1. Field of the Invention
The present invention concerns a method and a device to determine a relative position (angular position) by means of a resolver, in particular at high rotation speeds.
2. Description of the Prior Art
Resolvers are used in engineering, among other things, to detect the relative position of actuated or non-actuated pivot points, motors and the like. In robotics, the evaluation of the resolver signals is accorded particular importance since they decisively influence the performance and the positioning precision of the robot.
A known design of a resolver includes two stator windings offset by 90° that enclose a rotatably supported rotor with a rotor winding. Other resolver designs employ two windings arranged offset from one another and activated by a stator winding, or make use of variable magnetic resistance (as known from EP 0 877 464 A2).
The rotor of the resolver is activated by a reference sine signal of the form U(t)=UR·sin(2π·f·t) with the amplitude UR and the frequency f that induces voltages of different amplitude in the stator windings S1 and S2 depending on the rotor position. If ρ designates the defined angle of the rotor as shown in
US1(t)=CTF·UR·sin(2π·f·t+φR)·cos ρ=US1,Amp·sin(2π·f·t+φR), (1)
results for S1 and the voltage
US2(t)=CTF·UR·sin(2π·f·t+φR)·sin ρ=US2,Amp·sin(2π·f·t+φR). (2)
results for S2.
The two induced voltages are thus theoretically identical in frequency f and phase but can be shifted in phase by φR relative to the reference sine with which the rotor winding is activated, wherein CTF designates the transmission factor. The angle ρ of the resolver can thus be determined by
An optimally precise determination of the amplitudes US1,Amp and US2,Amp is thus important for a good position signal.
In addition to the conventional sampling of the voltages US1(t), US2(t) in the range of their extremes (in which US(t)≈US,Amp applies), difficulties exist due to the sensitivity regarding the sampling point in time. From U.S. Pat. No. 5,241,268 it is known to implement a Fourier transformation of the voltages US1(t), US2(t) in order to determine the amplitudes US1,Amp and US2,Amp (and thus the rotor angle ρ) more reliably and precisely.
For this purpose, the voltage signals US1(t), US2(t) are sampled equidistantly. The calculation of the amplitude of these N time-discrete sample values then ensues by means of (for example) discrete Fourier transformation, which transforms a time signal into a frequency range. The complex Fourier coefficients â=(â0, . . . , âN-1) are calculated from the time-discrete sample values a=(a0, . . . , aN-1) according to:
The Fourier coefficient âk at the frequency of the resolver signal contains the amplitude 2·|âk| as well as the phase ∠(âk) of the sampled signal. Which of the coefficients corresponds to the exciter signal depends on the number of full waves across which the Fourier transformation is calculated. If it is one full wave, the first coefficient is calculated and Equation (4) is simplified as:
Given two full waves, the second coefficient is accordingly calculated, given three full waves the third coefficient etc.
Equation (5) can also be represented with separate real part and imaginary part with the aid of the Euler formula eiθ=cos θ+i sin θ:
The Fourier coefficient from Equation (6) is to be calculated for both US1(t) and US2(t).
To solve Equation (3) a complex division
of the two (complex) Fourier coefficients zS1, zS2 that result for the two voltage signals US1(t), US2(t) can be taken into account. The absolute value of this complex number, i.e. the real part according to Equation (7), corresponds to the quotient of the amplitudes to be used in Equation (3).
However, the determined position disadvantageously becomes increasingly more imprecise with increasing rotor rotation sped. It has been shown that the determined deviation is approximately linearly dependent on h rotation speed and approximately sinusoidal relative to the phase displacement of the resolver. This is shown in
The invention is based on the insight that the above-described effect is significantly due to the fact that the position of the rotor changes significantly within a Fourier interval at high motor rotation speeds. A large change of the amplitude of the envelope that is sampled to determine the amplitudes thereby arises.
Since the calculation according to Equation (7) additionally assumes that the theoretically identical phases are essentially eliminated, a further adulteration of the relative position results since the phase positions of the Fourier coefficients are shifted by the significant change of the envelope during a sampling interval. They therefore no longer lie on one of the straight lines from
Accordingly shown in
It is therefore an object of the present invention to enable a more precise detection of the relative position of a resolver, in particular even at higher rotation speeds.
According to the invention, the determination of the relative position of the resolver ensues with the following steps: an excitation winding (for example a rotor winding) is excited with an (in particular periodical) reference signal. An (in particular induced) first signal resulting from the reference signal in a first winding (for example a first stator winding) is sampled and an (in particular induced) second signal resulting from the reference signal in a second winding (for example a second stator winding) is sampled. Uncompensated Fourier coefficients for the first and second signal are initially determined from these.
Before the relative position of the resolver is determined from the Fourier coefficients for the first signal and for the second signal, the Fourier coefficients are compensated such that the change of the Fourier coefficients of the sampled envelopes of the first and second signal are essentially compensated based on the phase shift of the resolver and/or the change of the relative position during the sampling.
If the case of N samples per full wave is considered (without limitation of generality) and a straight line is assumed as an envelope for simplicity, the curve shown in
wherein t designates the amplitude at −π/N, m designates the slope of the envelope and xc designates the phase shift of the resolver. If this function is applied to the Fourier transformation, the integral
is to be solved to determine the Fourier coefficients necessary to calculation the quotient according to Equation (3). The limits of the integral are shifted by −π/N since the values of the discrete Fourier transformation are not symmetrical around π but rather are distributed around
given N coefficients. With the aid of the Euler formula
Equation (9) can be reformulated as
Four integrals are to be solved to solve this Equation (10) (for better readability the constant
is abbreviated as t0):
The auxiliary calculation
used in Equation (11), leads to:
The first term
in Equation (12) is the desired part; the phase of this complex number corresponds to the phase position of the resolver. The absolute value corresponds to half the amplitude of the envelope at
The factor ½ results from the fact that a cosine signal respectively has a half fraction at the frequency f and a half fraction at −f. That can also be recognized in the Euler formula
for example.
The second term
in Equation (12) is responsible for the unwanted deviation. On the one hand it has the effect that the straight lines shown in
In Equation (12) the term
corresponds to the correct Fourier coefficients of a half wave before, i.e. a Fourier coefficient of a half wave before in which the deviation is compensated. If the difference of the uncompensated, new Fourier coefficients and the old, already-compensated Fourier coefficients is thus calculated,
is thus obtained.
The absolute value of the desired portion of the difference is thus greater by precisely
than the absolute value of the deviation. The angle of the deviation at N=8 is, for example, 135°−xc, thus proceeds precisely in the direction of the usable signal at +67.5° and opposite to this at −22.5°. At +22.5° and −67.5° the deviation is perpendicular to the usable signal.
If the complex number according to Equation (13) is rotated in the number plane by π/N (which corresponds to a multiplication with
is obtained. The deviation can be determined from this sum.
is abbreviated as φ. Since the deviation has the angle 90°−φ, the angle also rises in the right, upper small triangle in
The known variables
That is a linear equation system. With
The deviation must then be rotated back again by π/N, counterclockwise. These three steps can advantageously be combined. If XDFT+i·YDFT is the difference of the uncompensated new Fourier coefficients and the already-compensated old, via rotation with
is obtained.
Used in Equation (17), this yields:
Rotation of this deviation back ensues via multiplication with
With equation (19) thus yields:
Except for and XDFT and YDFT, these are hereby only constants. The calculation is thus advantageously simple in design.
The ellipse represents the uncompensated values; the straight line represents the compensated. Equation (21) now yields the correction vectors leading back to the straight lines from the difference vectors starting from said straight lines.
According to the invention, the current Fourier coefficients that result from the sampling are therefore compensated with complex compensation vectors with real and imaginary parts according to Equation (21) that result from the difference XDFT+i·YDFT of the respective current, uncompensated Fourier coefficients and a compensated Fourier coefficient that has been determined for a preceding sample time period (for example a half wave before or one sample value before).
As the comparison of
In the preceding the compensation of the change of the uncompensated Fourier coefficients according to the invention was explained on the basis of a linear envelope. However, the compensation can also similarly be based on a trigonometric (in particular sinusoidal) envelope which, although it increases the cost, more precisely approximates the envelope.
A compensated Fourier coefficient on the basis of the difference of the uncompensated Fourier coefficient and a compensated Fourier coefficient that has been determined for a preceding sampling time period is advantageously determined for the first and second signal. For example, Fourier coefficients that result given sampling at a still-stationary resolver and/or without phase shift can be selected as start values for a method according to the invention.
The preceding sampling time period can comprise one or multiples of a sampling period with which the first and second signal are sampled, such that a compensation according to the invention can in particular also be implemented after every sample value; i.e., the preceding sampling time period used to calculation the difference corresponds directly to the reciprocal of the frequency of the sampling.
The sampling time period can similarly comprise half a period of the first and second signal (in particular in order to reduce the computational cost), i.e. the compensation according to the invention can be implemented after a half wave.
In a cylindrical housing, two stator windings offset by 90° are arranged that enclose a rotor with the rotor winding R that is supported in the housing. This rotor is fed by a reference sine signal U(t)=UR·sin(2π·f·t) that induces voltages of different amplitude in the stator windings S1 and S2 depending on the rotor position. The angle ρ of the resolver can be determined according to (3) by
According to the method according to one embodiment of the present invention, the amplitude signals US1,Amp and US2,Amp are sampled equidistantly as this is indicated in
Advantageously, none of the sample values must actually hit the maximum or minimum of the signal. Due to the Nyquist-Shannon sampling theorem it is advantageous to sample the continuous, bandwidth-limited signal with a minimal frequency of 0 Hz and a maximal frequency fmax with a frequency greater than 2*fmax in order to be able to approximate the original signal with arbitrary precision from the time-discrete signal that is obtained in this way. Due to the achievable slope and the corresponding effort in the upstream anti-aliasing filter, it is preferred to sample with at least 2.5*fmax. In the exemplary embodiment, this maximal frequency fmax corresponds to essentially the frequency of the exciter signal.
The calculation of the amplitude of these time-discrete sample values ensues by means of the discrete Fourier transformation. This transformation is a special case of the z-transformation with values for z on the unit circle. As shown in
The cosine and sine values in Equation (6) are constants for a fixed sample interval and a constant sample frequency and can be stored in a table in program code. The calculation of a Fourier coefficient therefore advantageously essentially consists of two multiplications and two additions per sample value.
To calculate the resolver angle, the amplitudes of the two signals S1 and S2 are required. Two complex Fourier coefficients must therefore be determined.
The position determination initially occurs only in the first octant, i.e. between 0° and 45°. Negative operational signs are removed and stored for a subsequently described octant determination. If the square of the amplitude of S2 is greater than that of S1 (i.e. if the angle is greater than 45°), the two values are exchanged and this information is likewise stored for the subsequently described octant determination.
For position calculation, a trigonometric function is now applied that is implemented in a processor, preferably via a table with linear interpolation. The tangent lies in the range from 0° to 45°, relatively close to a straight line; it can thus be linearly interpolated well. To calculate Equation (3), the quotient of the two amplitudes (thus the absolute values of the Fourier coefficients) is therefore initially calculated. In order to avoid a complicated and imprecise absolute value calculation, the fact can be utilized that S1 and S2 possess the same phase position. The complex division according to Equation (7) can thus be included in the calculation since the absolute values are hereby divided and the phases are subtracted (thus are zeroed). Therefore only the real part of Equation (7) is required; the imaginary part should be zeroed. To increase the certainty, the numerator of the imaginary part should be checked; it should be approximately zero.
The denominator of the real part corresponds to the already-calculated squared amplitude. Since the numerator is always smaller than or equal to the denominator, the quotient is between 1 and 0 and a division by 0 cannot occur. The calculated angle is thus between 0° and 45°.
In order to expand this angle to a range from 0° to 360°, it is subsequently determined in which of the eight octants the rotor is presently located. For this in principle three signals are necessary that in combination carry sufficient information (8=23). It should hereby be ensured that the transitions between the octants occur consistently in every case, i.e. without a jump.
In principle the information of in which of the eight octants the rotor is presently located can be determined from, for example, the algebraic sign of the amplitude of S1, the algebraic sign of the amplitude of S2 and the comparison of the squares of the amplitudes S1 and S2.
The allowed range of the phase shift of the resolver is to be taken into account in the determination of the algebraic sign of the amplitudes of S1 and S2. Since the phase shift of a single resolver is relatively constant, the Fourier transformation delivers coefficients that are all located on a straight line through the origin.
If the allowed range of the resolver phase shift is defined at −90° to +90° (as this is indicated by the dash-dot double arrow in
However coefficients near the origin are problematical, especially given greater phase shifts. Here the coefficient can incorrectly come into the other region due to interference and noise. However, this should not lead to discontinuities in the position determination.
Therefore the algebraic signs of S1 and S2 are not used directly for octant determination; rather the algebraic sign of the quotient is on the one hand. If one coefficient is very small, the other is always large. Via the complex division, the large coefficient rotates the small coefficient out of the problematical region. The second algebraic sign results from the denominator of the quotient since this is always greater than sin 45°, i.e. is approximately 70% and offers reliable information.
The eight octants can thereby (as indicated in
According to Equation (21), real part and imaginary part
of a complex compensation vector are calculated from the difference XDFT+i·YDFT of the uncompensated current Fourier coefficient and the already-compensated preceding Fourier coefficient. Except for XDFT and YDFT, these are hereby only constants. The calculation is therefore very simply designed, quick and precise.
The current (complex) Fourier coefficients that are determined according to Equation (6) from the sampled values of the signals US1(t), US2(t) are subsequently corrected with the corresponding compensation vector, and the relative position ρ of the rotor relative to the stator windings (i.e. the relative position of the resolver) is determined from these corrected Fourier coefficients according to Equation (7) as described in the preceding.
For example, the Fourier coefficient given a stationary resolver (at which—as is recognizable from FIGS. 6 and 7—the deviation essentially disappears—can be selected as a first preceding Fourier coefficient.
Although modifications and changes may be suggested by those skilled in the art, it is the intention of the inventors to embody within the patent warranted hereon all changes and modifications as reasonably and properly come within the scope of their contribution to the art.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 005 494 | Jan 2009 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5241268 | Lee | Aug 1993 | A |
5684719 | Anagnost | Nov 1997 | A |
5949359 | Vlahu | Sep 1999 | A |
6571194 | Goto et al. | May 2003 | B2 |
Number | Date | Country |
---|---|---|
1 498 698 | Jan 2005 | EP |
Entry |
---|
Improving the Accuracy of Low-Cost Resolver-Based Encoders Using Harmonic Analysis, Kaul et al. Nuclear Instruments and Methods in Physics Research A 586 (2008) pp. 345-355. |
Number | Date | Country | |
---|---|---|---|
20100207615 A1 | Aug 2010 | US |