The present invention generally relates to coating deposition processes and equipment. More particularly, this invention relates to a method and masking assembly for selectively depositing a coating on a turbine airfoil while preventing deposition of the coating on a dovetail of the airfoil.
Components of gas turbine engines, such as the blades and vanes (nozzles) of the turbine section within a gas turbine engine, are often formed of an iron, nickel, or cobalt-base superalloy. A turbine blade has an airfoil against which hot combustion gases are directed during operation of the gas turbine engine, and whose surface is therefore subjected to severe attack by oxidation, corrosion and erosion. The blade further includes a root section separated from the airfoil by a platform. Turbine blades are commonly anchored to the perimeter of a rotor or wheel by forming the rotor to have slots with dovetail cross-sections, and forming the root section of each blade to have a complementary dovetail profile whose oppositely-disposed undulatory surfaces, generally characterized by alternating lobes and recesses, interlock with the dovetail slot of the rotor.
Due to the severity of their operating environments, turbine blades often require environmentally protective coatings on the surfaces of their airfoils and platforms exposed to the hot gas path. Diffusion coatings such as chromide, aluminide, and platinum aluminide coatings are widely used as environmental coatings in gas turbine engine applications because of their oxidation resistance. Such coatings, which are typically applied to the internal and external surfaces of a blade, are produced by a thermal/chemical reaction process that takes place in a reduced and/or inert atmosphere at a specified temperature. Common processes include pack cementation and noncontact vapor (gas phase deposition) techniques, and typically take place at processing temperatures of about a 1900° F. (about 1040° C.) or more. The dovetail of a turbine blade is typically machined prior to the diffusion coating process, and is not coated during coating of the airfoil so that the dovetail will properly assemble with the dovetail slot in the rotor during engine build.
Slurries, putties, and tapes have been widely used as masks to prevent coating deposition on the machined surfaces of blade dovetails. One approach is to cover the dovetail surfaces with a mask formed from a slurry paste, such as a mixture of nickel powders and an organic binder. The slurry paste may be applied with pneumatic injection equipment and then dried to form a solid mask. Alternatively, the blade dovetails can be dipped into the masking slurry, with multiple dips typically being required to form an effective mask with sufficient thickness. The masked dovetails are then often wrapped in a metal foil to contain the maskant during the coating process. With either approach, the solid mask must be mechanically removed after the coating process, such as by grit blasting, rotating wire brush, etc. To avoid the requirement of removing a solid maskant, the dovetail can simply be buried in a nickel powder without any binder, so that the powder forms a loose maskant that covers the dovetail during the coating operation. Still another alternative is to cast the slurry into thin film tapes that can be individually applied to the blade. While this approach is well suited for masking localized areas, tapes are not typically used as a primary method for masking the undulatory machined surfaces of a dovetail.
Significant shortcomings associated with the above-noted approaches include the preparation, application, and removal of the masking materials, which can be labor intensive and require the services of a skilled individual. As such, alternative masking techniques have been proposed. On such approach is taught in commonly-assigned U.S. Pat. Nos. 6,224,673, 6,579,567, and 6,821,564 to Das et al. These patents teach the use of a reusable fixture to enclose those portions of an article, such as a gas turbine blade, on which a coating is not desired. The fixture has an internal cavity and at least one aperture whose cross-section is substantially the same as a cross-section of the article to be coated. In the case of a blade, the aperture is sized to enable the entire dovetail of the blade to be inserted through the aperture into the internal cavity of the fixture, so that the platform seals against the exterior of the fixture. The fixture may include a holder to stabilize the dovetail within the internal cavity.
While the teachings of Das et al. overcome the shortcomings associated with the use of masking tapes, slurries, and other types of coatings, further improvements would still be desirable.
The present invention provides a method and masking assembly for masking a dovetail portion of a turbine blade during coating of an airfoil portion of the blade. The masking assembly comprises at least two masking members, each having an exterior surface and an oppositely-disposed undulatory surface complementary to one of oppositely-disposed undulatory surfaces of the dovetail portion. By mating the masking members, the undulatory surfaces thereof define an interior cavity within the masking assembly that accommodates the dovetail portion, and the undulatory surfaces of the masking members contact the undulatory surfaces of the dovetail portion to entrap the dovetail portion within the interior cavity of the masking assembly.
The method of this invention generally entails placing the dovetail portion in the masking assembly so that the airfoil portion of the blade remains outside the masking assembly, the interior cavity of the masking assembly accommodates the dovetail portion, and the undulatory surfaces of the masking members contact the undulatory surfaces of the dovetail portion and entrap the dovetail portion within the interior cavity. A coating vapor is then supplied to deposit a coating on the airfoil portion of the blade while preventing deposition of coating on the dovetail portion with the masking assembly. Following coating deposition, the masking members are separated to release the blade from the masking assembly.
In view of the above, the present invention provides a simplified method for masking the dovetail portion of a turbine blade, without the requirement for masking the dovetail portion with a masking slurry or tapes as conventionally done in the past. As such, the present invention eliminates the labor required to prepare and apply a masking slurry over the entire dovetail portion, and avoids the additional labor required to mechanically remove a solidified mask formed by the masking slurry at the conclusion of the coating operation. As a result, both the masking assembly and method made possibly with the masking assembly are considerably less complicated than prior art masking methods, yet achieves the object of preventing coating of the dovetail portion of a turbine blade.
Other objects and advantages of this invention will be better appreciated from the following detailed description.
The present invention provides a method for preventing the deposition of a coating on surfaces of the dovetail portion of a gas turbine engine blade, particularly a turbine blade. While the advantages of this invention will be illustrated and described with reference to a turbine blade on which an environmental coating is to be deposited to protect the blade from its hostile operating environment, the teachings of this invention are generally applicable to other components having surfaces and on which a coating and still other surfaces on which a coating is not desired.
The airfoil 16 is intended to be protected from the hostile environment of the turbine section by an environmentally-resistant coating, for example, a diffusion coating such as a chromide, aluminide, or platinum aluminide coating. As is understood in the art, these types of coatings are formed by such processes as pack cementation or noncontact vapor (gas phase deposition) techniques, in which a vapor of a desired coating element (e.g., chromium, aluminum, etc.) is generated and caused to contact the surfaces of the blade 14 on which the coating is desired. The vapor reacts with the surface to deposit the desired coating element(s), which are then diffused into the surface. Such processes are well known to those skilled in the art, and therefore will not be discussed in further detail here.
As noted above, the present invention is intended to prevent deposition of the coating on surfaces of the dovetail 18, particularly its undulatory surfaces 22 that are required to subsequently mate with the dovetail slot in a rotor. For this purpose, most of the dovetail 18 is shown in
The masking assembly 10 is also represented in
Suitable materials for the masking shells 12 and retaining ring 28 include metallic and ceramic materials. In practice, the nickel-base superalloy commercially known as Inconel 600 has been shown to be a durable and reusable material for both the shells 12 and ring 28, though it is foreseeable that other materials could be used. The surfaces of the masking shells 12 and ring 28 that contact other components of the assembly 10 or the blade 14 are preferably machined to ensure an appropriate fit.
In view of the above, masking of the dovetail 18 with the masking assembly 10 simply involves placing the dovetail 18 in the assembly 10 by mating the masking shells 12 so that the undulatory surfaces 26 of the shells 12 contact and entrap the dovetail 18 within the interior cavity 24 of the masking assembly 10. After installing the retaining ring 28, the entire blade and masking assembly can then be placed in a suitable coating apparatus (not shown) and ran through a coating cycle as required by the particular coating material and coating process being employed. Once the coating cycle is complete, the retaining ring 28 is removed and the masking shells 12 separated to release the blade 14. Reuse of the masking shells 12 and retaining ring 28 may generally involve removing the sealing material 32 and any residual coating material from the exterior surfaces of the assembly 10. The blade 14 is represented in
While the invention has been described in terms of a preferred embodiment, it is apparent that other forms could be adopted by one skilled in the art. For example, the physical configuration of the masking assembly 10, shells 12, blade 14, and ring 28 could differ from that shown. Therefore, the scope of the invention is to be limited only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
6616969 | Pfaendtner et al. | Sep 2003 | B2 |
6695587 | Wustman et al. | Feb 2004 | B2 |
6821564 | Das et al. | Nov 2004 | B2 |
6863927 | Langley et al. | Mar 2005 | B2 |
20050227589 | Oussaada et al. | Oct 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20090252872 A1 | Oct 2009 | US |