing the gas or gas mixture in a direction (A) towards the side of the positioning means.
  • 14. Device according to one of claims 11 to 13, characterized in that the positioning means is designed to continuously advance the surface (17) to be treated in a direction substantially perpendicular to the electrode faces (11, 11′).
  • 15. Device according to claim 14, characterized in that the positioning means is a rotating drum (20) and that the electrode faces (11, 11′) are oriented substantially radially relative to the drum (20).
  • 16. Device according to one of claims 11 to 15, characterized in that the feed means is at least one feed tube (18) arranged parallel to the electrode faces (11,11′) and having feed holes directed towards the plasma space (14).
  • 17. Use of a device according to one of claims 11 to 16 for coating a plastic film with a barrier layer of silicon oxide, of silicon nitride, of silicon carbide or of carbon in a plasma enhanced chemical vapor deposition process.
  • 18. Use of a device according to one of claims 14 to 16 for coating a web of plastic film with a barrier layer of silicon oxide, of silicon nitride, of silicon carbide or of carbon in a continuous plasma enhanced chemical vapor deposition process.
Priority Claims (1)
Number Date Country Kind
1850/00 Sep 2000 CH
PCT Information
Filing Document Filing Date Country Kind
PCT/CH01/00559 9/17/2001 WO