1. Technical Field of the Invention
The present invention generally relates to a device and a method for treatment of mitral insufficiency and, more specifically, for treatment of dilatation of the mitral annulus.
2. Description of the Prior Art
Mitral insufficiency can result from several causes, such as ischemic disease, degenerative disease of the mitral apparatus, rheumatic fever, endocarditis, congenital heart disease and cardiomyopathy. The four major structural components of the mitral valve are the annulus, the two leaflets, the chordae and the papillary muscles. Any one or all of these in different combinations may be injured and create insufficiency. Annular dilatation is a major component in the pathology of mitral insufficiency regardless of cause. Moreover, many patients have a mitral insufficiency primarily or only due to posterior annular dilatation, since the annulus of the anterior leaflet does not dilatate because it is anchored to the fibrous skeleton of the base of the heart.
Studies of the natural history of mitral insufficiency have found that totally asymptomatic patients with severe mitral insufficiency usually progress to severe disability within five years. At present the treatment consists of either mitral valve replacements or repair, both methods requiring open heart surgery. Replacement can be performed with either mechanical or biological valves.
The mechanical valve carries the risk of thromboembolism and requires anticoagulation, with all its potential hazards, whereas biological prostheses suffer from limited durability. Another hazard with replacement is the risk of endocarditis. These risks and other valve related complications are greatly diminished with valve repair.
Mitral valve repair is theoretically possible if an essentially normal anterior leaflet is present. The basic four techniques of repair include the use of an annuloplasty ring, quadrangular segmental resection of diseased posterior leaflet, shortening of elongated chordae, and transposition of posterior leaflet chordae to the anterior leaflet.
Annuloplasty rings are needed to achieve a durable reduction of the annular dilatation. All the common rings are sutured along the posterior mitral leaflet adjacent to the mitral annulus in the left atrium. One ring encircles the valve completely, whereas the others are open towards the anterior leaflet. The ring can either be rigid, like the original CARPENTIER annuloplasty ring, or flexible but non-elastic, like the COSGROVE-EDWARDS annuloplasty ring.
Effective treatment of mitral insufficiency currently requires open-heart surgery, by the use of total cardiopulmonary by-pass, aortic cross-clamping and cardioplegic cardiac arrest.
To certain groups of patients, this is particular hazardous. Elderly patients, patients with a poor left ventricular function, renal disease, severe calcification of the aorta, previous cardiac surgery or other concomitant diseases, would in particular most likely benefit from a less invasive approach, even if repair is not complete. The current trend towards less invasive coronary artery surgery, without cardiopulmonary by-pass, as well as PTCA will also call for a development of a less invasive method for repair of the often concomitant mitral insufficiency.
Therefore, a first object of the present invention is to provide a device and a method for treatment of mitral insufficiency without the need for cardiopulmonary by-pass and without opening of the chest and heart.
A second object of the invention is to provide reduction of the mitral annulus using only catheter based technology.
According to the present invention, a device for treatment of mitralis insufficiency comprises an elongate body having such dimensions as to be insertable into the coronary sinus and having two states, in a first state of which the elongate body has a shape that is adaptable to the shape of the coronary sinus, and to the second state of which the elongate body is transferable from the said first state assuming a reduced radius of curvature, whereby the radius of curvature of the coronary sinus is reduced as well as the circumference of the mitral valve annulus, when the elongate body is positioned in the coronary sinus. More precisely, the elongate body comprises a distal stent section, a proximal stent section and control wires for reducing the distance between the distal and proximal stent sections.
Thus, means are provided for the transfer of the elongate body to the second state by shortening it from a larger radius of curvature to a smaller radius of curvature.
The control wires may comprise a first wire and means for guiding said first wire in a course extending two times between the distal and proximal stent sections, when the distance therebetween is at a maximum, and extending at least three times between the distal and proximal stent sections, when the distance therebetween is at a minimum.
To accomplish changes in the course, the guiding means preferably comprises a first eyelet fixed to one of the distal and proximal stent sections, a second eyelet fixed to the other of the distal and proximal stent sections, and a third eyelet positioned between the distal and proximal stent sections, said first wire having a first end fixed to said one of the distal and proximal stent sections and extending therefrom via the third eyelet, the first eyelet and the second eyelet back to the third eylet where a second end of the first wire is fixed. By this structure the maximum distance between the two stent sections will be about 1.5 times the minimum distance between the two stent sections.
A larger quotient may be obtained by extending the first wire from the first eyelet at least once more via the third eyelet and the first eyelet before finally extending the first wire via the second eyelet back to the third eyelet where the second end of the first wire is fixed.
In order to reduce the distance between the distal stent section and the proximal stent section, said first eyelet is preferably fixed to the distal stent section and said control wires comprise a second wire extending through the third eyelet and as a double wire proximally therefrom out of the coronary sinus and out of the human body. As an alternative to this second wire, a single wire may be used having an end releasably fixed to the third eyelet and extending as a single wire proximally therefrom out of the coronary sinus and out of the human body. However, to be able to also increase the distance between the distal stent section and the proximal stent section, said control wires may comprise a third wire extending through the third eyelet and as a double wire distally to and through the first eyelet and then as a double wire proximally therefrom out of the coronary sinus and out of the human body.
Alternatively, the distance between the distal stent section and the proximal stent section may be reduced by fixing the first eyelet to the proximal stent section. Then, said control wires should comprise a second wire extending through the third eyelet and as a double wire distally to and through the first eyelet and then as a double wire proximally therefrom out of the coronary sinus and out of the human body. In order to be able to increase the distance between the distal stent section and the proximal stent section in this case, the control wires should comprise a third wire extending through the third eyelet and as a double wire proximally therefrom out of the coronary sinus and out of the human body.
It should be noted that when the proximal and distal stent sections have been fixed relative to the coronary sinus and the distance between them thererafter has been finally adjusted to a desired value, the second and the third wires may in both the described alternatives be withdrawn from the coronary sinus by pulling one of their ends positioned outside of the coronary sinus and outside of the human body.
In preferred embodiments of the device, a cover encloses the wires in their courses between the distal and proximal stent sections so as to eliminate the risk that the wires will injure the coronary sinus by cutting into its internal surfaces.
The cover may comprise one or more plastic sheaths and may also comprise one or more helical wires.
In an alternative embodiment, the device for treatment of mitral annulus dilatation comprises an elongate body having such dimensions as to be insertable into the coronary sinus and having two states, in a first of which the elongate body has a shape that is adaptable to the shape of the coronary sinus, and to the second of which the elongate body is transferable from said first state assuming a reduced radius of curvature, whereby the radius of curvature of the coronary sinus is reduced as well as the circumference of the mitral valve annulus, when the elongate body is positioned in the coronary sinus, said elongate body comprising at least one stent section at a distance from each end of the elongate body, said stent section providing a reduction of its length when expanded in situ in the coronary sinus, whereby the elongate body is shortened and bent to a smaller radius or curvature.
Preferably, the elongate body of this embodiment comprises a proximal stent section, a distal stent section and a central stent section, the distal and proximal stent sections being expandable prior to the central stent section. Obviously, this will result in a reduction of the distance between the proximal and distal stent sections. Further, the proximal and distal stent sections should be expandable without substantial length reduction.
Thus, the present invention takes advantage of the position of the coronary sinus being close to the mitral annulus. This makes repair possible by the use of current catheter-guided techniques.
The coronary veins drain blood from the myocardium to the right atrium. The smaller veins drain blood directly into the atrial cavity, and the larger veins accompany the major arteries and run into the coronary sinus which substantially encircles the mitral orifice and annulus. It runs in the posterior atrioventricular groove, lying in the fatty tissue between the left atrial wall and the ventricular myocardium, before draining into the right atrium between the atrial septum and the post-Eustachian sinus.
In an adult, the course of the coronary sinus may approach within 5–15 mm of the medial attachment of the posterior leaflet of the mitral valve. Preliminary measurements performed at autopsies of adults of normal weight show similar results, with a distance of 5.3±0.6 mm at the medial attachment and about 10 mm at the lateral aspect of the posterior leaflet. The circumference of the coronary sinus was 18.3±2.9 mm at its ostium (giving a sinus diameter of the septal aspect of the posterior leaflet of 5.8±0.9 mm) and 9.7±0.6 mm along the lateral aspect of the posterior leaflet (corresponding to a sinus diameter of 3.1±0.2 mm).
The invention will be better understood by the following description of preferred embodiments referring to the appended drawings, in which
The device of
The elongate body 8 is forced into a stretched or extended state by means of a stabilizing instrument 12 shown in
The arms 13 are free to move between the position shown in
The rod 15 may be a metal wire which is relatively stiff between the distal end 14 and the locking means 16 but still so bendable that it will follow the shape of the coronary sinus 5. Proximally of the locking means 16 the metal wire of the stabilizing instrument 12 is more pliable to be able to easily follow the bends of the veins.
The above-described elongate body 8 is positioned in the coronary sinus 5 in the following way:
An introduction sheath (not shown) of synthetic material may be used to get access to the venous system. Having reached access to the venous system, a long guiding wire (not shown) of metal is advanced through the introduction sheath and via the venous system to the coronary sinus 5. This guiding wire is provided with X-ray distance markers so that the position of the guiding wire in the coronary sinus 5 may be monitored.
The elongate body 8 is locked onto the stabilizing instrument 12, as shown in
A catheter 21, shown in
The third embodiment of the elongate body 8″, illustrated in
A fourth embodiment of the device is shown in
From the distal stent section 31 the wire 35 extends to and through the third eyelet 34 and then back towards the distal stent section 31 to and through the first eyelet 32. From the first eyelet 32 the wire 35 then extends to and through the second eyelet 33 and then finally to the third eyelet 34, the other end of the wire 35 being fixed to this third eyelet 34.
By moving the third eyelet 34 towards the proximal stent section 30, the distance between the proximal and distal stent sections 30, 31 will be reduced. On the contrary, by moving the third eyelet 34 towards the distal stent section 31, the distance between the proximal and distal stent sections may be increased. However, such increase will require some means pushing the distal stent section 31 in a distal direction away from the proximal stent section 30 or pulling the proximal stent section in a proximal direction away from the distal stent section 31.
The distance between the proximal and distal stent sections 30, 31 will reach a maximum when the third eyelet 34 is positioned close to the distal stent section 31 and will reach a minimum when the third eyelet 34 is positioned close to the proximal stent section 30.
The third eyelet 34 may be moved towards the proximal stent section 30 by means of a single wire 36, which has an end releasably fixed to the third eyelet 34 and extends proximally therefrom through the proximal stent section 30 and furter proximally out of the coronary sinus 5, through the vein system and out of the human body.
In a preferred embodiment schematically illustrated in
As illustrated in
Obviously, the position of the third eyelet 34 may be used to control the distance between the proximal and distal stent sections 30, 31, and this distance controls the radius of curvature of the device and thus also the radius of curvature of the coronary sinus 5.
The furter embodiment of the device illustrated in
The quotient between the maximum distance and the minimum distance between the proximal stent section 30 and the distal stent section 31 in
According to
The embodiments illustrated in
It should be noted that instead of eyelets having a single opening, eyelets having multiple openings could be used such that each one of the wires extends through an opening of its own.
Still one further embodiment of the device according to the present invention is illustrated in
When this device is positioned in the coronary sinus 5, the proximal and distal sections 30, 31 are first expanded, as illustrated in
Concludingly, the present invention provides a device placed in the coronary sinus 5 and designed to reduce the dilatation of the mitral annulus. This device is at a distance from the attachment of the posterior leaflet that does not much exceed the distance at which present annuloplasty rings are placed by open surgery techniques, and the coronary sinus is along its entire course large enough to hold such a device. The device could be positioned by catheter technique or any other adequate technique and offers a safer alternative to the current open surgery methods. The device could be designed or heparincoated so as to avoid thrombosis in the coronary sinus, thus reducing the need for aspirin, ticlopedine or anticoagulant therapy.
It is to be understood that modifications of the above-described device and method can be made by people skilled in the art without departing from the spirit and scope of the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 09/345,475 that was filed on Jun. 30, 1999, now U.S. Pat. No. 6,210,432.
Number | Name | Date | Kind |
---|---|---|---|
4164046 | Cooley | Aug 1979 | A |
4655771 | Wallsten | Apr 1987 | A |
4954126 | Wallsten | Sep 1990 | A |
5006106 | Angelchik | Apr 1991 | A |
5061275 | Wallsten et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5104404 | Wolff | Apr 1992 | A |
5163955 | Love et al. | Nov 1992 | A |
5170802 | Mehra | Dec 1992 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5383892 | Cardon et al. | Jan 1995 | A |
5441515 | Khosravi et al. | Aug 1995 | A |
5449373 | Pinchasik et al. | Sep 1995 | A |
5476471 | Shifrin et al. | Dec 1995 | A |
5531779 | Dahl et al. | Jul 1996 | A |
5534007 | St. Germain et al. | Jul 1996 | A |
5571135 | Fraser et al. | Nov 1996 | A |
5584879 | Reimold et al. | Dec 1996 | A |
5591197 | Orth et al. | Jan 1997 | A |
5593442 | Klein | Jan 1997 | A |
5607444 | Lam | Mar 1997 | A |
5674280 | Davidson et al. | Oct 1997 | A |
5713949 | Jayaraman | Feb 1998 | A |
5741274 | Lenker et al. | Apr 1998 | A |
5817126 | Imran | Oct 1998 | A |
5824071 | Nelson et al. | Oct 1998 | A |
5876419 | Carpenter et al. | Mar 1999 | A |
5876433 | Lunn | Mar 1999 | A |
5911732 | Hojeibane | Jun 1999 | A |
5919233 | Knopf et al. | Jul 1999 | A |
5980552 | Pinchasik et al. | Nov 1999 | A |
6006122 | Smits | Dec 1999 | A |
6013854 | Moriuchi | Jan 2000 | A |
6027525 | Suh et al. | Feb 2000 | A |
6093203 | Uflacker | Jul 2000 | A |
6183411 | Mortier et al. | Feb 2001 | B1 |
6203556 | Evans et al. | Mar 2001 | B1 |
6210432 | Solem et al. | Apr 2001 | B1 |
6221103 | Melvin | Apr 2001 | B1 |
6248119 | Solem | Jun 2001 | B1 |
6250308 | Cox | Jun 2001 | B1 |
6264602 | Mortier et al. | Jul 2001 | B1 |
6264691 | Gabbay | Jul 2001 | B1 |
6325826 | Vardi et al. | Dec 2001 | B1 |
6343605 | Lafontaine | Feb 2002 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6402679 | Mortier et al. | Jun 2002 | B1 |
6402680 | Mortier et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6409760 | Melvin | Jun 2002 | B1 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6569198 | Wilson et al. | May 2003 | B1 |
6626899 | Houser et al. | Sep 2003 | B2 |
6656221 | Taylor et al. | Dec 2003 | B2 |
6669687 | Saadat | Dec 2003 | B1 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6790231 | Liddicoat et al. | Sep 2004 | B2 |
6908478 | Alferness et al. | Jun 2005 | B2 |
20010044568 | Langberg et al. | Nov 2001 | A1 |
20020016628 | Langberg et al. | Feb 2002 | A1 |
20020019660 | Gianotti et al. | Feb 2002 | A1 |
20020022880 | Melvin | Feb 2002 | A1 |
20020042621 | Liddicoat et al. | Apr 2002 | A1 |
20020087173 | Alferness et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020103533 | Langberg et al. | Aug 2002 | A1 |
20020111533 | Melvin | Aug 2002 | A1 |
20020124857 | Schroeppel | Sep 2002 | A1 |
20020151961 | Lashinski et al. | Oct 2002 | A1 |
20020183835 | Taylor et al. | Dec 2002 | A1 |
20020183836 | Liddicoat et al. | Dec 2002 | A1 |
20040102841 | Langberg et al. | May 2004 | A1 |
20040133192 | Houser et al. | Jul 2004 | A1 |
20040153146 | Lashinski et al. | Aug 2004 | A1 |
Number | Date | Country |
---|---|---|
196 05 042 | Jan 1998 | DE |
196 11 755 | Feb 1998 | DE |
0688545 | Dec 1995 | EP |
0 727 239 | Aug 1996 | EP |
WO 9516407 | Jun 1995 | WO |
WO 9640356 | Dec 1996 | WO |
WO 9818411 | May 1998 | WO |
WO 9944534 | Sep 1999 | WO |
WO 9953977 | Oct 1999 | WO |
WO 0018320 | Apr 2000 | WO |
WO 0041649 | Jul 2000 | WO |
WO 0044313 | Aug 2000 | WO |
WO 0100111 | Jan 2001 | WO |
WO 0150985 | Jul 2001 | WO |
WO 0154618 | Aug 2001 | WO |
WO 0185061 | Nov 2001 | WO |
WO 0189426 | Nov 2001 | WO |
WO 0200099 | Jan 2002 | WO |
WO 0201999 | Jan 2002 | WO |
WO 0205888 | Jan 2002 | WO |
WO 0234118 | May 2002 | WO |
WO 02053206 | Jul 2002 | WO |
WO 02060352 | Aug 2002 | WO |
WO 02062263 | Aug 2002 | WO |
WO 02062270 | Aug 2002 | WO |
WO 02062408 | Aug 2002 | WO |
WO 02076284 | Oct 2002 | WO |
WO 02078576 | Oct 2002 | WO |
WO 02096275 | Dec 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20010018611 A1 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09345475 | Jun 1999 | US |
Child | 09775677 | US |