Producing a microscopic contiguous free-stream liquid jet using a solid-walled convergent nozzle (so called “Rayleigh source”) and break-up of the liquid jet into a linear stream of almost monodisperse droplets (so called “Rayleigh-Plateau break-up”) are generally known. The ability to trigger the Rayleigh-Plateau break-up by imposing a dominant acoustic drive signal has been documented e. g. by U. Weierstall et al. in “Exp. Fluids” vol. 44, 2008, p. 675-689. The triggered break-up results in a perfectly periodic, monodisperse, and linear stream of droplets. Either the contiguous section of the liquid jet or the droplet stream can be employed for experimental/process use, depending on the demands of the experiment/process at hand. However, Rayleigh sources may have disadvantages in terms of clogging of the solid-walled convergent nozzle, making it impossible to reliably generate liquid jets of smaller than about 20 μm in diameter (yielding droplets of 40 μm diameter). This is far too large e. g. for X-ray scattering experiments with biological samples suspended in liquids. Furthermore, the large jet diameter results in an undesirably large sample consumption.
Furthermore, a microscopic contiguous linear liquid free-stream jet can be produced using a sheath gas stream (see e. g. A. M. Gañán-Calvo in “Phys. Rev. Lett.” vol. 80, 1998, p. 285-288: or U.S. Pat. No. 8,272,576). The sheath gas stream is provided by a so-called gas dynamic nozzle (or: Gas Dynamic Virtual Nozzle, GDVN) as disclosed in U.S. Pat. No. 8,272,576. The gas dynamic nozzle includes an inner tube carrying a liquid, an outer tube carrying the focussing sheath gas, an exit channel and an exit aperture. As with Rayleigh sources, the contiguous liquid jet presents a Rayleigh-Plateau break-up into a linear stream of droplets (see e. g. D. P. DePonte et al, in “J. Phys. D: Appl. Phys.” vol. 41, 2008. p. 195505-195512).
With the gas dynamic nozzle technique, the liquid jet is continuously formed with a “virtual nozzle” created by the convergent sheath gas rather than by a convergent solid-walled nozzle. As a result, the GDVN injectors are much less susceptible to clogging. Furthermore, GDVN injectors may be used to routinely produce liquid jets having a diameter of 5 μm (Yielding droplets of about 10 μm diameter after break-up, which is significantly smaller than the clogging-limited droplet size of a Rayleigh source). By placing the exit of the timer tube very nearly at or even beyond the end of convergent sheath gas flow, where the gas is actually expanding as a free-jet expansion, even smaller free-streams can be delivered, e. g. having a diameter as small as 300 nm (600 nm droplets after Rayleigh break-up), see A. M. Gañán-Calvo in et al. in “small” vol. 6, 2010, p. 822-824.
Despite this jet diameter reduction, liquid jets conventionally produced with gas dynamic nozzles may have a disadvantage resulting from the continuous flow nature of the liquid jet and the resulting continuous substance consumption since, as an example, precious biological samples often are available in amounts measured in tens of μl only. If such biological samples suspended in a liquid are to be investigated by measuring X-ray scattering at a continuous flow liquid jet of the suspension and the liquid jet has a flow rate of about 10 to 20 μl/min the measuring time or number of measurements are strongly limited. This problem is even intensified by the fact that measurements often are conducted with pulsed probe beam sources. Large portions of the continuous flow liquid jets then cannot be utilized for the measurements as they are not hit by probe beam pulses.
As a further disadvantage of gas dynamic nozzles, it has been found that an irregular “dripping” behaviour of gas-focused liquid jets may occur (see e. g. J. M. Montanero et al. in “Phys. Rev. E” vol. 83, 2011, p. 036309: E. J. Vega et al. in “Phys. Fluids.” vol. 22, 2010, p. 064105; and T. Si et al. in “J. Fluid Mech.” vol. 629, 2009, p. 1-23, and in “Phys. Fluids” vol. 22, 2002. p. 112105). The dripping behaviour is an undesirable mode of operation as samples are provided in an irregular and non-reproducible fashion. Therefore, the above investigations have been conducted for characterizing the transition from the dripping to the jetting mode of the nozzle in order to avoid the dripping behaviour.
Another conventional technique of delivering small amounts of liquids for a measurement uses “droplet-on-demand” injectors (DoD injectors), which are operated in vacuum. However, these DoD injectors have a disadvantage resulting from evaporative cooling in vacuum, causing the nozzle to freeze shut between droplets. Heating the DoD injector nozzle to prevent freezing is problematic for most biological molecules, which invariably denature at just above body temperature.
The present invention relates to a method of producing a liquid jet using a gas dynamic nozzle. Furthermore, the present invention relates to a method of scattering measurements on samples included in a liquid jet. Furthermore, an injector device for producing a liquid jet is described. Applications of the invention are available with physical or chemical liquid handling procedures, in particular with the provision of samples in liquids for measuring purposes and/or chemical reactions.
In one aspect, the invention provides methods of producing an intermittent liquid jet, comprising the steps of:
In one embodiment, the methods may include the step of setting at least one of a duration of the continuous jet sections, a length of the continuous jet sections, a diameter of the continuous jet sections, a duration of the liquid-free gaps, a length of the liquid-free gaps, and a spurt repeat period T. In a further embodiment, the methods may include at least one of the features
In a further embodiment, the controlling step may include at least one of
In a further embodiment, the methods may include at least one of the features
In a still further embodiment, the methods may include the steps of monitoring the liquid in the exit channel or after leaving the exit aperture and providing a monitoring output. In another embodiment, the controlling step may be conducted in dependency on the monitoring output.
In one embodiment, the controlling step may include an application of acoustic, optical, or electromagnetic pulses triggering the production of the intermittent liquid jet.
In another aspect, the invention provides methods of scattering measurements on samples in a liquid, comprising the steps of:
In one embodiment, the methods may include measuring at least one of the intensity, the energy spectrum and the momentum spectrum of emissions from the intermittent liquid jet resulting from irradiation with the probe beam, including emission of electrons, ions, atoms, and electromagnetic radiation. In another embodiment, the intermittent liquid jet and the probe beam pulses are controlled such that each single continuous jet section is irradiated by a single probe beam pulse or by a defined train of multiple probe beam pulses. In a further embodiment, the methods may include a step of controlling a relative phase of the intermittent liquid jet and the probe beam pulses. In a still further embodiment, the relative phase of the intermittent liquid jet and the probe beam pulses are controlled by at least one of tuning a liquid flow rate of the liquid in the inner tube of the gas dynamic nozzle and applying an acoustic, optical, or electromagnetic pulse to the liquid jet.
In another embodiment, the continuous jet sections are irradiated with the pulses of the probe beam in a region of delivery, and the region of delivery is immediately downstream of the exit aperture, where the continuous jet sections have a contiguous cylindrical form, or the region of delivery is downstream with a distance from the exit aperture, where the continuous jet sections have undergone a Rayleigh-Plateau breakup into a linear stream of droplets.
In a further aspect, the invention provides injector devices for producing an intermittent liquid jet, comprising:
In one embodiment, the injector device may include a trigger device being adapted for applying an acoustic, optical, or electromagnetic pulse to the injector device.
As used herein, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. “And” as used herein is interchangeably used with “or” unless expressly stated otherwise. All embodiments of any aspect of the invention can be used in combination, unless the context clearly dictates otherwise.
Unless the context clearly requires otherwise, throughout the description and the claims, the words ‘comprise’, ‘comprising’, ‘include’, including’, and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not limited to”. Words using the singular or plural number also include the plural and singular number, respectively. Additionally, the words “herein,” “above,” and “below” and words of similar import, when used in this application, shall refer to this application as a whole and not to any particular portions of the application.
The description of embodiments of the disclosure is not intended to be exhaustive or to limit the disclosure to the precise form disclosed. While the specific embodiments of, and examples for, the disclosure are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the disclosure, as those skilled in the relevant art will recognize.
It is an objective of the invention to provide an improved method of producing a liquid jet that is capable of avoiding limitations of conventional techniques. In particular, the method of producing a liquid jet is to be improved with regard to a controllability of liquid jet flow properties, a reproducibility of liquid supply, e. g. for measurements, and/or with regard to a reduced liquid consumption. It is a further objective of the invention to provide an improved method of scattering measurements on samples included in a liquid jet, being capable of avoiding disadvantages of conventional measuring techniques. In particular, the method of scattering measurements is to be capable of reducing undesirable sample lost during a probe beam irradiation. It is yet a further objective of the invention to provide an improved injector device configured for producing a liquid jet, being capable of avoiding disadvantages of conventional injector devices. In particular, the injector device is to be capable of providing additional degrees of freedom in controlling of liquid jet flow properties and/or allowing a reduced liquid consumption.
These objectives are solved with method of producing a liquid jet, a method of scattering measurements on samples included in a liquid jet and an injector device comprising the features of the independent claims. Preferred embodiments of the invention are defined in the dependent claims.
According to a first general aspect of the invention, a method of producing an intermittent liquid jet is provided, which comprises a step of delivering a liquid through a gas dynamic nozzle, which includes an inner tube (inner capillary) carrying the liquid, an outer tube carrying a focussing sheath gas, an exit channel and an exit aperture. A stream of the liquid is emitted from the inner tube into the exit channel, where the liquid is enclosed by the focussing sheath gas. In the exit channel, a liquid jet is formed, which is supplied through the exit aperture. According to the invention, the emission of the liquid from the inner tube into the exit channel is controlled such that a periodic, linear intermittent liquid jet is produced. The intermittent liquid jet consists of spurts of linear continuous jet sections separated by liquid-free gaps. The term “spurt” refers to limited-duration linear liquid GDVN free-stream jet portions with a longitudinal extension along the jet flow direction. Contrary to the conventional gas dynamic nozzle techniques, the emission of the liquid from the inner tube is not continuous, but periodically interrupted. The spurts of continuous jet sections are straight portions of the liquid which are created in the exit channel with a predetermined period (spurt repeat period). Finally, the intermittent liquid jet is output through the exit aperture.
The inventors have found that the operation conditions of the gas dynamic nozzle, i. e. flow parameters of the liquid, in particular the flow rate thereof, and/or the sheath gas and/or geometric parameters of the gas dynamic nozzle, can be adjusted in a targeted fashion so that the spurts of continuous jet sections are created in the exit channel. Based on the spurts, a controllable and usable pulsed mode of nozzle operation has been demonstrated. Experimental investigations by the inventors, in particular using a high speed camera, have shown that it is the formation and growth of a convex bulbous meniscus of the liquid at the distal end of the inner tube and its sudden transition from a bulbous shape to the cusp-like meniscus of gas dynamic nozzle operation that leads to emission of each spurt.
Advantageously, the invention provides a methodology for reproducible pulsed injection of liquids, containing e. g. fully solvated microscopic biological samples, into vacuum or an atmosphere surrounding the nozzle. In contrast to continuous flow techniques employed to date, this intermittent flow method reduces the consumption of sample solution by up to two orders of magnitude, enabling investigation of e. g. biological samples that are available only in minute quantities. The methodology is particularly relevant to the study of macromolecules, macromolecular assemblies, viruses or nanocrystals formed from such species, by use of X-Ray Free Electron Lasers (XFEL).
The inventors have shown with the use of high speed photographic studies that contrary to the conventional “dripping” mode a highly reproducible formation and termination of a liquid meniscus in a gas dynamic nozzle can be provided as a physical. basis for intermittent operation of the gas dynamic nozzle. The measurements by the inventors on nozzles of different geometry (in particular different inner tube bore and length of the exit channel) show that the intermittent operation of the gas dynamic nozzle can be controlled as a dominant and stable nozzle behavior. The inventors also have shown that the exact attributes of intermittent operation of the gas dynamic nozzle (in particular speed, length, diameter, and duration of the liquid free-stream, spurt repeat interval) can be set and fine-tuned by choice of the nozzle geometry and/or of the gas and liquid flow rates and pressures. Preferably, the control includes a regulation of the liquid flow rate, as this influences the basic nozzle ejection period. Repeat intervals from many ins down to tens of is are possible. Of particular interest are embodiments with a low flow rate of the liquid, which preferably is below 500 nl/min, in particular below 300 nl/min e. g. 200 nl/min or even lower. At 200 nl/min it is a factor of ×50 to ×100 lower than that of a conventional continuous-flow GDVN liquid jet. Given that many biological samples of great interest are available only in minute amounts, a reduction of this magnitude shows the tremendous advantages for any applications—such as experimental investigations at the Linac Coherent Light Source (LCLS, Stanford, USA), where the sample is probed only intermittently. Also of interest for engineering design of an intermittent GDVN injector is the inventor's observation of the role played by sheath gas flow rate in the spurt ejection process.
According to a second general aspect of the invention, a method of scattering measurements on samples in a liquid is provided, which includes the step of producing an intermittent liquid jet including spurts of continuous jet sections with a method according to the above first aspect of the invention. Furthermore, after leaving the exit aperture, continuous jet sections are irradiated with pulses of a probe beam (radiation beam) resulting in a scattering process of the probe beam with the liquid or a contents thereof, e. g. sample molecules included in the liquid. The probe beam comprises e. g. an emission from an X-Ray Free Electron Laser. Finally, the scattered probe beam is measured using a detector device.
According to a third general aspect of the invention, an injector device is provided. for producing an intermittent liquid jet which comprises a gas dynamic nozzle including an inner tube carrying the liquid, an outer tube carrying a focussing sheath gas, an exit channel and an exit aperture, and a control device arranged for tuning at least one of a liquid flow rate of the liquid in the inner tube, a liquid pressure of the liquid in the inner tube, a sheath gas flow rate of the sheath gas in the outer tube, and a sheath gas pressure of the sheath gas in the outer tube.
The injector device can be based on a gas dynamic nozzle with a basic structure and function as it is known from conventional techniques which are equipped with the control device. Thus, the gas dynamic nozzle can immediately be switched from intermittent to continuous flow at any time. Flow switching can be performed with the control device e. g. using remotely controlled pumps, valves and/or gas regulators.
According to a preferred embodiment of the method according to the above first aspect of the invention, the controlling step includes a step of setting jet parameters of the intermittent liquid jet, in particular including a duration of the continuous jet sections, a length of the continuous jet sections, a diameter of the continuous jet sections, a duration of the liquid-free gaps, a length of the liquid-free gaps, and/or the spurt repeat period. Advantageously, the jet parameters can be selected in dependency on the requirements of a particular application of the invention, e. g. by setting a flow rate of the liquid and/or the sheath gas and/or by selecting an inner tube with an appropriate inner diameter.
Preferably, the duration of the continuous jet sections is less than 10%, in particular less than 5% of the spurt repetition period. Correspondingly, the duration of the liquid-free gaps preferably is greater than 90% of the spurt repetition period. According to a further preferred variant, the length of the continuous jet sections is less than 10% (or the length of the liquid-free gaps is greater than 90%) of the product of the spurt repetition period and a terminal speed of the linear liquid jet at the exit of the inner tube. Furthermore, the diameter of the continuous jet sections can be set to be below 10 μm, in particular below 5 μm. Advantageously, these alternative parameters which can be provided in combination, allow a reduction of the substance consumption at least by a factor of 10, compared with conventional techniques.
According to a preferred embodiment of the method according to the above second aspect of the invention, the spurt repeat period is matched to a pulse rate of the pulsed probe beam. The flow parameters of the intermittent liquid jet can be selected such that a single continuous jet section is supplied to a region of delivery only during the irradiation with the probe beam. Preferably, the intermittent liquid jet and the probe beam pulses are controlled such that each single continuous jet section is irradiated by a single probe beam pulse or by a defined train of multiple probe beam pulses. As an example, the European XFEL will produce trains of 2700 X-ray pulses spaced 200 ns apart (600 μs per train). The trains will be spaced 0.1 s apart. The inventive control allows to illuminate a single spurt with the entire train.
Additionally or alternatively, a relative phase of the intermittent jet of the liquid, i. e. the time of arriving in a region of delivery, and the probe beam pulses can be controlled. Preferably, the relative phase of the intermittent liquid jet and the probe beam pulses is controlled by tuning the liquid flow rate of the liquid in the inner tube of the gas dynamic nozzle and/or by applying an acoustic, optical, or electromagnetic trigger pulse to the liquid jet.
Advantageously, multiple variants of implementing the controlling step are available with preferred embodiments of the invention, which can be realized separately or in combination. According to first variants, the controlling step includes a timing of the liquid flow rate, e. g. below 1 μl/min, and/or the liquid pressure, e. g. between 0 psi and 6000 psi, of a liquid pump providing the liquid in the inner tube (1 psi=6894.75 Pa). In this case, the control device of the inventive injector device preferably includes a controllable pump, e. g. a HPLC pump, optionally combined with a liquid pressure amplifier.
According to further variants, the controlling step includes a tuning of the sheath gas flow rate and/or the sheath gas pressure, e. g. between 10 and 3000 psi, in particular below 1000 psi, of a gas source providing the sheath gas in the outer tube. The gas source is e. g. a tank of compressed gas, optionally combined with a gas compressor. Thus, the control device of the injector device preferably comprises a controllable valve connected between a pressure gas source and the as dynamic nozzle. Depending on the application of the invention, the sheath gas may flow at supersonic speed or subsonic speed downstream of the exit aperture.
According to yet further variants, the controlling step may include a provision of geometric parameters of the as dynamic nozzle. This can be done e. g. by selecting a particular nozzle or by exchanging parts of the nozzle for a scattering measurement to be conducted. Geometric parameters of the gas dynamic nozzle preferably comprise an inner diameter of the inner tube, e. g. at least 10 μm and/or at most 100 μm, an axial length of the exit channel, and/or a diameter of the exit aperture, e. g. at least 10 μm and/or at most 100 μm. The axial length of the exit channel preferably is at least equal to the diameter of the exit aperture, and the axial length of the exit channel preferably is at most twenty times larger than the diameter of the exit aperture.
As a further advantage of the invention, the gas dynamic nozzle can be operated with various ambient conditions while keeping the stable production of the intermittent liquid jet. Generally, the intermittent gas dynamic nozzle operation is fully compatible with injection into vacuum, which is the preferred mode of conventional LCLS operations. In particular, all measurements conducted by the inventors were made during injection into vacuum even though (as was explicitly verified) all of the tested gas dynamic nozzles were also capable as well of injection into ambient air. The inventive method of intermittent injection therefore has great advantages over the conventional DoD injectors, as the freezing is not a problem with gas dynamic nozzle injectors due to the gas flow that surrounds the liquid stream until beyond the point of injection into vacuum.
According to a further preferred embodiment of the invention, the emission of the liquid from the inner tube into the exit channel can be controlled by a trigger action. The production of the spurts of continuous jet sections can be triggered, preferably by providing an acoustic, optical, and/or electromagnetic trigger pulse. The trigger pulse is adapted for initiating the emission of a liquid spurt from the inner tube. The trigger control according to this embodiment of the invention has particular advantages for precise synchronization of the spurt production with the pulsed probe beam illumination in the region of delivery. The emission of the intermittent liquid spurt can be periodically initiated at very well defined points in time.
According to a yet another preferred embodiment of the invention, the liquid is monitored in the exit channel or after leaving the exit aperture of the gas dynamic nozzle. A monitoring device, which comprises e. g. a camera, provides a monitoring output signal. Advantageously, the monitoring output signal can be used for characterizing the intermittent liquid jet production in the gas dynamic nozzle. With a particularly preferred embodiment of the invention, the controlling step can be conducted in dependency on the monitoring output signal, i. e. a control loop can be implemented, wherein operations parameters and/or geometric parameters of the gas dynamic nozzle are adjusted in dependency on the monitoring output signal.
According to further preferred embodiments of the method according to the above second aspect of the invention, at least one of the intensity, the energy spectrum and the momentum spectrum of emissions from the intermittent liquid jet is measured which results from the irradiation with the probe beam. Depending on the application of the invention, these emissions may include e. g. electrons, ions, atoms, and electromagnetic radiation.
With the method according to the above second aspect of the invention, the continuous jet sections are irradiated with the pulses of the probe beam in a predetermined region of delivery of the continuous jet sections. The region of delivery is a region within a measuring apparatus where the pulses of the probe beam pass, possibly with a focussed beam. The region of delivery can be selected in dependency on the particular application requirements, e. g. immediately downstream of the exit aperture, where the continuous jet sections have a contiguous cylindrical form. Alternatively, as the continuous jet sections are subjected to the above Rayleigh-Plateau like the conventional continuous liquid jets, the region of delivery can be located downstream with a distance from the exit aperture, where the continuous jet sections have undergone a Rayleigh-Plateau breakup into a linear stream of droplets.
Further details and advantages of the invention are described in the following with reference to the attached drawings.
Preferred embodiments of the invention are described in the following with particular reference to the control of a gas dynamic nozzle for obtaining an intermittent liquid jet according to the invention. While examples of preferred operation conditions of the gas dynamic nozzle are described, it is emphasized that the implementation of the invention is not restricted to the disclosed examples. With the physical basis of the meniscus formation/termination process in a gas dynamic nozzle understood, a variety of engineering designs are possible for an injector based on inventive intermittent gas dynamic nozzle operation. The gas dynamic nozzle used for implementing the invention can be fabricated as described with conventional gas dynamic nozzles. Geometric parameters of the gas dynamic nozzle can be selected for controlling the intermittent liquid jet operation by the skilled user on the basis of test experiments and numerical simulations. The gas dynamic nozzle is shown with a horizontal jet flow direction. The invention is not restricted to this example. A vertical jet flow direction or other directions can be provided as well. Applications of the invention, in particular details of preparing biological samples or details of scattering measurements are not described as far as they are known from conventional scattering measurements.
The inner tube 11 is a capillary with an inner channel accommodating a flow of the liquid 2 to be delivered as an intermittent liquid jet 1. The capillary is coaxially arranged within the outer tube 12 so that a spacing is formed which accommodates a flow of the focussing sheath gas 3. The downstream end of the outer tube 12 is closed with a wall presenting the exit aperture 14 which is aligned with the axial direction of the inner channel of inner tube 11. At the exit aperture 14, the nozzle opens towards an adjacent space, e. g. a measuring space of an apparatus for scattering measurements. The adjacent space may be evacuated. The path between the downstream end of the inner tube 11 and the exit aperture 14 provides the exit channel 13, which has a profile converging towards the exit aperture 14.
The gas dynamic nozzle 10 can be fabricated following the procedure of U. Weierstall et al. in “Rev. Sci. Instrum.” vol. 83, 2012, p. 035108. Specifically, a square borosilicate capillary (Friederich & Dimmock BMC-040-15-50, 400 μm inner by 600 μm outer dimension) is employed as the outer tube 12 and a Polymicro silica capillary TSP020375 or TSP050375 (360 μm outer dimension by 20 or 50 μm inner dimension) as the inner tube 11. The end of the outer tube 12 is flame-burnished to form a converging aperture, ground back to a flat exit plane, then glued into a 1/16 in outer dimension×0.040 in inner dimension by 5 cm long stainless steel tube (Upchurch U-138) (1 in=2.54 cm). In order to form an end shape with the exit aperture 14 as symmetrical as possible, the flame-forming is carried out while rotating the square tubing at several rotations per second about its axis. To allow a clear view of the meniscus region at the end of the inner tube 11. the front end of the burnished was not ground to a conical shape as is the usual practice in fabricating nozzles for LCLS experiments (the intent of the cone being to avoid obstructing X-rays scattered to high angles). The inner tube 11 is coned on its outer front end (downstream end) and inserted as far as possible into the square outer tube 12. This automatically centers the capillary within the tube while still providing ample cross-sectional area on the four corners to pass adequate gas flow for gas dynamic nozzle action. For practical tests, the gas dynamic nozzle 10 is mounted in a test chamber connected with a vacuum pump and having optically flat. O-ring sealed windows to provide viewing ports on each of the four sides.
The intermittent liquid jet 1 is created by delivering the liquid 2 through the gas dynamic nozzle 10. The liquid 2 is driven using a controllable HPLC pump (e. g. from manufacturer Shimadzu). Spurts of linear continuous jet sections 4 are periodically formed with a spurt repeat period T. Liquid-free gaps are present between the continuous jet sections 4.
According to
With more details, the photographs of
The inventors have demonstrated “off times” ranging from a few tens of μs up to over 10 ms. The latter are achieved at very low liquid flow rates. At 200 nl/min, for example, with no pressure applied to the liquid and 300 psi on the sheath gas 3, the gas dynamic nozzle 10 of 50 μm bore inner tube 11 emits water streams every 10.5 ms. The usable duration of these intermittent liquid free-streams is about 35 μs and the usable. stream length is about 350 μm. These attributes are ideally suited to intermittent delivery of sample-containing liquid streams at the repetition rate of the SLAC Linac Coherent Light Source (LCLS), namely at 120 Hz (pulse-to-pulse separation of 8.33 ms). LCLS measurements made in this intermittent mode of operation would be indistinguishable from those made with a continuous-flow GDVN stream. However the much lower flow rate (200 nl/min as opposed to the usual 10 to 20 μl/min of a conventional continuous GDVN stream) offers an extraordinary advantage for measurements with precious biological samples.
The inventive creation of the spurts of continuous jet sections in the exit channel is adjusted on the basis of the following results of the inventors: (1) the turn-off spurts are in fact highly structured and very reproducible, (2) gas dynamic nozzle turn-on and turn-off is intimately connected to the appearance and disappearance of the cusped GDVN meniscus, (3) there is hysteresis in the turn-on and turn-off, providing an “on time” that depends primarily on the fluid dynamics of the meniscus formation, specifically on the size and volume of the gas dynamic nozzle meniscus (once formed), on the sheath gas speed, and on the inflow of liquid into the meniscus, and (4) once the gas dynamic nozzle meniscus is formed, it emits a linear liquid free-stream of microscopic diameter, essentially identical to that produced by a continuous-flow gas dynamic nozzle.
Furthermore, the inventors have found an oscillation of the drop at the front of the inner tube 11 after the meniscus “snaps back” into the hemispherical shape 2.1. The details of this oscillation depend on the geometry of the gas dynamic nozzle meniscus: if the meniscus is axially symmetric, then so too are the oscillations. If the meniscus is not axially symmetric, then the oscillations contain as well an off-axis rotational component. In any event, the oscillations damp out after a few tens of microseconds. The drop then re-fills and the process repeats. It is highly reproducible from one spurt to the next. For the creation of the spurts of continuous jet sections, the gas dynamic nozzle 10 can be controlled such that these oscillations of the bulb-shaped drop appear at the downstream end of the inner tube 11.
The inventors have found that changes in phase between the gas dynamic nozzle spurts and the probe beam pulses depend on the derivative of the flow rate. To retard the spurt time the flow rate of the liquid is reduced (increasing the interval between spurts) but then is increased again once the desired phase shift has been obtained (bringing the spurt interval back into coincidence with the x-ray pulse interval). Preferably, this complex behavior is controlled by active driving of the spurt formation with the trigger device 24.
The trigger device 24 is adapted for applying an acoustic, optical, electric or electromagnetic pulse to the downstream end of the inner tube 11. Thus, the trigger device 24 applies forces to the liquid by means other than via pressure from the HPLC, pump or the driving sheath gas, e.g. by compression forces created by a strong piezoelectric. transducer, by a stepper-motor driven piston or by a high-voltage pulse. This has the further advantage that complex pressure pulses can be applied to not only push but also pull on the gas dynamic nozzle meniscus to shape its time development. A train of pressure-suction pulses following initial expulsion of the GDVN spurt could be employed, for example, to nullify the oscillations in the hemispherical gas dynamic nozzle drop following “snap-back” of the cusped meniscus, and thereby allow reliable operation at much higher repetition rates.
Since the elongated drop at the tip of the gas dynamic nozzle inner tube 11 clearly becomes unstable at the instant it snaps into the cusped gas dynamic nozzle meniscus, a trigger signal applied just prior to this instant will almost certainly be adequate to trigger the creation of the spurt. Since only a very small excitation is needed under these nearly unstable conditions, a signal from the piezoelectric transducer is sufficient. Moreover, this excitation even can be applied indirectly, either at the nozzle but through the sheath gas envelope or to the liquid supply capillary but well upstream of the gas dynamic nozzle 10.
With a preferred example, the trigger device 24 comprises a stepper-motor driven piston driving the liquid to the inner tube 11. A microstepped IMS linear actuator, e. g. from Schneider Electric (KMLI3CRL23A7-EQ-LD3M040AT), can be used for providing the necessary force and time resolution to drive the piston with the linear displacement profile needed to maintain an average flow rate of about 200 nl/min. Superimposed on this would be a more complex intermittent step sequence to deliver small positive/negative pressure pulses as required to eject a gas dynamic nozzle spurts upon receipt of a trigger signal from the measuring apparatus 200 (directly, or via the tuning unit 21). The internal encoder of the linear actuator may be read in real time to allow fine tuning of the actuator position, speed, and acceleration as needed to adjust flow rate and maintain synchronization with the probe beam pulses 6. Additionally or alternatively, the trigger device 24 comprises a piezoelectric transducer being capable to apply an ultrasound pulse to the inner tube 11. The piezoelectric transducer could be used in conjunction with a miniature check valve or similar tailoring of acoustic impedance to attain the same results. More likely, the optimum engineering solution will combine both, providing an easily controllable constant flow drive by means of a stepper motor and a complex pressure profile for spurt ejection by means of a piezoelectric transducer.
Furthermore,
Advantageously, the inventive injector device 100 can be switched between the conventional continuous mode of operation and the inventive intermittent mode of operation. To this end, the tuning unit 21 is used to adjust the components 23, 24. In particular, the inventive injector device 100 can be remotely switched from intermittent sample flow to continuous liquid, e. g. water, flow and back again, by switching the liquid and altering the gas and liquid flow rates appropriately. This has tremendous advantages for alignment of the liquid free-stream with the probe beam, since searches for spatial overlap and temporal overlap of the two then become separate one-dimensional searches rather than a single two-dimensional search, and accordingly much, much easier (see below).
The injector device 100 is shown in combination with a measuring apparatus 200 in
With practical implementations, the scheme of
The continuous jet sections 4 and the pulses 6 are spatially and temporally aligned relative to each other. Spatial alignment can be obtained by running the injector device 100 in a conventional continuous flow mode using a sample free liquid, e. g. water. Following the known protocols, the liquid free-stream is displaced while watching for the specific probe beam scattering pattern and e. g. a plasma spot that appear when an X-ray beam is striking the liquid stream. For the temporal alignment, the gas dynamic nozzle 10 can be switched to the triggered intermittent mode, and the phase delay between the trigger pulses supplied from the measuring apparatus 200 and the piezoelectric excitation of the injector is adjusted until the temporal alignment is achieved. The indicator would again be the probe beam scattering pattern and e. g. the plasma spot, as with conventional scattering measurements.
Stroboscopic imaging can be used to synchronize the gas dynamic nozzle spurt with the probe beam pulses, e. g. the XFEL X-ray pulses at the XFEL repetition rate (e. g. 120 HZ for the LCLS source). For the stroboscopic imaging of the intermittent jet, high intensity light flashes of sub-microsecond duration are employed being synchronized to the probe beam pulses and having an adjustable delay time between the illumination pulse and the probe beam pulse. To synchronize the GDVN spurts with the probe beam pulses, the following procedure can be employed: (1) Adjust the delay setting until an image of the GDVN spurt appears on a camera device. Since a stroboscopic image is collected, the camera device is not necessarily a high-speed camera. This delay time is then that by which the GDVN spurt must be advanced (or alternatively retarded) in order to be synchronized with the probe beam pulse. (2) Compute, for the current flow rate, a faster flow rate and duration for that faster flow (or alternatively a slower flow rate and duration for that slower flow) that will bring the GDVN spurt into synchronization with the probe beam pulse. (3) Feed this flow rate and duration to the control device, e. g. to an HPLC control unit, and apply them to the flow. (4) Re-adjust the delay setting until an image of the GDVN spurt appears. (5) Iterate as necessary.
The features of the invention disclosed in the above description, the figures and the claims can be equally significant for realizing the invention in its different embodiments, either individually or in combination.
Number | Date | Country | Kind |
---|---|---|---|
13001335 | Mar 2013 | EP | regional |
This application is a U.S. national phase of International Application No. PCT/US2014/025249, filed Mar. 13, 2014, which claims priority to U.S. Provisional Application No. 61/789,294, filed Mar. 15, 2013, and to European Patent Application No. 13001335.2, filed Mar. 15, 2013, the disclosures of which are hereby incorporated by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/025249 | 3/13/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/151231 | 9/25/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4071195 | Kuhns et al. | Jan 1978 | A |
4358302 | Dahneke et al. | Nov 1982 | A |
4794086 | Kasper et al. | Dec 1988 | A |
5423964 | Smith et al. | Jun 1995 | A |
5464157 | Bourdoulous et al. | Nov 1995 | A |
5725154 | Jackson | Mar 1998 | A |
5735468 | Casey | Apr 1998 | A |
5848751 | Wang et al. | Dec 1998 | A |
5962606 | Williams et al. | Oct 1999 | A |
6116516 | Ganan-Calvo | Sep 2000 | A |
6166379 | Montaser | Dec 2000 | A |
6283936 | Tavger | Sep 2001 | B1 |
6386463 | Ganan-Calvo et al. | May 2002 | B1 |
6478240 | Dorkin et al. | Nov 2002 | B1 |
6554202 | Ganan-Calvo | Apr 2003 | B2 |
6659365 | Gipson et al. | Dec 2003 | B2 |
7482166 | Nollert et al. | Jan 2009 | B2 |
8272576 | Doak | Sep 2012 | B2 |
20010010206 | Bryning | Aug 2001 | A1 |
20030209666 | Hirabayashi et al. | Nov 2003 | A1 |
20080230053 | Kraft | Sep 2008 | A1 |
20090025425 | Weinhold | Jan 2009 | A1 |
20100243753 | Doak et al. | Sep 2010 | A1 |
20130313336 | Doak et al. | Nov 2013 | A1 |
20140263693 | Doak et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
0647429 | Apr 1995 | EP |
9621516 | Jul 1996 | WO |
WO 1999030812 | Jun 1999 | WO |
WO 1999030831 | Jun 1999 | WO |
WO 1999030832 | Jun 1999 | WO |
WO 1999030833 | Jun 1999 | WO |
WO 1999030834 | Jun 1999 | WO |
WO 1999030835 | Jun 1999 | WO |
WO 1999031019 | Jun 1999 | WO |
WO 2001045519 | Jun 2001 | WO |
WO 2001069289 | Sep 2001 | WO |
WO 2000076673 | Dec 2001 | WO |
WO 2002047744 | Jun 2002 | WO |
WO 2002060275 | Aug 2002 | WO |
WO 2005018817 | Mar 2005 | WO |
WO 2006117422 | Nov 2006 | WO |
WO 2009091416 | Jul 2009 | WO |
2011150368 | Dec 2011 | WO |
Entry |
---|
Extended European Search Report for PCT/US2014/024259, dated Nov. 18, 2016. |
Shapiro D.A et al, “Powder diffraction from a continuous microjet of submicrometer protein crystals”, Journal of Synchrotron Radiation, vol. 15, pp. 593-599, 2008. |
Howells M et al, “An assessment of the resolution limitation due to radiation-damage in X-ray diffraction microscopy”, Journal of Electron Spectroscopy and Related Phenomena, vol. 170, Issue 1-3, pp. 4-12, 2009. |
Ganan-Calvo A.M et al, “Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas”, Physical Review Letters, vol. 80, Issue 2, pp. 285, 1998. |
Deponte D.P. et al, “Gas dynamic virtual nozzle for generation of microscopic droplet streams”, Journal of Physics D: Applied Physics, vol. 41, Issue 19, pp. 1-7, 2008. |
Ganan-Calvo A et al, “Focusing capillary jets closet to the continuum limit”, Nature Physics, vol. 3, Issue 10, pp. 737-742, 2007. |
International Search Report for PCT/US2012/065788, dated Jun. 21, 2013. |
Deponte DP et al., “Towards ETEM serial crystallography: Electron diffraction from liquid jets”, Ultramicroscopy , vol. 111, No. 7, pp. 824-827, 2011. |
Hunter MS et al., “X-ray Diffraction from Membrane Protein Nanocrystals”, vol. 100, Issue 1, Jan. 5, 2011, pp. 198-206. |
Sharma R, “An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials”, J. Mater. Res., vol. 20, No. 7, Jul. 2005, 1695-1701. |
Lagrange T et al., “Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM)”, Ultramicroscopy 108 (2008) 1441-1449. |
Taylor KA et al., “Electron Microscopy of Frozen Hydrated Biological Specimens”, Journal of Ultrastructureresearch 55, 448-456 (1976). |
Unwin Pnt et al., “Molecular structure determination by electron microscopy of unstained crystalline specimens”, Journal of Molecular Biology 94 (1975) 425-432. |
Clark Gni et al., “The structure of ambient water”, Molecular Physics, vol. 108, No. 11, Jun. 10, 2010, 1415-1433. |
Rayleigh L, “On the instability of jets”, Proceedings of the London Mathematical Society s1-10 (1878) 4-13. |
International Search Report for PCT/US2014/025249, dated Aug. 26, 2014. |
International Search Report for PCT/US2014/035627, dated Sep. 9, 2014. |
Weierstall U et al., “Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography”, Nat Commun. 2014; 5: 3309. |
Weierstall U et al., “Injector for scattering measurements on fully solvated biospecies”, Review of Scientific Instruments 83, 035108 (2012). |
Number | Date | Country | |
---|---|---|---|
20160001305 A1 | Jan 2016 | US |
Number | Date | Country | |
---|---|---|---|
61789294 | Mar 2013 | US |