The present invention is directed to a method and device used to measure the evolution of a bioorganism over its life or a portion thereof, without reference to time, or reference to conventional horological systems. Time has been measured over the centuries by conventional systems which are related to movement of this planet, one day being measured by the earth making a single revolution about its axis. Conventional horology divides time into successive units, i.e., seconds, 60 seconds per minute, 60 minutes to an hour, 24 hours in a day, and so forth.
With respect to a bioorganism, such as a human being, such a conventional measure of time, as an indicator of a person's life, is essentially irrelevant at least from the standpoint of how an individual's body itself physically is evolving or expressing itself. While a person's life may be chronologically measured by how many years they live, or how old they are at any given time, rotation of the earth about its axis is not an expression of the body itself, and how the body actually is evolving, or how it is undergoing changes, either at a given moment or over a given period in one's life. Human beings, in common with all bioorganisms in the mammalian class, live and function under a complex physiological system which includes various parameters, such as a beating heart, respiration, body temperature regulation, ingestion, digestion, blood pressure and numerous others. These parameters can be observed and measured, and the body expresses itself through them, and all are specific and unique to each individual.
There have been numerous proposals for providing so-called “biofeedback,” as measured by a person's “biorhythms,” and other devices have been developed to detect pulse, commonly employed in a jogging watch, a stopwatch or wristwatch.
For example, a conventional pulse counter for electronically counting the number of pulses and displaying the count is shown in U.S. Pat. No. 4,009,708, which describes a wristwatch type pulse counter capable of counting the number of pulses per minute.
In U.S. Pat. No. 4,101,071, there is described an apparatus for calculating a calorie bum total according to the number of pulses and the length of exercise time. An assembly obtained by incorporating a pulse sensor in an electronic wristwatch is also known. For example, U.S. Pat. No. 3,937,004 describes a technique for incorporating a pulse sensor in a wristwatch. U.S. Pat. No. 4,086,916 describes a technique for incorporating a pulse sensor in a wristwatch band.
In addition, U.S. Pat. No. 3,978,849 describes an apparatus for displaying an optimal exercise amount as well as the number of pulses, or signaling to the user that the number of pulses is too high.
It is proposed by the present invention that a more meaningful method for a person to view their evolution is not through measurement of time, but through measurement of a selected physiological parameter or measurement of multiple parameters. One physical expression or parameter which could be effectively utilized is a cardiac signal, or more simply, a person's pulse as measured by a series of heartbeats. A human being likely has a certain, albeit unknown, ultimate number of heartbeats unique to their own life, assuming no premature death brought on by accident or disease.
A heartbeat, or measured series of heartbeats, is a physical expression emanating from an organism, and the rate of heartbeats can and does change, depending on factors such a gender, one's stage in life, level of physical activity, emotional state, health, blood pressure, and certainly other things. As such, a physical expression, such as a heartbeat, when viewed progressively, gives a personal or specific reference to how an individual person is evolving during their life, how their body is responding.
Broadly, then, the present invention can be summarized as a method for presenting a bioorganism's evolutionary passage through at least a portion of its life, by reference to a selected physiological parameter emanating from the bioorganism, as an alternative to use of conventional horology, which includes selecting a physiological parameter specific to the bioorganism itself, one which continuously and repeatedly occurs, for the most part involuntarily, throughout and only throughout the bioorganism's life, and then detecting the repeated occurrences generated by the parameter. But it is more than just detection; the occurrences are arranged or grouped into basic units, and these are displayed and recorded so that the bioorganism's evolving life or segments thereof, over time, can be measured and interpreted by reference to the recorded units, and groups thereof, as an alternative to using horology as a measure.
Human beings experience a resting pulse that can range, depending on health, age, physical condition, gender, etc. from about 45 to 90 beats per minute. Of course the pulse can be much higher depending upon level of physical activity, emotional state and other factors. The point is that an average heartbeat may be in the range of 65-85 beats per minute, say, 75 beats per minute, as a normal resting pulse. This corresponds somewhat roughly to the number of seconds in a minute, which is of course, 60. Thus, if a person's heartbeats were measured in a method or system which recorded each heartbeat as a unit, then those heartbeats could be presented on a display device or monitor, such as a face similar to that of a wristwatch.
These units can be grouped, and conventions assigned to them, so they could be observed, much like one observes a clock, but in this case what is being observed is a person's ongoing physical experience, as represented by the physiological parameter. A wristwatch-type device could be utilized to have either the display face or wristband provided with a pulse sensor to record the pulse at the wrist, but measurements could be made at the external situs of the carotid or femoral arteries. This device would use the body's physical expression, as embodied in heartbeats, durationally displayed, over a selected time period, to present to a person their own “natural time,” one's own natural rhythm or tempo which would be the guide, and not the rotation of the earth.
As shown in
For example, a single heartbeat may be thought of as an “instantaneous experience” or “lex.” Using such a convention, after 75 heartbeats×60, or 4,500 heartbeats have occurred, it is deemed that a so-called “long experience” or 1 “Lex” has taken place, somewhat analogous to an hour, and this “Lex” marker is pointed out by a sweep hand 15, the first “Lex” marker being shown as the number “1” on the dial face, in the embodiment shown in
As also shown, the dial face in this embodiment is divided into quadrants, such as indicated at 16, 18, 20 and 22, and each quadrant includes six “Lex” markers or indicia, each of which notes that 75×60 or 4,500 heartbeats have occurred.
The “Lex” marker denoted “2,” confirms that 9,000 heartbeats have taken place.
The idea here is that one complete sweep of the dial or sweep hand 15, will complete roughly one day, although it is not exactly a day, but rather a person's physical expression of what occurs, or would normally occur, if the person were at rest. In this instance, the “Lex” indicia marked at 1, 2, 3, 4, etc., are noted by the sweep hand, as the day progresses. The dial face has been divided into the four quadrants, in this case, because there is only a single dial or sweep hand which is powered (by a battery synchronized with the heartbeat) to move. The dial starts at the top position, and ends at the indicia mark 24. Two hands or dials could be used, like the hour and minute hands on a clock or watch. Thus, one hand would be continuously displaying the “lex,” and the other would point to the “Lex.”
It is to be noted that the dial face is also provided with a display window 30 which displays in digital format, the total number of heartbeats during a wearing sequence (assuming the device is taken off at some time) and a perpetual memory, shown at 32, also a digital display, which shows the total heartbeats accumulated during the period the device has been worn. Other modifications could be built into the device, for example, memory could keep the device working, when not worn, so that a preprogrammed resting pulse will continuously be recorded; when the person puts the device back on, activates it appropriately, the real-time pulse is noted, which may or may not correspond to the average.
Again, assuming that an average heart beats at a rate of 75 per minute, the total heartbeats in a 24 hour day will be approximately 106,000, computed as follows:
75 beats/min.×60 min./hr×24 hrs=106,000 heartbeats.
This is assuming of course, a steady 75 beats per minute which probably is unlikely. Too many events can happen in a typical day, including exercise, stress, eating, etc. which will change the number of heartbeats per minute.
But the point here is that by using heartbeats, one can be acting on their own “natural time,” where time is expressed by some physical parameter unique to an individual. This system can be broken down as follows:
At any given time, a person can look at the monitor and know what their natural rate of evolution is, and utilize this to gauge and monitor their own activities. For example, a person may choose to do something according to their own physical time, as expressed through their heartbeats. The monitor could be a completely digitized device, with a digital display, as shown in
It is to be noted that display window 30 could be a digital counter or display which continuously records the heartbeats and may be reset whenever a person wants. This display of continuous “lex” will eventually be a very large number, ranging into the billions of heartbeats. The lower display 32, may record the total number of heartbeats over time, and will be stored in memory. Obviously, over time, the lower display may be a number ranging well into the billions.
Moreover, the device could be programmed so that the device keeps recording the average beats per minute, thus if the device is removed, a person's evolution, using heartbeats is still being recorded, based on the known, preprogrammed average number of beats per minute.
The display windows could also be configured so that the upper window displays only “Iex” or a combination of “lex” and “Lex.” Thus, the upper window may show a number like 99,000, which would mean that 24 “Lex” are close to being reached. The bottom windows could be divided into sections which show “lex” and “Lex,” or just include “lex” which, over time, will become a very high number, into the billions.
The method and device of the present invention can also be utilized so that a person could see specifically how their “lex,” as it actually occurs, relates to their average pulse rate. This can be accomplished by using two hands; for example, one hand is driven to display the “lex” and “Lex” as they would be synchronized for 75 beats per minute, for example. The other hand would sweep at the actual rate of heartbeats; this latter or second hand may move much more rapidly or advance from “Lex” to “Lex” in advance of the first hand. A person observing this would reflect on being “ahead of time,” so to speak. They may choose to curtail activities, to try to return their pulse to its average rate, thus “preserving” their heartbeats, as it were. Conversely, a person's pulse may decrease, through sedentary or listless activity, and where this happens, the “lex” as it occurs would lag behind the first sweep hand which moves in accordance with a preprogrammed 75 beats per minute, for example.
The invention as described uses technology which is available, pulse sensors are known, and to program a sweep hand so that it moves sequentially along a dial in accordance with each heartbeat can readily be done. To provide a second hand which is timed, technology can be used which is already employed in stop watches, for example, or jogging watches. The dial face could be totally digital, if desired.
The above are just examples, the important thing to note is that a physiological parameter, i.e., a person's pulse or heartbeat, which continuously and repeatedly occur, are presented so that a person can view their own body's working over time. As shown in