The present invention relates to a method and a device for warning the driver of a motor vehicle.
Obstacles that suddenly appear in the vicinity of the vehicle often lead to driving situations critical to the driver of a motor vehicle. Such driving situations occur, for example, when visibility is poor. In addition to the illumination conditions, the weather conditions determine the vision of the driver. Particularly difficult conditions are present, when poor illumination conditions and poor weather conditions are present, for example, when rain reduces the visibility at night. If obstacles, which are not visible to the driver or can only be seen by the driver at a late time, appear unexpectedly under such poor visibility conditions, this is often the cause of traffic accidents.
German Patent No. 40 32 927 describes a device for improving the visibility conditions in a vehicle having an infrared-sensitive camera and an indicating device taking the form of a head-up display. It is suggested that, as driver information, the image of the camera visually overlie the outer landscape in the form of a virtual image. A clear warning of the driver does not take place.
The method and the device of the present invention for warning a driver of a motor vehicle allows the driver to be warned of objects in the vicinity of the motor vehicle, before the object is visible to the driver. This advantageously results in a temporal shift and, consequently, an earlier warning of the object in the vicinity of the motor vehicle. The generation of at least one optical warning in the direction of the at least one object in the field of view of the driver causes the driver to turn his eyes. In this context, it is particularly advantageous that the driver turns his eyes by reflex, without having to do it willfully. Since, in general, reflex reactions are considerably more rapid than deliberately controlled sequences, the eyes of the driver are turned in the direction of the object in a rapid and predictable manner. The generation of the optical warning in the direction of the object allows the eye-turning to be controlled in an advantageous manner, so that the attention of the driver is steered in the direction where the object in the vicinity of the motor vehicle is actually located. In summary, the subsequently described method and the device contribute towards reducing the number of accidents in a particularly advantageous manner while simultaneously reducing the workload of the driver. All in all, this yields the outstanding advantage of increasing the traffic safety.
A patch of light is advantageous as an optical warning, since patches of light are simple to generate. The use of at least one patch of light advantageously results in a favorable but efficient method and device. The generation of a warning signal in the form of an optical warning has the advantage over the related art that additional information may be generated in the at least one optical warning in a particularly simple manner. Using at least one warning symbol, it is possible to show the driver information about the type of object, for example, that the object is a passenger car and/or a truck and/or a motorcycle and/or a cyclist and/or a pedestrian. The use of a warning symbol instead of characters allows the information to be internationally understood. At least one patch of light and/or at least one warning symbol as at least one optical warning advantageously results in reasonable manufacturing costs of the subsequently described method and device, since no country-specific adaptations to different languages are necessary.
The attention of the driver is attracted to different degrees by changing the display duration and/or the repetition frequency and/or the size and/or the color and/or the intensity of the at least one optical warning. In particular, it is advantageously possible to cause the driver to turn his eyes at different speeds as a function of the object and/or the dangerousness of the object to the driver of the motor vehicle. For example, in dangerous situations, a large red patch of light having a high luminosity allows the eyes of the driver to be rapidly turned and, therefore, the attention of the driver to be rapidly steered in the direction of the object in the vicinity of the motor vehicle. A dangerous situation is then present, for example, when the danger of an accident originates from an object in the vicinity of the motor vehicle.
It is advantageous for the at least one optical warning to occur immediately prior to the at least one object becoming visible to the driver, since the driver may then immediately detect the object himself after turning his eyes in the direction of the object. By this means, the driver is made aware of the object but simultaneously has the option of analyzing and evaluating the actual driving situation in connection with the object. This advantageously allows the driver to recognize dangerous driving situations rapidly and reliably. He thereby gains valuable time to initiate appropriate measures for averting danger, such as breaking or steering maneuvers.
The at least one optical warning as a function of the driving situation advantageously leads to a reduction in the amount of information to be processed by the driver. By this means, it is possible for an optical warning of at least one object in the vicinity of the vehicle to only occur when, for example, a dangerous driving situation is present.
The use of at least one image-sensor system for generating optical information advantageously allows objects in the vicinity of the motor vehicle to be detected, which are not directly visible to the driver himself. For example, pedestrians who stop directly in front of a truck cannot be directly seen by the driver of the truck. The high, recessed sitting position of the truck driver sharply limits the view of the driver in this surrounding region. The use of at least one image-sensor system for monitoring these surrounding regions of the motor vehicle allows the driver to be informed of the existence of an object in this region by at least one optical warning. It is particularly advantageous to use at least one infrared-sensitive image-sensor system, since at night or in the event of rain and/or snowfall, infrared-sensitive image-sensor systems have a larger range of detection than the driver of a motor vehicle. For example, the range of vision of a motor-vehicle driver at night is approximately 40 meters with dimmed headlights, while in the case of good visibility, infrared-sensitive image-sensor systems have an object-detection range between 70 meters and 140 meters.
A method and a device for warning the driver of a motor vehicle is described below. An optical warning in the direction of at least one object of the vicinity of the vehicle is generated in the field of vision of the driver by a signaling device, the optical warning occurring at least prior to the object becoming visible to the driver. The optical warning is at least one patch of light and/or at least one warning symbol, where at least the display duration may be changed.
In this exemplary embodiment, a colored marking in the form of a red and/or yellow triangle is used as a warning symbol 34, 36. According to
Image sensors having a high resolution are used in the preferred embodiment of
The described method and the device are not limited to a single signaling means. On the contrary, additional signaling means are used in one variant, in order to generate at least one optical warning. As an alternative to, or in addition to the projection device, at least one head-up display is used as a signaling means. A head-up display is a signaling means that generates a virtual image, which is reflected into the windshield of the motor vehicle in such a manner, that to the driver, the image appears to be several meters in front of the vehicle. In one variant, at least one head-up display is used for displaying at least one warning symbol.
In one variant of the method and the device, the at least one optical warning is additionally generated when the at least one object becomes visible to the driver. In this context, the at least one optical warning is carried out prior to the at least one object becoming visible to the driver, and the optical warning is continued upon the at least one object becoming visible.
In a further variant of the method and the device, at least one light patch is used as an optical warning. In this context, a patch of light is defined so as to be lacking in inherently contained information. The object of the light patch is simply to cause the driver to turn his eyes in the direction of an object. The shape of the at least one patch of light is circular and/or elliptical and/or star-shaped and/or triangular and/or rectangular and/or polygonal and/or blob-shaped. Alternatively, or in addition, the shape of the light patch is formed by a mosaic of at least one spot of light. In this instance, the light spot is generated by a light pulse.
In one variant of the described method and device, customary international and/or internationally understandable symbols are used as warning symbols. Characters, such as exclamation marks, and/or symbols similar to traffic signs and/or danger symbols are used as warning symbols.
In a further variant of the described method and the device, the display duration and/or the repetition frequency and/or the size and/or the color and/or the intensity of the at least one optical warning is alternatively or additionally changed. This causes the driver to turn his eyes at different speeds as a function of the object and/or the dangerousness of the object to the driver of the motor vehicle.
In a further variant, the at least one optical warning is generated immediately prior to the at least one object becoming visible to the driver. This allows the driver to detect the object immediately after turning his eyes, since the object becomes visible to the driver after the turning of the eyes. In this manner, the driver has the option of assessing the dangerousness of the object himself.
The described method and the device are not limited to a single image-sensor system. Rather, in one variant, additional image-sensor systems are used whose optical signals are supplied to the at least one processing unit. In this context, all of the utilized image-sensor systems are provided with color image sensors and/or black-and-white image sensors. The spectral sensitivity of the image-sensor systems is in the visible spectral range and/or in the infrared spectral range. Utilized in a further variant is at least one image-sensor system, which is made up of at least two image sensors, which essentially record the same scene. At least one stereo camera is used in a further variant.
In a further variant of the described device and the method, more than one processing unit is used. This allows the algorithms to be distributed among a plurality of processing units. At the same time, there is redundancy in the required computing power, so that in the event of a failure of a processing unit, the device and the method for improving the visibility continue to remain functional, since the remaining processing units compensate for the failure.
In a further variant of the described method and the device, the use of at least one additional sensor allows for improved warning of the driver of a motor vehicle. At least one radar sensor and/or at least one ultrasonic sensor and/or at least one LIDAR distance sensor is used as the at least one additional sensor. The use of at least one further sensor allows the position of at least one object and/or the course of the roadway to be redundantly determined.
Number | Date | Country | Kind |
---|---|---|---|
102535094 | Nov 2002 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE03/03214 | 9/26/2003 | WO | 11/14/2005 |