As is known, Type-1 diabetes mellitus condition exists when the beta cells 4(3-cells) which produce insulin to counteract the rise in glucose levels in the blood stream) in the pancreas either die or are unable to produce a sufficient amount of insulin naturally in response to elevated glucose levels. It is increasingly common for patients diagnosed with diabetic conditions to monitor their blood glucose levels using commercially available continuous glucose monitoring systems to take timely corrective actions. Some monitoring systems use sensors that require periodic calibration using a reference glucose measurement (for example, using an in vitro test strip). The FreeStyle Navigator® Continuous Glucose Monitoring System available from Abbott Diabetes Care Inc., of Alameda, Calif. is a continuous glucose monitoring system that provides the user with real time glucose level information. Using the continuous glucose monitoring system, for example, diabetics are able to determine when insulin is needed to lower glucose levels or when additional glucose is needed to raise the level of glucose.
Further, typical treatment of Type-1 diabetes includes the use of insulin pumps that are programmed for continuous delivery of insulin to the body through an infusion set. The use of insulin pumps to treat Type-2 diabetes (where the beta cells in the pancreas do produce insulin, but an inadequate quantity) has also become more prevalent. Such insulin delivery devices are preprogrammed with delivery rates such as basal profiles which are tailored to each user, and configured to provide the needed insulin to the user. In addition, continuous glucose monitoring systems have been developed to allow real time monitoring of fluctuation in glucose levels.
When the insulin delivery system and the glucose monitoring system are used separately, used together, or integrated into a single system, for example, in a single semi-closed loop or closed loop therapy system, the administered insulin (as well as other parameters or conditions) may affect some functions associated with the glucose monitoring system.
In view of the foregoing, in aspects of the present disclosure, there are provided methods and apparatus for improving accuracy of the continuous glucose monitoring system calibration based at least in part on the insulin delivery information, and parameters associated with the administration of insulin.
Also provided are systems and kits.
The following patents, applications and/or publications are incorporated herein by reference for all purposes: U.S. Pat. Nos. 4,545,382; 4,711,245; 5,262,035; 5,262,305; 5,264,104; 5,320,715; 5,356,786; 5,509,410; 5,543,326; 5,593,852; 5,601,435; 5,628,890; 5,820,551; 5,822,715; 5,899,855; 5,918,603; 6,071,391; 6,103,033; 6,120,676; 6,121,009; 6,134,461; 6,143,164; 6,144,837; 6,161,095; 6,175,752; 6,270,455; 6,284,478; 6,299,757; 6,338,790; 6,377,894; 6,461,496; 6,503,381; 6,514,460; 6,514,718; 6,540,891; 6,560,471; 6,579,690; 6,591,125; 6,592,745; 6,600,997; 6,605,200; 6,605,201; 6,616,819; 6,618,934; 6,650,471; 6,654,625; 6,676,816; 6,730,200; 6,736,957; 6,746,582; 6,749,740; 6,764,581; 6,773,671; 6,881,551; 6,893,545; 6,932,892; 6,932,894; 6,942,518; 7,041,468; 7,167,818; and 7,299,082; U.S. Patent Published Application Nos. 2004/0186365; 2005/0182306; 2006/0025662; 2006/0091006; 2007/0056858; 2007/0068807; 2007/0095661; 2007/0108048; 2007/0199818; 2007/0227911; 2007/0233013; 2008/0066305; 2008/0081977; 2008/0102441; 2008/0148873; 2008/0161666; 2008/0267823; and 2009/0054748; U.S. patent application Ser. Nos. 11/461,725; 12/131,012; 12/242,823; 12/363,712; 12/495,709; 12/698,124; 12/698,129; 12/714,439; 12/794,721; and Ser. No. 12/842,013; U.S. Provisional Application No. 61/347,754.
Before embodiments of the present disclosure are described, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges is also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.
The figures shown herein are not necessarily drawn to scale, with some components and features being exaggerated for clarity.
Generally, embodiments of the present disclosure relate to methods and system for providing improved analyte sensor calibration accuracy based at least in part on the insulin delivery information. In certain embodiments, the present disclosure relates to the continuous and/or automatic in vivo monitoring of the level of an analyte using an analyte sensor, and under one or more control algorithms, determines appropriate or suitable conditions for performing calibration of the analyte sensor in view of the scheduled delivery of insulin or administered insulin amount. While the calibration accuracy of the analyte sensor is discussed in conjunction with the insulin delivery information, one or more other parameters or conditions may be incorporated to improve the calibration accuracy including, for example but not limited to, the physiological model associated with the patient using the analyte sensor, meal information, exercise information, activity information, disease information, and historical physiological condition information.
Embodiments include medication delivery devices such as external infusion pumps, implantable infusion pumps, on-body patch pumps, or any other processor controlled medication delivery devices that are in communication with one or more control units which also control the operation of the analyte monitoring devices. The medication delivery devices may include one or more reservoirs or containers to hold the medication for delivery in fluid connection with an infusion set, for example, including an infusion tubing and/or cannula. The cannula may be positioned so that the medication is delivered to the user or patient at a desired location, such as, for example, in the subcutaneous tissue under the skin layer of the user.
Embodiments include analyte monitoring devices and systems that include an analyte sensor, at least a portion of which is positionable beneath the skin of the user, for the in vivo detection of an analyte, such as glucose, lactate, and the like, in a body fluid. Embodiments include wholly implantable analyte sensors and analyte sensors in which only a portion of the sensor is positioned under the skin and a portion of the sensor resides above the skin, e.g., for contact to a transmitter, receiver, transceiver, processor, etc.
A sensor (and/or a sensor insertion apparatus) may be, for example, configured to be positionable in a patient for the continuous or periodic monitoring of a level of an analyte in a patient's dermal fluid. For the purposes of this description, continuous monitoring and periodic monitoring will be used interchangeably, unless noted otherwise.
The analyte level may be correlated and/or converted to analyte levels in blood or other fluids. In certain embodiments, an analyte sensor may be configured to be positioned in contact with dermal fluid to detect the level of glucose, which detected glucose may be used to infer the glucose level in the patient's bloodstream. For example, analyte sensors may be insertable through the skin layer and into the dermal layer under the skin surface at a depth of approximately 3 mm under the skin surface and containing dermal fluid. Embodiments of the analyte sensors of the subject disclosure may be configured for monitoring the level of the analyte over a time period which may range from minutes, hours, days, weeks, months, or longer.
Of interest are analyte sensors, such as glucose sensors, that are capable of in vivo detection of an analyte for about one hour or more, e.g., about a few hours or more, e.g., about a few days of more, e.g., about three or more days, e.g., about five days or more, e.g., about seven days or more, e.g., about several weeks or at least one month. Future analyte levels may be predicted based on information obtained, e.g., the current analyte level at time, the rate of change of the analyte, etc. Predictive alarms may notify the control unit (and/or the user) of predicted analyte levels that may be of concern in advance of the analyte level reaching the future level. This enables the control unit to determine a priori a suitable corrective action and implement such corrective action.
Referring to
Referring back to
Referring still to
Also shown in the overall system 100 is a data processing terminal 160 which may include a personal computer, a server terminal, a laptop computer, a handheld computing device, or other similar computing devices that are configured for data communication (over the internet, local area network (LAN), cellular network and the like) with the one or more of the control unit 140, the delivery unit 120, the analyte monitoring unit 130, and the data processing device 150, to process, analyze, store, archive, and update information.
It is to be understood that the analyte monitoring unit 130 of
Additional detailed descriptions of embodiments of the continuous analyte monitoring device and system, calibrations protocols, embodiments of its various components are provided in, among others, U.S. Pat. Nos. 6,175,752, 6,284,478, 7,299,082 and U.S. patent application Ser. No. 10/745,878 filed Dec. 26, 2003 entitled “Continuous Glucose Monitoring System and Methods of Use”, the disclosures of each of which are incorporated herein by reference in their entirety for all purposes. Additional detailed description of systems including medication delivery units and analyte monitoring devices, embodiments of the various components are provided in, among others, U.S. patent application Ser. No. 11/386,915, entitled “Method and System for Providing Integrated Medication Infusion and Analyte Monitoring System”, the disclosure of which is incorporated herein by reference for all purposes. Moreover, additional detailed description of medication delivery devices and components are provided in, among others, U.S. Pat. No. 6,916,159, the disclosure of which is incorporated herein by reference for all purposes.
Referring back to
Further, data communication may be encrypted or encoded (and subsequently decoded by the device or unit receiving the data), or transmitted using public-private keys, to ensure integrity of data exchange. Also, error detection and/or correction using, for example, cyclic redundancy check (CRC) or techniques may be used to detect and/or correct for errors in signals received and/or transmitted between the devices or units in the system 100. In certain aspects, data communication may be responsive to a command or data request received from another device in the system 100, while some aspects of the overall system 100 may be configured to periodically transmit data without prompting, such as the data transmitter, for example, in the analyte monitoring unit 130 periodically transmitting analyte related signals.
In certain embodiments, the communication between the devices or units in the system 100 may include one or more of an RF communication protocol, an infrared communication protocol, a Bluetooth® enabled communication protocol, an 802.11x wireless communication protocol, internet connection over a data network or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPAA requirements) while avoiding potential data collision and interference.
In certain embodiments, data processing device 150, analyte monitoring unit 130 and/or delivery unit 120 may include blood glucose meter functions or capability to receive blood glucose measurements which may be used, for example to calibrate the analyte sensor. For example, the housing of these devices may include a strip port to receive a blood glucose test strip with blood sample to determine the blood glucose level. Alternatively, a user input device such as an input button or keypad may be provided to manually enter such information. Still further, upon completion of a blood glucose measurement, the result may be wirelessly and/or automatically transmitted to another device in the system 100. For example, it is desirable to maintain a certain level of water tight seal on the housing of the delivery unit 120 during continuous use by the patient or user. In such case, incorporating a strip port to receive a blood glucose test strip may be undesirable. As such, the blood glucose meter function including the strip port may be integrated in the housing of another one of the devices or units in the system (such as in the analyte monitoring unit 130 and/or data processing device 150). In this case, the result from the blood glucose test, upon completion may be wirelessly transmitted to the delivery unit 120 for storage and further processing.
Any suitable test strip may be employed, e.g., test strips that only require a very small amount (e.g., one microliter or less, e.g., 0.5 microliter or less, e.g., 0.1 microliter or less), of applied sample to the strip in order to obtain accurate glucose information, e.g. Freestyle® or Precision® blood glucose test strips from Abbott Diabetes Care Inc. Glucose information obtained by the in vitro glucose testing device may be used for a variety of purposes, computations, etc. For example, the information may be used to calibrate the analyte sensor, confirm results of the sensor to increase the confidence in the accuracy level thereof (e.g., in instances in which information obtained by sensor is employed in therapy related decisions), determine suitable amount of bolus dosage for administration by the delivery unit 120.
In certain embodiments, a sensor may be calibrated using only one sample of body fluid per calibration event. For example, a user need only lance a body part one time to obtain sample for a calibration event (e.g., for a test strip), or may lance more than one time within a short period of time if an insufficient volume of sample is obtained firstly. Embodiments include obtaining and using multiple samples of body fluid for a given calibration event, where glucose values of each sample are substantially similar. Data obtained from a given calibration event may be used independently to calibrate or combined with data obtained from previous calibration events, e.g., averaged including weighted averaged, etc., to calibrate.
One or more devices or components of the system 100 may include an alarm system that, e.g., based on information from control unit 140, warns the patient of a potentially detrimental condition of the analyte. For example, if glucose is the analyte, an alarm system may warn a user of conditions such as hypoglycemia and/or hyperglycemia and/or impending hypoglycemia, and/or impending hyperglycemia. An alarm system may be triggered when analyte levels reach or exceed a threshold value. An alarm system may also, or alternatively, be activated when the rate of change or acceleration of the rate of change in analyte level increase or decrease reaches or exceeds a threshold rate of change or acceleration. For example, in the case of the glucose monitoring unit 130, an alarm system may be activated if the rate of change in glucose concentration exceeds a threshold value which might indicate that a hyperglycemic or hypoglycemic condition is likely to occur. In the case of the delivery unit 120, alarms may be associated with occlusion conditions, low reservoir conditions, malfunction or anomaly in the fluid delivery and the like. System alarms may also notify a user of system information such as battery condition, calibration, sensor dislodgment, sensor malfunction, etc. Alarms may be, for example, auditory and/or visual. Other sensory-stimulating alarm systems may be used including alarm systems which heat, cool, vibrate, or produce a mild electrical shock when activated.
Referring yet again to
An exemplary model describing the blood-to-interstitial glucose dynamics taking into account of insulin information is described below. More specifically, the model described herein provides for specific elaboration of model-based improvements discussed below. The example provided herein is based on a particular blood-to-interstitial glucose model, and while other models may result in a different particular relationship and parameter set, the underlying concepts and related description remain equally applicable.
Provided below is a model of blood-to-interstitial glucose as described by Wilinska et al. (Wilinska, Bodenlenz, Chassin, Schaller, Schaupp, Pieber, and Hovorka, “Interstitial Glucose Kinetics in Subjects With Type 1 Diabetes Under Physiologic Conditions”, Metabolism, v. 53 n. 11, November 2004, pp. 1484-1492, the disclosure of which is incorporated herein by reference), where interstitial glucose dynamics comprises of a zero order removal of glucose from interstitial fluid F02, a constant decay rate constant k02, a constant glucose transport coefficient k21, and an insulin dependent glucose transport coefficient ki.
ġi(t)=−k02gi(t)+[k21+[ki[I(t)−Ib]]]gb(t)−F02 (1)
where gi corresponds to interstitial glucose, gb corresponds to blood glucose, the dot corresponds to the rate of change operation, (t) refers to variables that change over time as opposed to relatively static aforementioned coefficients, I corresponds to insulin concentration at any given time, and Ib corresponds to the steady-state insulin concentration required to maintain a net hepatic glucose balance.
It should be noted that the blood-to-interstitial glucose model described above is affected by insulin and accordingly, factoring in the insulin information will provide improvement to the sensor sensitivity determination.
The determination of insulin concentration (I) and the steady state insulin concentration required to maintain a net hepatic glucose balance (Ib) as shown in Equation (1) above may be achieved using insulin dosing history and an insulin pharmacokinetic and pharmacodynamic model. For example, based on a three compartment model of subcutaneous insulin dynamics into plasma insulin I as described by Hovorka, et al. (Hovorka, Canonico, Chassin, Haueter, Massi-Benedetti, Federici, Pieber, Schaller, Schaupp, Vering and Wilinska, “Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes”, Physiological Measurement, v. 25, 2004, pp. 905-920, the disclosure of which is incorporated herein by reference):
İ1(t)=−kaI1(t)+usc(t)
İ2(t)=−kaI2(t)+kaI1(t)
İ(t)=−keI(t)+ka/V I2(t) (2)
where I1 and I2 are internal insulin compartments that describe the pathway from subcutaneous insulin injection into the plasma insulin compartment I. Ib is calculated by taking the steady-state average of I over a finite window of past and present period. The coefficients ka and ke describe the various decay and transport rates of the compartments, and Vis the plasma insulin volume. Insulin action time is related to the parameter ka. The input usc to this model is described in terms of subcutaneous insulin infusion rate. Insulin dose/bolus may be converted into its delivery rate equivalent by monitoring or estimating the actual amount of bolus amount/dose delivered after every regular intervals of time (e.g. by monitoring of the amount of bolus/dose delivered every minute for a given executed bolus dose delivery).
For analyte monitoring systems, an uncalibrated sensor measurement yCGM is related to the true interstitial glucose by the following equation:
yCGM(t)=S[gi(t)+vi(t)] (3)
where S is the calibration sensitivity to be identified, and vi is sensor noise.
Further, reference blood glucose measurement yBG when available at certain times, such as when requested for calibration at time to, contaminated by measurement error vb may be expressed as follows:
yBG(to)=gb(to)+vb(to) (4)
Accordingly, the models and functional relationships described above provide some exemplary system components for providing improvement to the calibration accuracy in analyte monitoring systems whether used as a standalone system, or in conjunction with a medication delivery system such as with an insulin pump.
Determination of the suitable or appropriate time period to perform sensor calibration routine may be accomplished in several manners within the scope of the present disclosure. In one aspect, the calibration schedule may be predetermined or preset based on the initial sensor insertion or positioning in the patient or alternatively, scheduled based on each prior successful calibration event on a relative time basis. In some aspects, calibration routines are delayed or cancelled during high rates of glucose fluctuation because physiological lag between interstitial glucose measured by the analyte sensor and the blood glucose measured by discrete in vitro test strips may result in an error in the sensor sensitivity estimation.
In one aspect, calibration routine or function may be prevented or rejected when the interstitial glucose absolute rate of change is determined to exceed a predetermined threshold level. As the interstitial glucose level generally lags blood glucose level, there may be time periods where the blood glucose may be changing rapidly while the measured interstitial glucose level may not report similar fluctuations—it would change rapidly at some later, lagged time period. In such a case, a lag error may be introduced to the sensitivity determination. Accordingly, in one aspect, the execution of the calibration routine may be delayed or postponed when a sensor calibration request is detected by the system 100 during a time period when an insulin dose of sufficient magnitude is delivered, which may cause the rapid change in blood glucose to occur without a rapid change of interstitial glucose at that instance.
Referring now to the Figures,
Referring again to
Referring to
For example, if the logged meal event occurred with sufficient temporal distance relative to the initiated calibration routine, that it likely will have minimal relevance, if any to the calibration accuracy associated with the analyte sensor, then such logged event may be ignored. Alternatively, with each retrieved logged event at step 620, the routine may be configured to determine whether the logged event occurred within a specified or predetermined time period, in which case, the routine proceeds to step 640 where the initiated calibration routine is not executed and/or postponed or delayed. As further shown in
Referring back to
In aspects of the present disclosure, the duration and/or threshold described may be determined based on parameters including, for example, but not limited to insulin sensitivity, insulin action time, time of day, analyte sensor measured glucose level, glucose rate of change, and the like.
Moreover, in aspects of the present disclosure, as discussed, if the condition described above is detected, rather instead of delaying or postponing the execution of the calibration routine, the sensitivity determination may be altered as described in further detail below. That is, in one aspect, a correction factor may be applied to the sensitivity determination based on the insulin dose amount, elapsed time since the administration of the insulin dose, insulin sensitivity and insulin action time, for example. In one aspect, the correction factor may be a predetermined value or parameter, for example, based in part on the model applied to the patient's physiological condition, or may be a factor that is configured to be dynamically updated in accordance with the variation in the monitored parameters such as those described above.
In a further aspect, a glucose model of a patient may be used to predict or determine future glucose (blood and/or interstitial) levels and to estimate present glucose levels (blood and/or interstitial). More specifically, in aspects of the present disclosure, the model applied may also be used to estimate a rate-of-change of these variables and higher order moments of these variables in addition to statistical error estimates (for example, uncertainty estimates).
As discussed, the insulin delivery information and the measured glucose data from the analyte sensor (e.g., multiple measurements of each in time) are two of many input parameters used in conjunction with the embodiments described herein. Accordingly, in one aspect, the calibration routine may be configured to use the predicted output(s) as a check or verification to determine if the calibration routine should be postponed or delayed. For example, if the rate of change of blood glucose is determined to exceed a predetermined threshold, the calibration routine may be postponed or delayed for a predetermined time period. Alternatively, in a further aspect, if it is determined that the uncertainty in the interstitial estimate exceeds a predetermined threshold, the calibration routine may be configured to be postponed or delayed for a predetermined time period. The predetermined time period for a delayed or postponed calibration routine may be a preset time period, or alternatively, dynamically modified based on, for example, but not limited to the level of determined uncertainly in the interstitial estimate, the level of the predetermined threshold, and/or any other relevant parameters or factors monitored or otherwise provided or programmed in the system 100 (
Referring now again to the Figures,
Referring still to
Referring again to
If on the other hand it is determined that the delivered medication dose exceeds the threshold level, then at step 1040, the detected start of the calibration event is delayed or postponed for a preprogrammed time period. In one aspect, the preprogrammed time period may be dynamically adjusted based on the amount of the medication dose that exceeds that threshold level, or alternatively, the preprogrammed time period may be a fixed value. In this manner, in one aspect, when it is determined that medication dose was administered contemporaneous to a scheduled calibration event, the routine may be configured to determine the relevance of the delivered medication dose to modify the calibration timing accordingly (for example, to continue with the execution of the calibration routine or to delay the calibration routine to minimize any potential adverse effect of the delivered medication dose).
Referring to
On the other hand, as shown in
As discussed, in aspects of the present disclosure, the calibration accuracy routines may include other parameters or data such as, for example, meal intake information. For example, an aspect of the calibration routine may include confirming or determining whether a meal event has occurred for example, within the last hour prior to the scheduled calibration event, and further postpone or delay calibration if it is determined that the consumed meal during the past hour was sufficiently large or greater than a set threshold amount (for example, based on carbohydrate estimate). In one aspect, the meal intake information parameter used in conjunction with the calibration routine may be performed in conjunction with the insulin dose information as described above, or alternatively, as a separate routine for determining or improving the timing of performing the calibration routines.
In another aspect, the insulin dose information and/or other appropriate or suitable exogenous data/information may be used to improve the sensor sensitivity determination. For example, in one aspect, a model may be used to account for blood glucose and interstitial glucose, and insulin measurement data is used to help compensate for the lag between the two. The model would produce a blood glucose estimate that could be related to the reference blood glucose estimate in order to determine the sensitivity. Alternatively, the sensitivity could be part of the model and estimated. Additional detailed description related to pump information to improve analyte sensor accuracy is provided in U.S. patent application Ser. No. 12/024,101 entitled “Method and System for Determining Analyte Levels”, the disclosure of which is incorporated by reference for all purposes.
More specifically, referring back to and based on an example of the blood-to-interstitial glucose dynamics model which accounts for insulin, an estimated sensitivity at time t0 that is a function of available reference blood glucose (BG) measurement, analyte sensor measurement, and insulin information can be described as below:
It is to be noted that if insulin information is not accounted for, as shown in Equation 5 above, the denominator will be smaller, resulting in the sensitivity estimate larger than the actual value.
In another aspect, a closed loop control system is contemplated where a portion of the control algorithm seeks not only to prevent glucose excursions outside the euglycemic range, but also to provide improved conditions for calibration. While two particular conditions are described as examples, within the scope of the present disclosure, other conditions may be contemplated that are suitable or appropriate, depending on the type of analyte sensor used and/or other factors, variables or parameters.
In some cases, two conditions or states generally provide better calibration performance (i.e., better accuracy in sensitivity estimate)—calibrating during higher glucose periods and during low glucose rates-of-change. Calibrating during high glucose episodes is favorable because some errors tend to be unrelated to glucose level and will contribute to the sensitivity calculation proportionally less when glucose is high. In addition, as discussed above, error induced due to lag between blood glucose and interstitial glucose is minimized when glucose rate-of-change is low.
Referring still to
Referring again to
In addition, the closed-loop control routine in one aspect may be configured to switch to a control target of maintaining a low rate of change of glucose, where the control target may be configured to incorporate the desired glucose threshold or range.
In one embodiment, control algorithm may be programmed or configured to maintain multiple control targets for optimal calibration glucose profile and euglycemic management. In one aspect, euglycemic management is configured as a higher priority over optimal calibration profile for the safety of the patient, in the control algorithm.
In the case where a model-based control algorithm is implemented, a vector of state estimates x(t) are provided that accounts for plasma insulin, plasma glucose, and other relevant states, the state observer may be realized in the form of a Kalman Filter or other types of state observers, and configured to use the analyte sensor data as its source of measurement, in addition to the insulin delivery or dosing information. One example of a model-based control algorithm includes a Linear Quadratic (LQ) controller, where the objective function governs the tradeoff between minimizing tracking error and maximizing control effort efficiency. Then, the relative weights under normal operation and when calibration is near can be appropriately adjusted or modified.
For example, consider the following truth model:
İ1(t)=−kaI1(t)+usc(t)
İ2(t)=−kaI2(t)+kaI1(t)
İ(t)=−keI(t)+ka/V I2(t)
{dot over (r)}1(t)=−kMr1(t)+ka1I(t)
{dot over (r)}2(t)=−kb2r2(t)+ka2I(t)
{dot over (r)}3(t)=−kb3r3(t)+ka3I(t)
ġb(t)=−[r1(t)+k31]gb(t)−FR+k12gi(t)+k13g2(t)+EGP(r3)+gm(t)
ġ2(t)=−[r2(t)+k13]g2+r1(t)gb(t)
ġi(t)=−k02gi(t)+[k21+[ki[I(t)−Ib]]]gb(t)−F02 (6)
where, in addition to Equations 1 and 2 above, other glucose compartments gb and g2 as well as effective insulin compartments r1, r2, and r3 have been included. In the case where the model for the control algorithm is configured to perform a local linearization at every time step:
It is to be noted that the states have been defined as the difference between the physiologically meaningful states of the truth model and their corresponding targets.
Further, an LQ optimal control is determined such that the objective function J is minimized:
where tp is a finite future horizon in which the controller must be optimized for, Q is a positive semidefinite matrix that penalizes linear combinations of the states x, and R is a positive definite matrix that penalizes the control action.
In particular, the distinction between controlling for optimal calibration and controlling for optimal glucose regulation, using this LQ framework as an example, is described below. In the case of controlling for optimal glucose regulation, for a given desired strict plasma glucose target of 100 mg/dL, the quantity gbt is set to 100 mg/dL, so that when the objective function in Equation 8 is evaluated, any deviation of gb from this value will contribute to an increase in J.
If other states do not need to be regulated at any specific level, then the corresponding targets I1t, I2t, and so on, can be set to any arbitrary real value (such as zero), and Q must be tuned such that only q7,7 (which corresponds to the penalty for gb) be left nonzero. The relative magnitude between q7,7 and rsc then determines aggressive target tracking and conservative control action.
In the case of controlling for optimal calibration, a combination of strict plasma glucose target and zero glucose rate is obtained, which, in one aspect may be approximated by setting the rate of change of the glucose rates to zero. As a result, the corresponding targets for the glucose compartments can be estimated as follows:
The above targets can be assigned to the glucose compartments, and as in the optimal glucose regulation case, other targets can be set to zero. The proper state weighting matrix Q must be set such that the glucose states track the established targets.
If calibration favors not only steady glucose but also a particular blood glucose value, then the target for blood glucose may be set explicitly (e.g. gb t=100 mg/dL), and the other glucose targets can be derived such that the following is satisfied:
The targets for g2 and gi can then be computed using the least-squares error approximation shown:
In the manner described above, in accordance with aspects of the present disclosure, one or more parameters or information of events that may impact the level of blood glucose or glucose measurements, if available during the analyte sensor calibration process, may be factored in to improve the sensor calibration accuracy, for example, by improving the accuracy of the sensor sensitivity determination. Events or conditions referred to herein include, but not limited to exercise information, meal intake information, patient health information, medication information, disease information, physiological profile information, and insulin delivery information. While the various embodiments described above in conjunction with the improvement of the sensor calibration accuracy include insulin delivery information, within the scope of the present disclosure, any exogenous information that are available to the and during the calibration process or routine that may have an impact on the level of glucose may be considered.
In one aspect, the user or the patient may provide this information into one or more components of the system 100 (
In one embodiment, the medication delivery device is configured to deliver appropriate medication based on one or more delivery profiles stored therein, and in addition, configured to record the amount of medication delivered with delivery time association in an electronic log or database. The medication delivery device may be configured to periodically (automatically, or in response to one or more commands from the controller/another device) transfer medication delivery data/information to the controller (or another device) electronic log or database. In this manner, the analyte monitoring device including the receiver/controller unit may be provided with software programming that can be executed to perform the sensor calibration routine and provided with access to all relevant information received from the medication delivery unit, the analyte sensor/transmitter, user input information, as well as previously stored information.
In this manner, in one aspect of the present disclosure, the accuracy of the sensor sensitivity determination may be improved based on the insulin delivery information which provides additional data to determine or anticipate future glucose values, and may help to compensate for potential error in the sensor readings or measurements due to lag, in particular, when the level of glucose is undergoing a rapid fluctuation. In addition, the insulin information may be used to adjust or determine the suitable or appropriate time to perform the sensor calibration routine. For example, this information may be used to determine or anticipate periods of high rates of glucose change which would not be an ideal condition for determining sensor sensitivity for performing sensor calibration.
Within the scope of the present disclosure, the programming, instructions or software for performing the calibration routine, user interaction, data processing and/or communication may be incorporated in the analyte monitoring device, the medication delivery device, the control unit, or any other component of the overall system 100 shown in
In one embodiment, a method may include detecting an analyte sensor calibration start event, determining one or more parameters associated with a calibration routine corresponding to the detected calibration start event, and executing the calibration routine based on the one or more determined parameters, wherein the one or more determined parameters includes a medication delivery information.
Detecting the calibration start event may include monitoring an elapsed time period from initial analyte sensor placement.
Detecting the calibration start event may be based at least in part on a predetermined schedule.
The predetermined schedule may include approximately once every twenty four hours.
The determined one or more parameters may include an amount of insulin dose delivered, a time period of the delivered insulin dose, an insulin sensitivity parameter, an insulin on board information, an exercise information, a meal intake information, an activity information, or one or more combinations thereof.
The medication delivery information may include an insulin delivery amount and time information relative to the detected calibration start event.
Executing the calibration routine may include delaying the calibration routine by a predetermined time period.
The predetermined time period may include approximately 1-2 hours.
The calibration routine may not be executed when one of the one or more determined parameters deviates from a predetermined threshold level.
The predetermined threshold level may be dynamically modified based on a variation in the corresponding one or more determined parameters.
The predetermined threshold level may be user defined.
Executing the calibration routine may include determining a reference measurement value.
Determining the reference measurement value may include prompting for a blood glucose measurement, and receiving data corresponding to the measured blood glucose level.
Executing the calibration routine may include determining a sensitivity value associated with the analyte sensor.
Executing the calibration routine may include calibrating the analyte sensor.
In another embodiment, a device may include one or more processors and a memory operatively coupled to the one or more processors, the memory for storing instructions which, when executed by the one or more processors, causes the one or more processors to detect an analyte sensor calibration start event, to determine one or more parameters associated with a calibration routine corresponding to the detected calibration start event, and to execute the calibration routine based on the one or more determined parameters, wherein the one or more determined parameters includes a medication delivery information.
The analyte sensor may include a glucose sensor.
The medication delivery information may include information associated with insulin dose administered.
Furthermore, an output unit may be operatively coupled to the one or more processors for outputting one or more data or signals associated with the calibration start event or the calibration routine.
In yet another embodiment, a method may include initializing an analyte sensor, receiving a data stream from the initialized analyte sensor, detecting a calibration start event associated with the initialized analyte sensor, determining one or more parameters associated with insulin dose administration, and executing a calibration routine based on the one or more determined parameters.
In yet another embodiment, a method may include detecting an impending glucose sensor calibration start event, modifying a medical treatment profile to a higher than average target glucose level upon detection of the impending glucose sensor calibration start event, determining one or more parameters associated with a calibration routine corresponding to the detected impending calibration start event, wherein the one or more determined parameters includes a current glucose level, executing the calibration routine based on the one or more determined parameters, and resetting the medical treatment profile to an average target glucose level.
The calibration routine may be executed only if the current glucose level is above a predetermined threshold.
The predetermined threshold may be higher than the average glucose level.
In one aspect, the method may include delaying execution of the calibration routine until the current glucose level is above the predetermined threshold.
In another aspect, the method may include outputting one or more data or signals associated with the calibration routine.
The medical treatment profile may include insulin dose administration information.
Various other modifications and alterations in the structure and method of operation of this disclosure will be apparent to those skilled in the art without departing from the scope and spirit of the present disclosure. Although the present disclosure has been described in connection with specific embodiments, it should be understood that the present disclosure as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present disclosure and that structures and methods within the scope of these claims and their equivalents be covered thereby.
The present application is a continuation of U.S. patent application Ser. No. 15/915,646, filed Mar. 8, 2018, which is a continuation of U.S. patent application Ser. No. 14/262,697, filed Apr. 25, 2014, now U.S. Pat. No. 9,936,910, which is a continuation of U.S. patent application Ser. No. 13/925,691, filed Jun. 24, 2013, now U.S. Pat. No. 8,718,965, which is a continuation of U.S. patent application Ser. No. 12/848,075, filed Jul. 30, 2010, now U.S. Pat. No. 8,478,557, which claims priority to U.S. Provisional Application No. 61/230,686, filed Jul. 31, 2009, all of which are incorporated herein by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3581062 | Aston | May 1971 | A |
3926760 | Allen et al. | Dec 1975 | A |
4036749 | Anderson | Jul 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4129128 | McFarlane | Dec 1978 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4327725 | Cortese et al. | May 1982 | A |
4344438 | Schultz | Aug 1982 | A |
4349728 | Phillips et al. | Sep 1982 | A |
4373527 | Fischell | Feb 1983 | A |
4392849 | Petre et al. | Jul 1983 | A |
4425920 | Bourland et al. | Jan 1984 | A |
4431004 | Bessman et al. | Feb 1984 | A |
4441968 | Emmer et al. | Apr 1984 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4478976 | Goertz et al. | Oct 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4527240 | Kvitash | Jul 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4619793 | Lee | Oct 1986 | A |
4650547 | Gough | Mar 1987 | A |
4671288 | Gough | Jun 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4731726 | Allen, III | Mar 1988 | A |
4749985 | Corsberg | Jun 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4779618 | Mund et al. | Oct 1988 | A |
4847785 | Stephens | Jul 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4871351 | Feingold | Oct 1989 | A |
4890620 | Gough | Jan 1990 | A |
4925268 | Iyer et al. | May 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4986271 | Wilkins | Jan 1991 | A |
4995402 | Smith et al. | Feb 1991 | A |
5000180 | Kuypers et al. | Mar 1991 | A |
5002054 | Ash et al. | Mar 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5051688 | Murase et al. | Sep 1991 | A |
5055171 | Peck | Oct 1991 | A |
5068536 | Rosenthal | Nov 1991 | A |
5082550 | Rishpon et al. | Jan 1992 | A |
5089112 | Skotheim et al. | Feb 1992 | A |
5106365 | Hernandez | Apr 1992 | A |
5122925 | Inpyn | Jun 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5202261 | Musho et al. | Apr 1993 | A |
5210778 | Massart | May 1993 | A |
5228449 | Christ et al. | Jul 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5246867 | Lakowicz et al. | Sep 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5284425 | Holtermann et al. | Feb 1994 | A |
5285792 | Sjoquist et al. | Feb 1994 | A |
5293877 | O—Hara et al. | Mar 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5330634 | Wong et al. | Jul 1994 | A |
5340722 | Wolfbeis et al. | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5360404 | Novacek et al. | Nov 1994 | A |
5372427 | Padovani et al. | Dec 1994 | A |
5379238 | Stark | Jan 1995 | A |
5384547 | Lynk et al. | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5408999 | Singh et al. | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5425868 | Pedersen | Jun 1995 | A |
5429602 | Hauser | Jul 1995 | A |
5431160 | Wilkins | Jul 1995 | A |
5431921 | Thombre | Jul 1995 | A |
5462645 | Albery et al. | Oct 1995 | A |
5497772 | Schulman, et al. | Mar 1996 | A |
5505828 | Wong et al. | Apr 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5514718 | Lewis et al. | May 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5532686 | Urbas et al. | Jul 1996 | A |
5552997 | Massart | Sep 1996 | A |
5568400 | Stark et al. | Oct 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593852 | Heller et al. | Jan 1997 | A |
5609575 | Larson et al. | Mar 1997 | A |
5628310 | Rao et al. | May 1997 | A |
5628324 | Sarbach | May 1997 | A |
5634468 | Platt et al. | Jun 1997 | A |
5640954 | Pfeiffer et al. | Jun 1997 | A |
5653239 | Pompei et al. | Aug 1997 | A |
5660163 | Schulman et al. | Aug 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5695623 | Michel et al. | Dec 1997 | A |
5707502 | McCaffrey et al. | Jan 1998 | A |
5711001 | Bussan et al. | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5724030 | Urbas et al. | Mar 1998 | A |
5726646 | Bane et al. | Mar 1998 | A |
5733259 | Valcke et al. | Mar 1998 | A |
5738220 | Geszler | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5749907 | Mann | May 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5786439 | Van Antwerp et al. | Jul 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5804047 | Karube et al. | Sep 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5833603 | Kovacs et al. | Nov 1998 | A |
5842189 | Keeler et al. | Nov 1998 | A |
5891049 | Cyrus et al. | Apr 1999 | A |
5899855 | Brown | May 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5935224 | Svancarek et al. | Aug 1999 | A |
5942979 | Luppino | Aug 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5964993 | Blubaugh, Jr. et al. | Oct 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5971922 | Arita et al. | Oct 1999 | A |
5980708 | Champagne et al. | Nov 1999 | A |
5995860 | Sun et al. | Nov 1999 | A |
6001067 | Shults et al. | Dec 1999 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6028413 | Brockmann | Feb 2000 | A |
6052565 | Ishikura et al. | Apr 2000 | A |
6066243 | Anderson et al. | May 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6091976 | Pfeiffer et al. | Jul 2000 | A |
6091987 | Thompson | Jul 2000 | A |
6096364 | Bok et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6117290 | Say et al. | Sep 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6121611 | Lindsay et al. | Sep 2000 | A |
6130623 | MacLellan et al. | Oct 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6144871 | Saito et al. | Nov 2000 | A |
6168957 | Matzinger et al. | Jan 2001 | B1 |
6175752 | Say et al. | Jan 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6233471 | Berner et al. | May 2001 | B1 |
6237394 | Harris et al. | May 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6291200 | LeJeune et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6294997 | Paratore et al. | Sep 2001 | B1 |
6299347 | Pompei | Oct 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6309884 | Cooper et al. | Oct 2001 | B1 |
6314317 | Willis | Nov 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6360888 | McIvor et al. | Mar 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6368141 | VanAntwerp et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6400974 | Lesho | Jun 2002 | B1 |
6405066 | Essenpreis et al. | Jun 2002 | B1 |
6413393 | Van Antwerp et al. | Jul 2002 | B1 |
6416471 | Kumar et al. | Jul 2002 | B1 |
6418346 | Nelson et al. | Jul 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6440068 | Brown et al. | Aug 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6496729 | Thompson | Dec 2002 | B2 |
6497655 | Linberg et al. | Dec 2002 | B1 |
6498043 | Schulman et al. | Dec 2002 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6520326 | McIvor et al. | Feb 2003 | B2 |
6544212 | Galley et al. | Apr 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6549796 | Sohrab | Apr 2003 | B2 |
6551494 | Heller et al. | Apr 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6560471 | Heller | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6565509 | Say et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6572545 | Knobbe et al. | Jun 2003 | B2 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6579231 | Phipps | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6595919 | Berner et al. | Jul 2003 | B2 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6610012 | Mault | Aug 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6635167 | Batman et al. | Oct 2003 | B1 |
6641533 | Causey, III et al. | Nov 2003 | B2 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6656114 | Poulsen et al. | Dec 2003 | B1 |
6658396 | Tang et al. | Dec 2003 | B1 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6675030 | Ciuczak et al. | Jan 2004 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695860 | Ward et al. | Feb 2004 | B1 |
6698269 | Baber et al. | Mar 2004 | B2 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6731976 | Penn et al. | May 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6735183 | O'Toole et al. | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6741877 | Shults et al. | May 2004 | B1 |
6746582 | Heller et al. | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6789195 | Prihoda et al. | Sep 2004 | B1 |
6790178 | Mault et al. | Sep 2004 | B1 |
6804558 | Haller et al. | Oct 2004 | B2 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6850790 | Berner et al. | Feb 2005 | B2 |
6850859 | Schuh | Feb 2005 | B1 |
6862465 | Shults et al. | Mar 2005 | B2 |
6865407 | Kimball et al. | Mar 2005 | B2 |
6878112 | Linberg et al. | Apr 2005 | B2 |
6882940 | Potts et al. | Apr 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6895263 | Shin et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6923763 | Kovatchev et al. | Aug 2005 | B1 |
6923764 | Aceti et al. | Aug 2005 | B2 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6940403 | Kail, IV | Sep 2005 | B2 |
6941163 | Ford et al. | Sep 2005 | B2 |
6950708 | Bowman IV et al. | Sep 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6971274 | Olin | Dec 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6983176 | Gardner et al. | Jan 2006 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
6999854 | Roth | Feb 2006 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7003340 | Say et al. | Feb 2006 | B2 |
7009511 | Mazar et al. | Mar 2006 | B2 |
7015817 | Copley et al. | Mar 2006 | B2 |
7016713 | Gardner et al. | Mar 2006 | B2 |
7024236 | Ford et al. | Apr 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7025425 | Kovatchev et al. | Apr 2006 | B2 |
7027848 | Robinson et al. | Apr 2006 | B2 |
7027931 | Jones et al. | Apr 2006 | B1 |
7029444 | Shin et al. | Apr 2006 | B2 |
7041068 | Freeman et al. | May 2006 | B2 |
7043305 | KenKnight et al. | May 2006 | B2 |
7046153 | Oja et al. | May 2006 | B2 |
7052483 | Wojcik | May 2006 | B2 |
7056302 | Douglas | Jun 2006 | B2 |
7058453 | Nelson et al. | Jun 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7092891 | Maus et al. | Aug 2006 | B2 |
7098803 | Mann et al. | Aug 2006 | B2 |
7108778 | Simpson et al. | Sep 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7118667 | Lee | Oct 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7167818 | Brown | Jan 2007 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7179226 | Crothall et al. | Feb 2007 | B2 |
7190988 | Say et al. | Mar 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7198606 | Boecker et al. | Apr 2007 | B2 |
7203549 | Schommer et al. | Apr 2007 | B2 |
7207974 | Safabash et al. | Apr 2007 | B2 |
7220387 | Flaherty et al. | May 2007 | B2 |
7226442 | Sheppard et al. | Jun 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7228182 | Healy et al. | Jun 2007 | B2 |
7237712 | DeRocco et al. | Jul 2007 | B2 |
7258673 | Racchini et al. | Aug 2007 | B2 |
7267665 | Steil et al. | Sep 2007 | B2 |
7276029 | Goode, Jr. et al. | Oct 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7295867 | Berner et al. | Nov 2007 | B2 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7318816 | Bobroff et al. | Jan 2008 | B2 |
7324850 | Persen et al. | Jan 2008 | B2 |
7335294 | Heller et al. | Feb 2008 | B2 |
7347819 | Lebel et al. | Mar 2008 | B2 |
7364592 | Carr-Brendel et al. | Apr 2008 | B2 |
7366556 | Brister et al. | Apr 2008 | B2 |
7399277 | Saidara et al. | Jul 2008 | B2 |
7404796 | Ginsberg | Jul 2008 | B2 |
7419573 | Gundel | Sep 2008 | B2 |
7424318 | Brister et al. | Sep 2008 | B2 |
7460898 | Brister et al. | Dec 2008 | B2 |
7491303 | Sakata et al. | Feb 2009 | B2 |
7492254 | Bandy et al. | Feb 2009 | B2 |
7494465 | Brister et al. | Feb 2009 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7547281 | Hayes et al. | Jun 2009 | B2 |
7565197 | Haubrich et al. | Jul 2009 | B2 |
7569030 | Lebel et al. | Aug 2009 | B2 |
7574266 | Dudding et al. | Aug 2009 | B2 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7602310 | Mann et al. | Oct 2009 | B2 |
7604178 | Stewart | Oct 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7630748 | Budiman | Dec 2009 | B2 |
7632228 | Brauker et al. | Dec 2009 | B2 |
7635594 | Holmes et al. | Dec 2009 | B2 |
7651596 | Petisce et al. | Jan 2010 | B2 |
7651845 | Doyle, III et al. | Jan 2010 | B2 |
7653425 | Hayter et al. | Jan 2010 | B2 |
7654956 | Brister et al. | Feb 2010 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
7659823 | Killian et al. | Feb 2010 | B1 |
7668596 | Von Arx et al. | Feb 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7699964 | Feldman et al. | Apr 2010 | B2 |
7711402 | Shults et al. | May 2010 | B2 |
7713574 | Brister et al. | May 2010 | B2 |
7715893 | Kamath et al. | May 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7768386 | Hayter et al. | Aug 2010 | B2 |
7768387 | Fennell et al. | Aug 2010 | B2 |
7771352 | Shults et al. | Aug 2010 | B2 |
7774145 | Brauker et al. | Aug 2010 | B2 |
7779332 | Karr et al. | Aug 2010 | B2 |
7782192 | Jeckelmann et al. | Aug 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7882611 | Shah et al. | Feb 2011 | B2 |
7899511 | Shults et al. | Mar 2011 | B2 |
7905833 | Brister et al. | Mar 2011 | B2 |
7912674 | Killoren Clark et al. | Mar 2011 | B2 |
7928850 | Hayter et al. | Apr 2011 | B2 |
7941200 | Weinert et al. | May 2011 | B2 |
8132037 | Fehr et al. | Mar 2012 | B2 |
8135352 | Langsweirdt et al. | Mar 2012 | B2 |
8136735 | Arai et al. | Mar 2012 | B2 |
8138925 | Downie et al. | Mar 2012 | B2 |
8140160 | Pless et al. | Mar 2012 | B2 |
8140299 | Siess | Mar 2012 | B2 |
8150321 | Winter et al. | Apr 2012 | B2 |
8150516 | Levine et al. | Apr 2012 | B2 |
8160900 | Taub et al. | Apr 2012 | B2 |
8179266 | Hermle | May 2012 | B2 |
8192394 | Estes et al. | Jun 2012 | B2 |
8216138 | McGarraugh et al. | Jul 2012 | B1 |
8282549 | Brauker et al. | Oct 2012 | B2 |
8396670 | St-Pierre | Mar 2013 | B2 |
8461985 | Fennell et al. | Jun 2013 | B2 |
8478557 | Hayter et al. | Jul 2013 | B2 |
8597570 | Terashima et al. | Dec 2013 | B2 |
8718965 | Hayter et al. | May 2014 | B2 |
9241631 | Valdes et al. | Jan 2016 | B2 |
9504471 | Vaitekunas et al. | Nov 2016 | B2 |
9808574 | Yodfat et al. | Nov 2017 | B2 |
9936910 | Hayter et al. | Apr 2018 | B2 |
10660554 | Hayter et al. | May 2020 | B2 |
10820842 | Harper | Nov 2020 | B2 |
10827954 | Hoss et al. | Nov 2020 | B2 |
10874338 | Stafford | Dec 2020 | B2 |
10881341 | Curry et al. | Jan 2021 | B1 |
10945647 | Mazza et al. | Mar 2021 | B2 |
10945649 | Lee et al. | Mar 2021 | B2 |
10952653 | Harper | Mar 2021 | B2 |
10959654 | Curry et al. | Mar 2021 | B2 |
10966644 | Stafford | Apr 2021 | B2 |
10973443 | Funderburk et al. | Apr 2021 | B2 |
10980461 | Simpson | Apr 2021 | B2 |
11000213 | Kamath et al. | May 2021 | B2 |
11000216 | Curry et al. | May 2021 | B2 |
11013440 | Lee et al. | May 2021 | B2 |
11020031 | Simpson et al. | Jun 2021 | B1 |
11064917 | Simpson et al. | Jul 2021 | B2 |
11141084 | Funderburk et al. | Oct 2021 | B2 |
20010037366 | Webb et al. | Nov 2001 | A1 |
20020019022 | Dunn et al. | Feb 2002 | A1 |
20020019612 | Watanabe et al. | Feb 2002 | A1 |
20020042090 | Heller et al. | Apr 2002 | A1 |
20020054320 | Ogino | May 2002 | A1 |
20020068860 | Clark, Jr. | Jun 2002 | A1 |
20020072784 | Sheppard et al. | Jun 2002 | A1 |
20020095076 | Krausman et al. | Jul 2002 | A1 |
20020103499 | Perez et al. | Aug 2002 | A1 |
20020128594 | Das et al. | Sep 2002 | A1 |
20020147135 | Schnell | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20020169439 | Flaherty et al. | Nov 2002 | A1 |
20020169635 | Shillingburg | Nov 2002 | A1 |
20030004403 | Drinan et al. | Jan 2003 | A1 |
20030023317 | Brauker et al. | Jan 2003 | A1 |
20030028089 | Galley et al. | Feb 2003 | A1 |
20030032874 | Rhodes et al. | Feb 2003 | A1 |
20030042137 | Mao et al. | Mar 2003 | A1 |
20030055380 | Flaherty et al. | Mar 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030065308 | Lebel et al. | Apr 2003 | A1 |
20030076082 | Morgan et al. | Apr 2003 | A1 |
20030100040 | Bonnecaze et al. | May 2003 | A1 |
20030100821 | Heller et al. | May 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030125612 | Fox et al. | Jul 2003 | A1 |
20030130616 | Steil et al. | Jul 2003 | A1 |
20030134347 | Heller et al. | Jul 2003 | A1 |
20030147515 | Kai et al. | Aug 2003 | A1 |
20030167035 | Flaherty et al. | Sep 2003 | A1 |
20030168338 | Gao et al. | Sep 2003 | A1 |
20030176933 | Lebel et al. | Sep 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030191377 | Robinson et al. | Oct 2003 | A1 |
20030199790 | Boecker et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030212317 | Kovatchev et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20030216630 | Jersey-Willuhn et al. | Nov 2003 | A1 |
20030217966 | Tapsak et al. | Nov 2003 | A1 |
20030225361 | Sabra | Dec 2003 | A1 |
20040010186 | Kimball et al. | Jan 2004 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040011671 | Shults et al. | Jan 2004 | A1 |
20040015131 | Flaherty et al. | Jan 2004 | A1 |
20040022438 | Hibbard | Feb 2004 | A1 |
20040024553 | Monfre et al. | Feb 2004 | A1 |
20040034289 | Teller et al. | Feb 2004 | A1 |
20040040840 | Mao et al. | Mar 2004 | A1 |
20040041749 | Dixon | Mar 2004 | A1 |
20040045879 | Shults et al. | Mar 2004 | A1 |
20040063435 | Sakamoto et al. | Apr 2004 | A1 |
20040064068 | DeNuzzio et al. | Apr 2004 | A1 |
20040064088 | Gorman et al. | Apr 2004 | A1 |
20040064096 | Flaherty et al. | Apr 2004 | A1 |
20040099529 | Mao et al. | May 2004 | A1 |
20040106858 | Say et al. | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040133164 | Funderburk et al. | Jul 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040146909 | Duong et al. | Jul 2004 | A1 |
20040147872 | Thompson | Jul 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040153032 | Garribotto et al. | Aug 2004 | A1 |
20040167464 | Ireland et al. | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040171921 | Say et al. | Sep 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040186362 | Brauker et al. | Sep 2004 | A1 |
20040186365 | Jin et al. | Sep 2004 | A1 |
20040193025 | Steil et al. | Sep 2004 | A1 |
20040193090 | Lebel et al. | Sep 2004 | A1 |
20040197846 | Hockersmith et al. | Oct 2004 | A1 |
20040199056 | Husemann et al. | Oct 2004 | A1 |
20040199059 | Brauker et al. | Oct 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040219664 | Heller et al. | Nov 2004 | A1 |
20040225338 | Lebel et al. | Nov 2004 | A1 |
20040236200 | Say et al. | Nov 2004 | A1 |
20040254433 | Bandis et al. | Dec 2004 | A1 |
20040260478 | Schwamm | Dec 2004 | A1 |
20040267300 | Mace | Dec 2004 | A1 |
20050001024 | Kusaka et al. | Jan 2005 | A1 |
20050004439 | Shin et al. | Jan 2005 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050010269 | Lebel et al. | Jan 2005 | A1 |
20050017864 | Tsoukalis | Jan 2005 | A1 |
20050027177 | Shin et al. | Feb 2005 | A1 |
20050027180 | Goode et al. | Feb 2005 | A1 |
20050027181 | Goode et al. | Feb 2005 | A1 |
20050027182 | Siddiqui et al. | Feb 2005 | A1 |
20050027462 | Goode et al. | Feb 2005 | A1 |
20050027463 | Goode et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050038332 | Saidara et al. | Feb 2005 | A1 |
20050043598 | Goode, Jr. et al. | Feb 2005 | A1 |
20050059871 | Gough et al. | Mar 2005 | A1 |
20050069892 | Iyengar et al. | Mar 2005 | A1 |
20050070774 | Addison et al. | Mar 2005 | A1 |
20050070777 | Cho et al. | Mar 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096511 | Fox et al. | May 2005 | A1 |
20050096512 | Fox et al. | May 2005 | A1 |
20050096516 | Soykan et al. | May 2005 | A1 |
20050112169 | Brauker et al. | May 2005 | A1 |
20050113653 | Fox et al. | May 2005 | A1 |
20050113886 | Fischell et al. | May 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050121322 | Say et al. | Jun 2005 | A1 |
20050131346 | Douglas | Jun 2005 | A1 |
20050137530 | Campbell et al. | Jun 2005 | A1 |
20050143635 | Kamath et al. | Jun 2005 | A1 |
20050143636 | Zhang et al. | Jun 2005 | A1 |
20050151976 | Toma | Jul 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050177398 | Watanabe et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050187442 | Cho et al. | Aug 2005 | A1 |
20050187720 | Goode, Jr. et al. | Aug 2005 | A1 |
20050192494 | Ginsberg | Sep 2005 | A1 |
20050192557 | Brauker et al. | Sep 2005 | A1 |
20050195930 | Spital et al. | Sep 2005 | A1 |
20050199494 | Say et al. | Sep 2005 | A1 |
20050203360 | Brauker et al. | Sep 2005 | A1 |
20050204134 | Von Arx et al. | Sep 2005 | A1 |
20050215871 | Feldman et al. | Sep 2005 | A1 |
20050236361 | Ufer et al. | Oct 2005 | A1 |
20050239154 | Feldman et al. | Oct 2005 | A1 |
20050241957 | Mao et al. | Nov 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050245839 | Stivoric et al. | Nov 2005 | A1 |
20050245904 | Estes et al. | Nov 2005 | A1 |
20050251033 | Scarantino et al. | Nov 2005 | A1 |
20050287620 | Heller et al. | Dec 2005 | A1 |
20060001538 | Kraft et al. | Jan 2006 | A1 |
20060001551 | Kraft et al. | Jan 2006 | A1 |
20060004270 | Bedard et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060015024 | Brister et al. | Jan 2006 | A1 |
20060016700 | Brister et al. | Jan 2006 | A1 |
20060017923 | Ruchti et al. | Jan 2006 | A1 |
20060019327 | Brister et al. | Jan 2006 | A1 |
20060020186 | Brister et al. | Jan 2006 | A1 |
20060020187 | Brister et al. | Jan 2006 | A1 |
20060020188 | Kamath et al. | Jan 2006 | A1 |
20060020189 | Brister et al. | Jan 2006 | A1 |
20060020190 | Kamath et al. | Jan 2006 | A1 |
20060020191 | Brister et al. | Jan 2006 | A1 |
20060020192 | Brister et al. | Jan 2006 | A1 |
20060020300 | Nghiem et al. | Jan 2006 | A1 |
20060025663 | Talbot et al. | Feb 2006 | A1 |
20060029177 | Cranford, Jr. et al. | Feb 2006 | A1 |
20060036139 | Brister et al. | Feb 2006 | A1 |
20060036140 | Brister et al. | Feb 2006 | A1 |
20060036141 | Kamath et al. | Feb 2006 | A1 |
20060036142 | Brister et al. | Feb 2006 | A1 |
20060036143 | Brister et al. | Feb 2006 | A1 |
20060036144 | Brister et al. | Feb 2006 | A1 |
20060036145 | Brister et al. | Feb 2006 | A1 |
20060058588 | Zdeblick | Mar 2006 | A1 |
20060079740 | Silver et al. | Apr 2006 | A1 |
20060091006 | Wang et al. | May 2006 | A1 |
20060094944 | Chuang | May 2006 | A1 |
20060094945 | Barman et al. | May 2006 | A1 |
20060142651 | Brister et al. | Jun 2006 | A1 |
20060154642 | Scannell | Jul 2006 | A1 |
20060156796 | Burke et al. | Jul 2006 | A1 |
20060173260 | Gaoni et al. | Aug 2006 | A1 |
20060193375 | Lee et al. | Aug 2006 | A1 |
20060202805 | Schulman et al. | Sep 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224109 | Steil et al. | Oct 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060247710 | Goetz et al. | Nov 2006 | A1 |
20060253296 | Liisberg et al. | Nov 2006 | A1 |
20060258929 | Goode, Jr. et al. | Nov 2006 | A1 |
20060258959 | Sode | Nov 2006 | A1 |
20060272652 | Stocker et al. | Dec 2006 | A1 |
20060281985 | Ward et al. | Dec 2006 | A1 |
20060287691 | Drew | Dec 2006 | A1 |
20060290496 | Peeters et al. | Dec 2006 | A1 |
20060293607 | Alt et al. | Dec 2006 | A1 |
20070010950 | Abensour et al. | Jan 2007 | A1 |
20070016381 | Kamath et al. | Jan 2007 | A1 |
20070017983 | Frank et al. | Jan 2007 | A1 |
20070032706 | Kamath et al. | Feb 2007 | A1 |
20070032717 | Brister et al. | Feb 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070038044 | Dobbles et al. | Feb 2007 | A1 |
20070055799 | Koehler et al. | Mar 2007 | A1 |
20070060803 | Liljeryd et al. | Mar 2007 | A1 |
20070060814 | Stafford | Mar 2007 | A1 |
20070060979 | Strother et al. | Mar 2007 | A1 |
20070066873 | Kamath et al. | Mar 2007 | A1 |
20070066956 | Finkel | Mar 2007 | A1 |
20070071681 | Gadkar et al. | Mar 2007 | A1 |
20070078320 | Stafford | Apr 2007 | A1 |
20070078321 | Mazza et al. | Apr 2007 | A1 |
20070078322 | Stafford | Apr 2007 | A1 |
20070078323 | Reggiardo et al. | Apr 2007 | A1 |
20070078818 | Zivitz et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070094216 | Mathias et al. | Apr 2007 | A1 |
20070100222 | Mastrototaro et al. | May 2007 | A1 |
20070106135 | Sloan et al. | May 2007 | A1 |
20070118405 | Campbell et al. | May 2007 | A1 |
20070124002 | Estes et al. | May 2007 | A1 |
20070149875 | Ouyang et al. | Jun 2007 | A1 |
20070151869 | Heller et al. | Jul 2007 | A1 |
20070153705 | Rosar et al. | Jul 2007 | A1 |
20070156033 | Causey, III et al. | Jul 2007 | A1 |
20070156094 | Safabash et al. | Jul 2007 | A1 |
20070163880 | Woo et al. | Jul 2007 | A1 |
20070168224 | Letzt et al. | Jul 2007 | A1 |
20070173706 | Neinast et al. | Jul 2007 | A1 |
20070173761 | Kanderian et al. | Jul 2007 | A1 |
20070179349 | Hoyme et al. | Aug 2007 | A1 |
20070179352 | Randlov et al. | Aug 2007 | A1 |
20070191701 | Feldman et al. | Aug 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070208246 | Brauker et al. | Sep 2007 | A1 |
20070228071 | Kamen et al. | Oct 2007 | A1 |
20070232880 | Siddiqui et al. | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070249922 | Peyser et al. | Oct 2007 | A1 |
20070253021 | Mehta et al. | Nov 2007 | A1 |
20070255321 | Gelber et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20070255531 | Drew | Nov 2007 | A1 |
20070258395 | Jollota et al. | Nov 2007 | A1 |
20070270672 | Hayter | Nov 2007 | A1 |
20070271285 | Eichorn et al. | Nov 2007 | A1 |
20070282299 | Hellwig | Dec 2007 | A1 |
20070285238 | Batra | Dec 2007 | A1 |
20070299617 | Willis | Dec 2007 | A1 |
20080009692 | Stafford | Jan 2008 | A1 |
20080017522 | Heller et al. | Jan 2008 | A1 |
20080018433 | Pitt-Pladdy | Jan 2008 | A1 |
20080021436 | Wolpert et al. | Jan 2008 | A1 |
20080021666 | Goode, Jr. et al. | Jan 2008 | A1 |
20080029391 | Mao et al. | Feb 2008 | A1 |
20080030369 | Mann et al. | Feb 2008 | A1 |
20080039702 | Hayter et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080057484 | Miyata et al. | Mar 2008 | A1 |
20080058625 | McGarraugh et al. | Mar 2008 | A1 |
20080058626 | Miyata et al. | Mar 2008 | A1 |
20080058678 | Miyata et al. | Mar 2008 | A1 |
20080058773 | John | Mar 2008 | A1 |
20080060955 | Goodnow | Mar 2008 | A1 |
20080061961 | John | Mar 2008 | A1 |
20080064937 | McGarraugh et al. | Mar 2008 | A1 |
20080064943 | Talbot et al. | Mar 2008 | A1 |
20080071156 | Brister et al. | Mar 2008 | A1 |
20080071157 | McGarraugh et al. | Mar 2008 | A1 |
20080071158 | McGarraugh et al. | Mar 2008 | A1 |
20080071328 | Haubrich et al. | Mar 2008 | A1 |
20080081977 | Hayter et al. | Apr 2008 | A1 |
20080083617 | Simpson et al. | Apr 2008 | A1 |
20080086042 | Brister et al. | Apr 2008 | A1 |
20080086044 | Brister et al. | Apr 2008 | A1 |
20080086273 | Shults et al. | Apr 2008 | A1 |
20080092638 | Brenneman et al. | Apr 2008 | A1 |
20080097289 | Steil et al. | Apr 2008 | A1 |
20080108942 | Brister et al. | May 2008 | A1 |
20080114228 | McCluskey et al. | May 2008 | A1 |
20080119705 | Patel et al. | May 2008 | A1 |
20080139910 | Mastrototaro et al. | Jun 2008 | A1 |
20080154513 | Kovatchev et al. | Jun 2008 | A1 |
20080161666 | Feldman et al. | Jul 2008 | A1 |
20080167543 | Say et al. | Jul 2008 | A1 |
20080167572 | Stivoric et al. | Jul 2008 | A1 |
20080172205 | Breton et al. | Jul 2008 | A1 |
20080177149 | Weinert et al. | Jul 2008 | A1 |
20080182537 | Manku et al. | Jul 2008 | A1 |
20080183060 | Steil et al. | Jul 2008 | A1 |
20080183399 | Goode et al. | Jul 2008 | A1 |
20080188731 | Brister et al. | Aug 2008 | A1 |
20080189051 | Goode et al. | Aug 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080194936 | Goode et al. | Aug 2008 | A1 |
20080194937 | Goode et al. | Aug 2008 | A1 |
20080194938 | Brister et al. | Aug 2008 | A1 |
20080195232 | Carr-Brendel et al. | Aug 2008 | A1 |
20080195967 | Goode et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080208026 | Noujaim et al. | Aug 2008 | A1 |
20080208113 | Damian et al. | Aug 2008 | A1 |
20080214915 | Brister et al. | Sep 2008 | A1 |
20080214918 | Brister et al. | Sep 2008 | A1 |
20080228051 | Shults et al. | Sep 2008 | A1 |
20080228054 | Shults et al. | Sep 2008 | A1 |
20080228055 | Sher | Sep 2008 | A1 |
20080234663 | Yodfat et al. | Sep 2008 | A1 |
20080234943 | Ray et al. | Sep 2008 | A1 |
20080235469 | Drew | Sep 2008 | A1 |
20080242961 | Brister et al. | Oct 2008 | A1 |
20080254544 | Modzelewski et al. | Oct 2008 | A1 |
20080255434 | Hayter et al. | Oct 2008 | A1 |
20080255437 | Hayter | Oct 2008 | A1 |
20080255438 | Saidara et al. | Oct 2008 | A1 |
20080255808 | Hayter | Oct 2008 | A1 |
20080256048 | Hayter | Oct 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080275313 | Brister et al. | Nov 2008 | A1 |
20080287761 | Hayter | Nov 2008 | A1 |
20080287763 | Hayter | Nov 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080287765 | Rasdal et al. | Nov 2008 | A1 |
20080288180 | Hayter | Nov 2008 | A1 |
20080288204 | Hayter et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080306368 | Goode et al. | Dec 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306435 | Kamath et al. | Dec 2008 | A1 |
20080312518 | Jina et al. | Dec 2008 | A1 |
20080312841 | Hayter | Dec 2008 | A1 |
20080312842 | Hayter et al. | Dec 2008 | A1 |
20080312844 | Hayter et al. | Dec 2008 | A1 |
20080312845 | Hayter et al. | Dec 2008 | A1 |
20080314395 | Kovatchev et al. | Dec 2008 | A1 |
20080319085 | Wright et al. | Dec 2008 | A1 |
20080319279 | Ramsay et al. | Dec 2008 | A1 |
20080319295 | Bernstein et al. | Dec 2008 | A1 |
20080319296 | Bernstein et al. | Dec 2008 | A1 |
20090005665 | Hayter et al. | Jan 2009 | A1 |
20090005666 | Shin et al. | Jan 2009 | A1 |
20090006034 | Hayter et al. | Jan 2009 | A1 |
20090006133 | Weinert et al. | Jan 2009 | A1 |
20090012379 | Goode et al. | Jan 2009 | A1 |
20090018424 | Kamath et al. | Jan 2009 | A1 |
20090018425 | Ouyang et al. | Jan 2009 | A1 |
20090030294 | Petisce et al. | Jan 2009 | A1 |
20090033482 | Hayter et al. | Feb 2009 | A1 |
20090036747 | Hayter et al. | Feb 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090036760 | Hayter | Feb 2009 | A1 |
20090036763 | Brauker et al. | Feb 2009 | A1 |
20090040022 | Finkenzeller | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090043182 | Brauker et al. | Feb 2009 | A1 |
20090043525 | Brauker et al. | Feb 2009 | A1 |
20090043541 | Brauker et al. | Feb 2009 | A1 |
20090043542 | Brauker et al. | Feb 2009 | A1 |
20090045055 | Rhodes et al. | Feb 2009 | A1 |
20090048503 | Dalal et al. | Feb 2009 | A1 |
20090054747 | Fennell | Feb 2009 | A1 |
20090054748 | Feldman et al. | Feb 2009 | A1 |
20090055149 | Hayter et al. | Feb 2009 | A1 |
20090062633 | Brauker et al. | Mar 2009 | A1 |
20090062635 | Brauker et al. | Mar 2009 | A1 |
20090062767 | VanAntwerp et al. | Mar 2009 | A1 |
20090063402 | Hayter | Mar 2009 | A1 |
20090076356 | Simpson et al. | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090076361 | Kamath et al. | Mar 2009 | A1 |
20090082693 | Stafford | Mar 2009 | A1 |
20090085768 | Patel et al. | Apr 2009 | A1 |
20090085873 | Betts et al. | Apr 2009 | A1 |
20090088614 | Taub et al. | Apr 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090102678 | Mazza et al. | Apr 2009 | A1 |
20090105554 | Stahmann et al. | Apr 2009 | A1 |
20090105560 | Solomon | Apr 2009 | A1 |
20090105570 | Sloan et al. | Apr 2009 | A1 |
20090105571 | Fennell et al. | Apr 2009 | A1 |
20090105636 | Hayter et al. | Apr 2009 | A1 |
20090124878 | Goode et al. | May 2009 | A1 |
20090124879 | Brister et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090143660 | Brister et al. | Jun 2009 | A1 |
20090150186 | Cohen et al. | Jun 2009 | A1 |
20090156919 | Brister et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163790 | Brister et al. | Jun 2009 | A1 |
20090163791 | Brister et al. | Jun 2009 | A1 |
20090164190 | Hayter | Jun 2009 | A1 |
20090164239 | Hayter et al. | Jun 2009 | A1 |
20090164251 | Hayter | Jun 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090189738 | Hermle | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Kamath et al. | Jul 2009 | A1 |
20090192751 | Kamath et al. | Jul 2009 | A1 |
20090198118 | Hayter et al. | Aug 2009 | A1 |
20090203981 | Brauker et al. | Aug 2009 | A1 |
20090204341 | Brauker et al. | Aug 2009 | A1 |
20090216100 | Ebner et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090227855 | Hill et al. | Sep 2009 | A1 |
20090234200 | Husheer | Sep 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090240440 | Shurabura et al. | Sep 2009 | A1 |
20090242399 | Kamath et al. | Oct 2009 | A1 |
20090242425 | Kamath et al. | Oct 2009 | A1 |
20090247855 | Boock et al. | Oct 2009 | A1 |
20090247856 | Boock et al. | Oct 2009 | A1 |
20090247857 | Harper et al. | Oct 2009 | A1 |
20090247931 | Damgaard-Sorensen | Oct 2009 | A1 |
20090253973 | Bashan et al. | Oct 2009 | A1 |
20090259118 | Feldman et al. | Oct 2009 | A1 |
20090267765 | Greene et al. | Oct 2009 | A1 |
20090287073 | Boock et al. | Nov 2009 | A1 |
20090287074 | Shults et al. | Nov 2009 | A1 |
20090289796 | Blumberg | Nov 2009 | A1 |
20090292188 | Hoss et al. | Nov 2009 | A1 |
20090296742 | Sicurello et al. | Dec 2009 | A1 |
20090298182 | Schulat et al. | Dec 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20100010324 | Brauker et al. | Jan 2010 | A1 |
20100010329 | Taub et al. | Jan 2010 | A1 |
20100010331 | Brauker et al. | Jan 2010 | A1 |
20100010332 | Brauker et al. | Jan 2010 | A1 |
20100016687 | Brauker et al. | Jan 2010 | A1 |
20100016698 | Rasdal et al. | Jan 2010 | A1 |
20100022855 | Brauker et al. | Jan 2010 | A1 |
20100030038 | Brauker et al. | Feb 2010 | A1 |
20100030053 | Goode, Jr. et al. | Feb 2010 | A1 |
20100030484 | Brauker et al. | Feb 2010 | A1 |
20100030485 | Brauker et al. | Feb 2010 | A1 |
20100036215 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036216 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036222 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036223 | Goode, Jr. et al. | Feb 2010 | A1 |
20100036225 | Goode, Jr. et al. | Feb 2010 | A1 |
20100041971 | Goode, Jr. et al. | Feb 2010 | A1 |
20100045465 | Brauker et al. | Feb 2010 | A1 |
20100049024 | Saint et al. | Feb 2010 | A1 |
20100056992 | Hayter et al. | Mar 2010 | A1 |
20100057040 | Hayter | Mar 2010 | A1 |
20100057041 | Hayter | Mar 2010 | A1 |
20100057042 | Hayter | Mar 2010 | A1 |
20100057044 | Hayter | Mar 2010 | A1 |
20100057057 | Hayter et al. | Mar 2010 | A1 |
20100063373 | Kamath et al. | Mar 2010 | A1 |
20100076283 | Simpson et al. | Mar 2010 | A1 |
20100081906 | Hayter et al. | Apr 2010 | A1 |
20100081908 | Dobbles et al. | Apr 2010 | A1 |
20100081909 | Budiman et al. | Apr 2010 | A1 |
20100081910 | Brister et al. | Apr 2010 | A1 |
20100087724 | Brauker et al. | Apr 2010 | A1 |
20100096259 | Zhang et al. | Apr 2010 | A1 |
20100099970 | Shults et al. | Apr 2010 | A1 |
20100099971 | Shults et al. | Apr 2010 | A1 |
20100105999 | Dixon et al. | Apr 2010 | A1 |
20100119693 | Tapsak et al. | May 2010 | A1 |
20100121167 | McGarraugh et al. | May 2010 | A1 |
20100121169 | Petisce et al. | May 2010 | A1 |
20100141656 | Krieftewirth | Jun 2010 | A1 |
20100145377 | Lai et al. | Jun 2010 | A1 |
20100152554 | Steine et al. | Jun 2010 | A1 |
20100160759 | Celentano et al. | Jun 2010 | A1 |
20100168538 | Keenan et al. | Jul 2010 | A1 |
20100168546 | Kamath et al. | Jul 2010 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20100185175 | Kamen et al. | Jul 2010 | A1 |
20100190435 | Cook et al. | Jul 2010 | A1 |
20100191082 | Brister et al. | Jul 2010 | A1 |
20100191085 | Budiman | Jul 2010 | A1 |
20100191472 | Doniger et al. | Jul 2010 | A1 |
20100198034 | Thomas et al. | Aug 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100213080 | Celentano et al. | Aug 2010 | A1 |
20100230285 | Hoss et al. | Sep 2010 | A1 |
20100234710 | Budiman et al. | Sep 2010 | A1 |
20100240975 | Goode et al. | Sep 2010 | A1 |
20100274111 | Say et al. | Oct 2010 | A1 |
20100274515 | Hoss et al. | Oct 2010 | A1 |
20100275108 | Sloan et al. | Oct 2010 | A1 |
20100312176 | Lauer et al. | Dec 2010 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20110004276 | Blair et al. | Jan 2011 | A1 |
20110024043 | Boock et al. | Feb 2011 | A1 |
20110024307 | Simpson et al. | Feb 2011 | A1 |
20110027127 | Simpson et al. | Feb 2011 | A1 |
20110027453 | Boock et al. | Feb 2011 | A1 |
20110027458 | Boock et al. | Feb 2011 | A1 |
20110028815 | Simpson et al. | Feb 2011 | A1 |
20110028816 | Simpson et al. | Feb 2011 | A1 |
20110031986 | Bhat et al. | Feb 2011 | A1 |
20110054282 | Nekoomaram et al. | Mar 2011 | A1 |
20110077490 | Simpson et al. | Mar 2011 | A1 |
20110081726 | Berman | Apr 2011 | A1 |
20110148905 | Simmons et al. | Jun 2011 | A1 |
20110152637 | Kateraas et al. | Jun 2011 | A1 |
20110208027 | Wagner et al. | Aug 2011 | A1 |
20110213225 | Bernstein et al. | Sep 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20110287528 | Fern et al. | Nov 2011 | A1 |
20110320130 | Valdes et al. | Dec 2011 | A1 |
20110320167 | Budiman | Dec 2011 | A1 |
20120078071 | Bohm et al. | Mar 2012 | A1 |
20120088995 | Fennell et al. | Apr 2012 | A1 |
20120108934 | Valdes et al. | May 2012 | A1 |
20120165626 | Irina et al. | Jun 2012 | A1 |
20120165640 | Galley et al. | Jun 2012 | A1 |
20120173200 | Breton et al. | Jul 2012 | A1 |
20120190989 | Kaiser et al. | Jul 2012 | A1 |
20130035575 | Mayou et al. | Feb 2013 | A1 |
20130235166 | Jones et al. | Sep 2013 | A1 |
20150005601 | Hoss et al. | Jan 2015 | A1 |
20170112531 | Schoonmaker et al. | Apr 2017 | A1 |
20190274598 | Scott | Sep 2019 | A1 |
Number | Date | Country |
---|---|---|
2003259741 | Feb 2004 | AU |
2495648 | Feb 2004 | CA |
2143172 | Jul 2005 | CA |
2498682 | Sep 2005 | CA |
2555749 | Sep 2005 | CA |
2632709 | Jun 2007 | CA |
2396613 | Mar 2008 | CA |
2615575 | Jun 2008 | CA |
2701374 | Apr 2009 | CA |
2413148 | Aug 2010 | CA |
4401400 | Jul 1995 | DE |
0098592 | Jan 1984 | EP |
0127958 | Dec 1984 | EP |
0390390 | Oct 1990 | EP |
1292218 | Mar 2003 | EP |
1077634 | Jul 2003 | EP |
1568309 | Aug 2005 | EP |
1666091 | Jun 2006 | EP |
1703697 | Sep 2006 | EP |
1704893 | Sep 2006 | EP |
1897492 | Nov 2009 | EP |
1681992 | Apr 2010 | EP |
1448489 | Aug 2010 | EP |
1 413 879 | Jan 2012 | EP |
2153382 | Feb 2012 | EP |
WO-2000059370 | Oct 2000 | WO |
WO-2000074753 | Dec 2000 | WO |
WO-2000078992 | Dec 2000 | WO |
WO-2001054753 | Aug 2001 | WO |
WO-2002016905 | Feb 2002 | WO |
WO-2002058537 | Aug 2002 | WO |
WO-2003076893 | Sep 2003 | WO |
WO-2003082091 | Oct 2003 | WO |
WO-2003085372 | Oct 2003 | WO |
WO-2004015539 | Feb 2004 | WO |
WO-2004047445 | Jun 2004 | WO |
WO-2004061420 | Jul 2004 | WO |
WO-2005040404 | May 2005 | WO |
WO-2005041766 | May 2005 | WO |
WO-2005045744 | May 2005 | WO |
WO-2005089103 | Sep 2005 | WO |
WO-2005119238 | Dec 2005 | WO |
WO-2006024671 | Mar 2006 | WO |
WO 2006026741 | Mar 2006 | WO |
WO-2006032653 | Mar 2006 | WO |
WO-2006064397 | Jun 2006 | WO |
WO-2006079114 | Jul 2006 | WO |
WO-2006124099 | Nov 2006 | WO |
WO-2007007459 | Jan 2007 | WO |
WO-2007016399 | Feb 2007 | WO |
WO-2007041069 | Apr 2007 | WO |
WO-2007041070 | Apr 2007 | WO |
WO-2007041248 | Apr 2007 | WO |
WO-2007056638 | May 2007 | WO |
WO-2007065285 | Jun 2007 | WO |
WO-2007101223 | Sep 2007 | WO |
WO-2007120363 | Oct 2007 | WO |
WO-2007126444 | Nov 2007 | WO |
WO-2007053832 | Dec 2007 | WO |
WO-2007143225 | Dec 2007 | WO |
WO-2007149319 | Dec 2007 | WO |
WO-2008001366 | Jan 2008 | WO |
WO-2008021913 | Feb 2008 | WO |
WO-2008042760 | Apr 2008 | WO |
WO-2008086541 | Jul 2008 | WO |
WO-2008128210 | Oct 2008 | WO |
WO-2008130896 | Oct 2008 | WO |
WO-2008130897 | Oct 2008 | WO |
WO-2008130898 | Oct 2008 | WO |
WO-2008143943 | Nov 2008 | WO |
WO-2008151452 | Dec 2008 | WO |
WO-2009018058 | Feb 2009 | WO |
WO-2009049252 | Apr 2009 | WO |
WO-2009086216 | Jul 2009 | WO |
WO-2009096992 | Aug 2009 | WO |
WO-2010077329 | Jul 2010 | WO |
WO-2010091129 | Aug 2010 | WO |
WO 2010099507 | Sep 2010 | WO |
Entry |
---|
Dudde et al., Computer-Aided Continuous Drug Infusion: Setup and Test of a Mobile Closed-Loop System for the Continuous Automated Infusion of Insulin, Apr. 2006, IEEE Transactions on Information Technology in Biomedicine, vol. 10, No. 2, pp. 395-402 (Year: 2006). |
U.S. Appl. No. 16/853,584 (U.S. Pat. No. 11,234,625), filed Apr. 20, 2020 (Feb. 1, 2022). |
U.S. Appl. No. 16/853,584, dated Jan. 12, 2022 Issue Notification. |
U.S. Appl. No. 16/853,584, dated Dec. 17, 2021 Issue Fee Payment. |
U.S. Appl. No. 16/853,584, dated Sep. 17, 2021 Notice of Allowance. |
U.S. Appl. No. 16/853,584, dated Jul. 28, 2021 Response to Non-Final Office Action. |
U.S. Appl. No. 16/853,584, dated Apr. 29, 2021 Non-Final Office Action. |
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526. |
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1070. |
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4, No. 1, 2002, pp. 25-33. |
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10. |
Bremer, T. M., et al., “Benchmark Data from the Literature for Evaluation of New Glucose Sensing Technologies”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 409-418. |
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56. |
Cass, A. E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, 667-671. |
Cheyne, E. H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613. |
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244. |
El-Khatib, F. H, et al., “Adaptive Closed-Loop Control Provides Blood-Glucose Regulation Using Subcutaneous Insulin and Glucagon Infusion in Diabetic Swine”, Journal of Diabetes Science and Technology, vol. 1, No. 2, 2007, pp. 181-192. |
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired EnzymeTM Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779. |
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004. |
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50. |
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652. |
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719. |
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198. |
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250. |
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304. |
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549. |
Kuure-Kinsey, M., et al., “A Dual-Rate Kalman Filter for Continuous Glucose Monitoring”, Proceedings of the 28th IEEE, EMBS Annual International Conference, New York City, 2006, pp. 63-66. |
Li, Y., et al., “In Vivo Release from a Drug Delivery MEMS Device”, Journal of Controlled Release, vol. 100, 2004, 99. 211-219. |
Lo, B., et al., “Key Technical Challenges and Current Implementations of Body Sensor Networks”, Body Sensor Networks, 2005, pp. 1-5. |
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587. |
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74. |
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658. |
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages. |
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376. |
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532. |
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263. |
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301. |
Panteleon, A. E., et al., “The Role of the Independent Variable to Glucose Sensor Calibration”, Diabetes Technology & Therapeutics, vol. 5, No. 3, 2003, pp. 401-410. |
Parker, R., et al., “Robust Hoe Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549. |
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346. |
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217. |
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272. |
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161. |
Rodriguez, N., et al., “Flexible Communication and Control Protocol for Injectable Neuromuscular Interfaces”, IEEE Transactions on Biomedical Circuits and Systems, vol. 1, No. 1, 2007, pp. 19-27. |
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241. |
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158. |
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322. |
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308. |
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299. |
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406. |
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313. |
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210. |
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301. |
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131. |
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942. |
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40. |
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261. |
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115. |
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137. |
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964. |
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617. |
PCT Application No. PCT/US2010/044038, International Search Report and Written Opinion of the International Searching Authority dated Sep. 29, 2010. |
U.S. Appl. No. 16/853,584, dated Jan. 12, 2022 Issue Notificaton. |
U.S. Appl. No. 60/687,199, filed Jun. 2, 2005, Ward, et al. |
U.S. Appl. No. 61/155,889, filed Feb. 26, 2009. Hoss, et al. |
“Abbott Receives CE Mark for Freestyle® Libre, A Revolutionary Glucose Monitoring System for People with Diabetes,” 8 pages (2023). |
Abel, et al., “Biosensors for in vivo glucose measurement: can we cross the experimental stage”, Biosensors and Bioelectronics, 17:1059-1070 (2002). |
Alcock, et al., “Continuous Analyte Monitoring to Aid Clinical Practice”, IEEE Engineering in Medicine and Biology, pp. 319-325 (1994). |
Atanasov, et al., “Implantation of a refillable glucose monitoring-telemetry device”, Biosensors & Bioelectronics, 12(7):669-680 (1997). |
ATTD Program, 4 pages (2009). |
Bequette, “Continuous Glucose Monitoring: Real Time Algorithms for Calibration, Filtering, and Alarms”, Journal of Diabetes Science and Technology, 4(2):404-418 (2010). |
Bindra, “Development of potentially implantable glucose sensors”, The University of Arizona, 227 pages (1990). |
Boise, Interview with Dexcom CEO, Dexcom CEO Kevin Sayer Explains G6, 9 pages (2018). |
Cambridge Dictionary of American English, for the word “recess,” Cambridge University Press, 3 pages (2000). |
Cengiz, et al., “A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring”, Diabetes Technology & Therapeutics, 11(1):S-11-S16 (2009). |
Certified Copy of Preliminary Amendment for U.S. Pat. No. 10,827,954, issued on Nov. 10, 2020. |
Certified Copy of Preliminary Amendment for U.S. Pat. No. 10,973,443, issued on Apr. 13, 2021. |
Chen, et al., “A novel fault-tolerant sensor system for sensor drift compensation”, Sensors and Actuators, A 147:623-632 (2008). |
Chen, et al., “Defining the Period of Recovery of the Glucose Concentration after Its Local Perturbation by the Implantation of a Miniature Sensor”, Clin Chem Lab Med, 40(8):786-789 (2002). |
Choleau, et al., “Calibration of a subcutaneous amperometric glucose sensor Part 1. Effect of measurement uncertainties on the determination of sensor sensitivity and background current”, Biosensors and Bioelectronics, 17:641-646 (2002). |
Choleau, et al., “Calibration of a subcutaneous amperometric glucose sensor implanted for 7 days in diabetic patients Part 2. Superiority of the one-point calibration method”, Biosensors and Bioelectronics, 17:647-654 (2002). |
De Block, et al., “Minimally-Invasive and Non-Invasive Continuous Glucose Monitoring Systems: Indications, Advantages, Limitations and Clinical Aspects”, Current Diabetes Reviews, 4:159-168 (2008). |
Dexcom (DXCM) Company Profile, 2017 /Q4 Earnings call transcript, 12 pages (2017). |
DexCom (Dxcm) Q1 2018 Results—Earnings Call Transcript, 4 pages (2018). |
Dexcom G6 Continuous Glucose Monitoring System User Guide, 7 pages (2020). |
Dexcom G6, Continuous Glucose Monitoring System, User Guide, 22 pages (2020). |
Dexcom G6, Start Here Set Up, Dexcom G6 Continuous Glucose Monitoring (CGM) System (G6), 8 pages (2019). |
Dexcom G6, Using Your G6, 7 pages (2020). |
Email communication from Sophie Hood, Jan. 24, 2023, 6 pages. |
Facchinetti, et al., “Enhanced Accuracy of Continuous Glucose Monitoring by Online Extended Kalman Filtering”, Diabetes Technology & Therapeutics, 12(5):353-363 (2010). |
FDA News Release, FDA authorizes first fully interoperable continuous glucose monitoring system, streamlines review pathway for similar devices, 3 pages (2018). |
Figures 13 and 12 of U.S. Pat. No. 10,973,443 B2 issued on Apr. 13, 2021. |
Fraser, “An Introduction to in vivo Biosensing: Progress and Problems”, Biosensors in the Body: Continuous in vivo Monitoring, pp. 1-56 (1997). |
FreeStyle Navigator Continuous Glucose Monitoring System, Summary of Safety and Effectiveness Data in support of Pre-Market Approval (PMA) No. P050020, Abbott Diabetes Care, 27 pages (2008). |
FreeStyle Navigator Continuous Glucose Monitoring System, User Guide, Abbott Diabetes Care Inc., 195 pages (2008). |
FreeStyle Navigator Continuous Glucose Monitoring System, User's Guide, Abbott Diabetes Care Inc., 38 pages (2008). |
Frost, et al., “Implantable chemical sensors for real-time clinical monitoring: progress and challenges”, Current Opinion in Chemical Biology, 6:633-641 (2002). |
Gerritsen, et al., “Performance of subcutaneously implanted glucose sensors for continuous monitoring”, The Netherlands Journal of Medicine, 54:167-179 (1999). |
Gerritsen, et al., “Subcutaneously implantable glucose sensors in patients with diabetes mellitus; still many problems”, Dutch Journal of Medicine, 146(28):1313-1316 (2002) (with English Machine Translation). |
Guardian® REAL-Time, Continuous Glucose Monitoring System, User Guide, Medtronic MiniMed, Inc., 184 pages (2006). |
Guardian® REAL-Time, Continuous Glucose Monitoring System, User Guide, Medtronic MiniMed, Inc., 181 pages (2006). |
Guardian® RT, Continuous Glucose Monitoring System, Ref MMT-7900, User Guide, Medtronic MiniMed, 128 pages (2005). |
Hall, Interview with Kevin Sayer, President and CEO of Dexcom About The New Dexcom G6, College Diabetes Network, 6 pages (2021). |
Heinemann, “Continuous Glucose Monitoring by Means of the Microdialysis Technique: Underlying Fundamental Aspects”, Diabetes Technology & Therapeutics, 5(4):545-561 (2003). |
Heller, et al., “Electrochemical Glucose Sensors and Their Applications in Diabetes Management”, Chemical Reviews, 108(7):2482-2505 (2008). |
Hoss, et al., “Continuous glucose monitoring in the tissue: Do we really need to calibrate in-vivo?,” Diabetes Technology & Therapeutics, vol. 11, No. 2, (2009). |
Hoss, et al., Continuous Glucose Monitoring in Subcutaneous Tissue Using Factory- Calibrated Sensors: A Pilot Study, Diabetes Technology & Therapeutics, vol. 12, No. 8, pp. 591-597 (2010). |
Hoss, et al., Feasibility of Factory Calibration for Subcutaneous Glucose Sensors in Subjects with Diabetes, Journal of Diabetes Science and Technology, vol. 8(1), pp. 89-94 (2014). |
IEEE 100, The Authoritative Dictionary, Seventh Edition, Standards Information Network, IEEE Press, 3 pages (2000). |
Joint Declaration under 37 C.F.R. §1.131 for U.S. Appl. No. 15/963,828 (2020). |
Kalivas, et al., “Compensation for Drift and Interferences in Multicomponent Analysis”, Laboratory for Chemometrics, Department of Chemistry, University of Washington, 38 pages (1982). |
Kerner, et al., The function of a hydrogen peroxide-detecting electroenzymatic glucose electrode is markedly impaired in human sub-cutaneous tissue and plasma, Biosensors & Bioelectronics, 8:473-482 (1993). |
Knobbe, et al., “The Extended Kalman Filter for Continuous Glucose Monitoring”, Diabetes Technology & Therapeutics, 7(1):15-27 (2005). |
Koschinsky, et al., “Sensors for glucose monitoring: technical and clinical aspects”, Diabetes/Metabolism Research and Reviews, 17:113-123 (2001). |
Koschwanez, et al., “In vitro, in vivo and post explantation testing of glucose-detecting biosensors: Current methods and recommendations”, Biomaterials, 28:3687-3703 (2007). |
Koudelka, et al., “In-vivo Behaviour of Hypodermically Implanted Microfabricated Glucose Sensors”, Biosensors & Bioelectronics, 6:31-36 (1991). |
Koudelka-Hep, “Electrochemical Sensors for in vivo Glucose Sensing”, Biosensors in the Body: Continuous in vivo Monitoring, pp. 57-77 (1997). |
Kvist, et al., “Recent Advances in Continuous Glucose Monitoring: Biocompatibility of Glucose Sensors for Implantation in Subcutis”, Journal of Diabetes Science and Technology, 1(5):746-752 (2007). |
Letter from Department of Health & Human Services to Abbott Diabetes Care, Inc. re. PMA approval for P050020, FreeStyle Navigator Continuous Glucose Monitoring System, dated Mar. 12, 2008. |
Merriam-Webster's Collegiate Dictionary, Tenth Edition for the words “housing” and “recess,” Merriam-Webster, Incorporated, 4 pages (1999). |
Merriam-Webster's Collegiate Dictionary, Tenth Edition for the words “release” and “retain,” Merriam-Webster, Incorporated, 4 pages (1999). |
Ming Li, et al., “Implantable Electrochemical Sensors for Biomedical and Clinical Applications: Progress, Problems, and Future Possibilities”, Current Medicinal Chemistry, 14:937-951 (2007). |
Moussy, et al. “Performance of Subcutaneously Implanted Needle-Type Glucose Sensors Employing a Novel Trilayer Coating”, Anal. Chem., 65:2072-2077 (1993). |
Non-Final Office Action for U.S. Appl. No. 14/884,622, mailed on Jun. 13, 2018. |
Non-Final Office Action for U.S. Appl. No. 17/030,030, issued on Dec. 17, 2020. |
Notice of Allowance for U.S. Appl. No. 15/963,828, mailed on Mar. 3, 2021. |
Omnipod image, Exhibit 182, 2 pages, Sep. 22, 2022. |
Onuki, et al., “A Review of the Biocompatibility of Implantable Devices: Current Challenges to Overcome Foreign Body Response”, Journal of Diabetes Science and Technology, 2(6):1003-1015 (2008). |
Palerm, et al., “Hypoglycemia Prediction and Detection Using Optimal Estimation”, Diabetes Technology & Therapeutics, 7(1):3-14 (2005). |
Pickup, et al., “In vivo glucose sensing for diabetes management: progress towards non- invasive monitoring”, BMJ, 319, pp. 1-4 (1999). |
Pickup, et al., “Responses and calibration of amperometric glucose sensors implanted in the subcutaneous tissue of man”, Acta Diabetol, 30:143-148 (1993). |
Poitout, et al., “Calibration in dogs of a subcutaneous miniaturized glucose sensor using a glucose meter for blood glucose determination”, Biosensors & Bioelectronics, 7:587-592 (1992). |
Rebrin, et al., “Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring”, American Journal of Physiology-Endocrinology and Metabolism, 277(3):E561-E571 (1999). |
Renard, “Implantable glucose sensors for diabetes monitoring”, Min Invas Ther & Allied Technol, 13(2):78-86 (2004). |
Response to Non-Final Office Action under 37 C.F.R. 1.111 for U.S. Appl. No. 15/963,828, filed Dec. 8, 2020. |
Response to Restriction Requirement for U.S. Appl. No. 14/884,622, filed Apr. 5, 2018. |
Robert, “Continuous Monitoring of Blood Glucose”, Horm Res 57(suppl 1):81-84 (2002). |
S&P Global Market Intelligence “DexCom, Inc. NasdaqGS:DXCM, Company Conference Presentation,” 17 pages (2021). |
S&P Global Market Intelligence “DexCom, Inc. NasdaqGS:DXCM, Company Conference Presentation,” 10 pages (2020). |
S&P Global Market Intelligence “DexCom, Inc. NasdaqGS:DXCM, Company Conference Presentation,” 11 pages (2019). |
Sayer, CGMS Changing Diabetes Management: Kevin Sayer, DIC Interview Transcript, Featuring Steve Freed, 11 pages (2019). |
Schlosser, et al., “Biocompatibility of Active Implantable Devices”, Biosensors in the Body: Continuous in vivo Monitoring, pp. 139-170 (1997). |
Schmidt, et al., “Calibration of a wearable glucose sensor”, The International Journal of Artificial Organs, 15(1):55-61 (1992). |
Schmidtke, et al., “Accuracy of the One-Point in Vivo Calibration of ”Wired“ Glucose Oxidase Electrodes Implanted in Jugular Veins of Rats in Periods of Rapid Rise and Decline of the Glucose Concentration”, Anal. Chem., 70:2149-2155 (1998). |
Sonix, Dexcom CEO—Prime Position in Our Market—Mad Money—CNBC.mp4, 4 pages (2023). |
Spruce Point Capital Management, Dexcom, Inc., Investment Research Report, Does Dexcom Really Have A Future If It Can't Match Abbott's Scale? 2 pages (Mar. 21, 2019). |
Tegnestedt, et al., Levels and sources of sound in the intensive care unit—an observational study of three room types, Acta Anaesthesiol Scandinavica Foundation, 11 pages (2013). |
The Chambers Dictionary for the word “retract,” Chambers Harrap Publishers Ltd, 4 pages (1998). |
The MiniMed Paradigm® Real-Time Insulin Pump and Continuous Glucose Monitoring System, Insulin Pump User Guide, Medtronic, Paradigm® 522 and 722 Insulin Pumps User Guide, 25 pages (2008). |
The New Oxford American Dictionary, for the word “retract,” Oxford University Press, pages (2001). |
The New Penguin English Dictionary, for the word “recess,” Penguin Books, 4 pages (2000). |
Thévenot, et al., “Electrochemical Biosensors: Recommended Definitions and Classification (Technical Report)”, Pure Appl. Chem. 71(12):2333-2348 (1999). |
U.S. Food & Drug Administration, “Deciding When to Submit a 510(k) for a Change to an Existing Device, Guidance for Industry and Food and Drug Administration Staff,” 78 pages (2017). |
U.S. Food & Drug Administration, “Deciding When to Submit a 510(k) for a Software Change to an Existing Device, Guidance for Industry and Food and Drug Administration Staff,” 32 pages (2017). |
U.S. Appl. No. 12/842,013 Office Action mailed Aug. 26, 2015. |
U.S. Appl. No. 12/842,013 Office Action mailed Mar. 23, 2016. |
U.S. Appl. No. 12/842,013 Office Action mailed Nov. 6, 2014. |
Voskerician, et al., “Sensor Biocompatibility and Biofouling in Real-Time Monitoring”, Wiley Encyclopedia of Biomedical Engineering, (John Wiley & Sons, Inc.), pp. 1-19 (2006). |
Walt, et al., “The chemistry of enzyme and protein immobilization with glutaraldehyde”, Trends in Analytical Chemistry, 13(10):425-430 (1994). |
Ward, “A Review of the Foreign-body Response to Subcutaneously-implanted Devices: The Role of Macrophages and Cytokines in Biofouling and Fibrosis”, Journal of Diabetes Science and Technology, 2(5):768-777 (2008). |
Ward, et al., “A new amperometric glucose microsensor: in vitro and short-term in vivo evaluation”, Biosensors & Bioelectronics, 17:181-189 (2002). |
Ward, et al., “Rise in background current over time in a subcutaneous glucose sensor in the rabbit: relevance to calibration and accuracy”, Biosensors & Bioelectronics, 15:53-61 (2000). |
Watkin, “An Introduction to Flash Glucose Monitoring,” 16 pages (2013). |
Webster's II New College Dictionary, for the word “alcove,” 2 pages (2001). |
Webster's Third New International Dictionary of the English Language Unabridged, for the word “retract,” Merriam-Webster Inc., 5 pages (1993). |
Wilson, et al., “Biosensors for real-time in vivo measurements”, Biosensors and Bioelectronics, 20:2388-2403 (2005). |
Wisniewski, et al., “Analyte flux through chronically implanted subcutaneous polyamide membranes differs in humans and rats”, Am J Physiol Endocrinol Metab, 282:E1316-E1323 (2002). |
Zhang, “Investigations of potentially implantable glucose sensors”, University of Kansas, 24 pages (1991). |
Chen, T., et al., “In vivo Glucose Monitoring with Miniature ”Wired“ Glucose Oxidase Electrodes”, Analytical Sciences, 2001, vol. 17 Supplement, p. i297-i300. |
Dock, E., et al., “Multivariate data analysis of dynamic amperometric biosensor responses from binary analyte mixtures—application of sensitivity correction algorithms”, Talanta, 65, 2005, pp. 298-305. |
Heller, A., “Implanted Electrochemical Glucose Sensors for the Management of Diabetes”, Annu. Rev. Biomed. Eng., 1999, pp. 153-175. |
Hoss, U., et al., “Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology”, Diabetes Technology & Therapeutics, 2017, vol. 19, Suppl. 2, pp. S-44-S-50. |
Nishida, K., et al., “Development of a ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible membrane, 2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate”, Medical Progress through Technology, 1995, 21:91-103. |
Abbott Press Release—“Abbott Receives CE Mark for FreeStyle® Libre, A Revolutionary Glucose Monitoring System for People with Diabetes” retrieved from https://abbott.mediaroom.com/2014-09-03-Abbott-Receives-CE-Mark-for-FreeStyle-Libre-a-Revolutionary-Glucose-Monitoring-System-for-People-with-Diabetes/, Sep. 3, 2014, 3 pages. |
Abbott Press Release—“Abbott Receives FDA Approval for the FreeStyle Libre Pro TM System, A Revolutionary Diabetes Sensing Technology for Healthcare Professionals to Use with their Patients” retrieved from https://abbott.mediaroom.com/2016-09-28-Abbott-Receives-FDA-Approval-for-the-FreeStyle-Libre-Pro-System-a-Revolutionary-Diabetes-Sensing-Technology-for-Healthcare-Professionals-to-use-with-their-Patients/, Sep. 28, 2016, 5 pages. |
Abbott Press Release—“Abbott's FreeStyle® Libre 14 Day Flash Glucose Monitoring System Now Approved in U.S.” retrieved from https://abbott.mediaroom.com/2018-07-27-Abbotts-FreeStyle-R-Libre-14-Day-Flash-Glucose-Monitoring-System-Now-Approved-in-U-S/, Jul. 27, 2018, 3 pages. |
Anzhsn, National Horizon Scanning Unit Horizon Scanning Report, “GlucoWatch® G2 Biographer for the non-invasive monitoring of glucose levels”, 46 pages, May 2004. |
Cather, CGM Frustrations Survey dated Jun. 2020, 37 pages in Abbott Diabetes Care Inc., et al. v. Dexcom, Inc., Case No. 1:21-cv-00977-KAJ (District of Delaware) |
Clinical Trials, Competitor and Ecosystem Players dated Jun. 25, 2020, 29 pages in Abbott Diabetes Care Inc., et al. v. Dexcom, Inc., Case No. 1:21-cv-00977-KAJ (District of Delaware). |
Declaration of Dr. Anthony Edwards Cass in Support of Petition for Inter Partes Review of U.S. Pat. No. 11,020,031 in Abbott Diabetes Care Inc. v. Dexcom, Inc., Case No. IPR-2024-00890, In the United States Patent and Trademark Office, Before the Patent Trial and Appeal Board, May 10, 2024, 138 pages. |
Declaratiob of Karl R. Leinsing, MSME, PE, in Support of Abbott's Motion for Summary Judgement dated May 19, 2023, 81 pages in Abbott Diabetes Care Inc., et al. v. Dexcom, Inc., Case No. 1:21-cv-00977-KAJ (District of Delaware) |
Effectiveness and Safety Study of the DexCom™ G4 Continuous Glucose Monitoring System, DexCom, Inc., U.S. National Library of Medicine, ClinicalTrials.gov Identifier: NCT01111370, 4 pages (2017). |
E-mail Communication from Christopher M. Dougherty regarding Bi Monthly Global Commercial Insights Meeting dated Dec. 17, 2019, 69 pages in Abbott Diabetes Care Inc., et al. v. Deccom, Inc., Case No. 1:21-cv-00977-KAJ (District of Delaware). |
U.S. Appl. No. 29/101,218, filed Feb. 25, 1999, 11 pages. |
U.S. Pat. No. 11,020,031 issued Jun. 1, 2021, 1058 pages. |
FreeStyle Libre 2 HCP Pulse, Mar. 2021 Report, dated Mar. 1, 2021, 14 pages in Abbott Diabetes Care Inc., et al. v. Dexcom, Inc., Case No. 1:21-cv-00977-KAJ (District of Delaware). |
Godek, et al., Chapter 2, “The Macrophage in Wound Healing Surrounding Implanted Devices”, In Vivo Glucose Sensing, 36 pages (2010). |
Gross, et al., “Performance Evaluation of the MiniMed® Continuous Glucose Monitoring System During Patient Home Use”, Diabetes Technology & Therapeutics, vol. 2, No. 1, pp. 49-56 (2000). |
Heller, “Integrated Medical Feedback Systems for Drug Delivery”, American Institute of Chemical Engineers Journal, vol. 51, No. 4, pp. 1054-1066 (2005). |
Henning, Chapter 5, “Commercially Available Continuous Glucose Monitoring Systems”, In Vivo Glucose Sensing, 50 pages (2010). |
Kovatchev, et al., “Evaluating the Accuracy of Continuous Glucose-Monitoring Sensors”, Diabetes Care, vol. 27, No. 8, pp. 1922-1928 (2004). |
Lesperance, et al., “Calibration of the Continuous Glucose Monitoring System for Transient Glucose Monitoring”, Diabetes Technology & Therapeutics, vol. 9, No. 2, pp. 183-190 (2007). |
Project Status Update, Glucose Sensor Applicator Dexcom (project #2554), Design Concepts, Inc., 6 pages (2014). |
Seagrove Partners, International Diabetes Device, 2022 Blue Book dated 2022, 143 pages in Abbott Diabetes Care Inc., et al. v. Dexcom, Inc., Case No. 1:21-cv-00977-KAJ (District of Delaware). |
Wilson et al., Chapter 1, “Introduction to the Glucose Sensing Problem,” In Vivo Glucose Sensing, 32 pages (2010). |
Wisniewski, et al., “Characterization of implantable biosensor membrane biofouling”, Fresenius J Anal Chem, 366:611-621 (2000). |
Hanson, K. et al., “Comparison of Point Accuracy Between Two Widely Used Continuous Glucose Monitoring Systems”, Journal of Diabetes Science and Technology, 2024, pp. 1-10. |
Number | Date | Country | |
---|---|---|---|
20220142519 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
61230686 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16853584 | Apr 2020 | US |
Child | 17581834 | US | |
Parent | 15915646 | Mar 2018 | US |
Child | 16853584 | US | |
Parent | 14262697 | Apr 2014 | US |
Child | 15915646 | US | |
Parent | 13925691 | Jun 2013 | US |
Child | 14262697 | US | |
Parent | 12848075 | Jul 2010 | US |
Child | 13925691 | US |