Method and devices for modifying the function of a body organ

Information

  • Patent Grant
  • 8231641
  • Patent Number
    8,231,641
  • Date Filed
    Wednesday, January 31, 2007
    17 years ago
  • Date Issued
    Tuesday, July 31, 2012
    12 years ago
Abstract
Methods and devices for partitioning or plicating a region of a hollow body organ are described herein. These methods and devices relate generally to medical apparatus and methods and more particularly to devices and methods for affecting a change in the function of a hollow body organ, particularly a stomach, intestine or gastrointestinal tract. These changes can include reducing the volume capacity of the hollow body organ, disrupting or altering the normal function of the organ, functionally excluding certain sections of the organ either by affixing adjacent tissue or excising certain regions, or affecting or correcting the response of the organ to naturally occurring stimuli, such as ingestion.
Description
FIELD OF THE INVENTION

The present invention relates generally to medical apparatus and methods and more particularly to devices and methods for affecting a change in the function of a hollow body organ. These changes can include, for example, reducing the volume capacity of the hollow body organ, disrupting or altering the normal function of the organ, functionally excluding certain sections of the organ either by affixing adjacent tissue or excising certain regions, or affecting or correcting the response of the organ to naturally occurring stimuli, such as ingestion.


Reducing the volume of a hollow body organ by partitioning or plicating the organ, such as the stomach, results in a smaller reservoir within the organ that can hold only a reduced amount of food and thereby induce weight loss. In addition, such partitioning or plicating of the stomach may also prove efficacious for weight loss by affecting or interfering with stomach motility and/or decreasing gastric emptying time by reducing the organ's pumping efficiency in a variety of ways. For instance, excluding the fundus of the stomach may thereby decrease the pressure waves it generates and/or interfere with the muscular region of stomach (antrum) to slow pumping. In this way, the devices and methods disclosed herein can effect or correct the response of the organ to naturally occurring stimuli. A further effect of partitioning or plicating tissue in the stomach may relate to the treatment of gastro esophageal reflux disease or “GERD” by pinning the walls of the stomach together and thereby altering stomach distension and the related “unrolling” of the lower esophageal sphincter (LES). Yet another effect of a single plication or series of plications may include causing scarring and stiffening of the region to similarly resist unrolling. Additionally, the methods and devices disclosed herein can exclude regions of the stomach organ, such as the fundus, to reduce capacitance, or to eliminate excretion of certain substances such as Ghrelin, the hormone closely associated with increased food intake.


The devices and methods disclosed herein may be used alone or in conjunction with each other. Furthermore, the devices may be permanently implanted or removed once they have served their purpose, e.g., the desired tissue effect has occurred (healing), or the clinical benefit has been achieved, for example, the patient has lost the directed or desired amount of weight, or the patient is no longer experiencing reflux.


BACKGROUND OF THE INVENTION

The current methods of treatment for gastrointestinal disorders, such as GERD, include medical intervention (drug therapy) or stimulation of lower esophageal region with RF or other energy. While effective to a certain degree, a more robust intervention would be desirable to achieve a longer term and more effective result.


In the case of severe obesity, patients may currently undergo several types of surgery either to tie off or staple portions of the large or small intestine or stomach, and/or to bypass portions of the same, e.g., to reduce the amount of food desired by the patient, and/or to reduce the amount of food absorbed by the gastrointestinal tract. Typically, these stomach reduction procedures are performed surgically through an open incision and staples or sutures are applied externally to the stomach or hollow body organ; however, several limitations exist due to the invasiveness of the procedures, including, e.g., time, use of general anesthesia, healing of the incisions, and other complications attendant to major surgery.


There is a need for improved devices and procedures in treating both gastrointestinal disorders and severe obesity. In addition, because of the invasiveness of many of the conventional surgical procedures used to manipulate, in particular, the stomach, there remains a need for improved devices and methods for more effective, less invasive intragastric restriction or partitioning procedures.


SUMMARY OF THE INVENTION

The methods and devices employed to achieve the results disclosed herein are further set forth in U.S. patent application Ser. No. 09/871,297 filed May 30, 2001, and U.S. patent application Ser. No. 10/188,547 filed Jul. 2, 2002, both fully incorporated herein by reference in their entirety. Accordingly, placement of intragastric partitions by the use of such devices and methods can be employed from within the gastric cavity to result in varying tissue geometries depending on the desired effect. The terms “plication”, “partition”, “fastening line”, and “barrier” shall all refer to a zone where tissue folds or layers from adjacent or opposing regions of a hollow organ have been acquired and fixed so as to heal into a fused zone.


In one aspect, a variety of organ partitions or plications may be placed within the organ cavity to serve as barriers or “pouches” that are substantially separated from the majority of the organ cavity. For example, in the case where the stomach is partitioned, the “pouch” walls or partitions may be created just below the esophagus to reduce the volume of the stomach. This procedure has the effect of not only reducing the volume of food that can be consumed by the patient, but also blocks, in the similar way a valve or splash might, the volume of any refluxant material that can contribute to GERD.


In another aspect, multiple partition lines or plications can be created and positioned to impact the motility of the organ in addition to reducing the effective volume of the body organ in which they are placed. In the case of a stomach, a reduction in motility has been shown to affect satiety and also the rate of gastric emptying, which in turn leads to less food intake and subsequent weight loss. (Villar, et al. Mechanisms of satiety and gastric emptying after gastric portioning and bypass, Surgery, August 1981 229-236.) The stomach may essentially be divided into two regions on the basis of its motility pattern. The upper stomach; including the fundus and upper stomach body, exhibits low frequency, sustained contractions that are responsible for generating a pressure within the stomach. The lower stomach, composed of the lower body and antrum, develops strong peristaltic waves of contraction. These powerful contractions constitute a very effective gastric pump. Gastric distention increases fundic activity and thus stimulates this type of contraction, thereby accelerating gastric emptying.


Disrupting this motility pattern can subdue or otherwise attenuate contraction waves initiated by the fundus of the stomach in response to distension. Such contractions in a non-partitioned stomach would transmit to the antrum of the stomach and facilitate gastric digestion and drainage. (Davenport Physiology of the digestive tract, 3.sup.rd Ed. 1971, Yearbook Medical Publishers, Chicago.) However, in a partitioned stomach, the contractions are decreased and/or the food passage pathways are attenuated by plications or fixation lines. As a further result, communication with the antrum and other stomach regions is less efficient as is the communication between the antrum and the small intestine, thereby leading to a reduced rate of emptying. Furthermore, smaller pouches or multiple partitions within the stomach may also increase the pressure experienced by the fundus (fundic pressure) thereby enhancing the feeling of satiety with a lower volume of food.


In another aspect, it may be desirable to place a partition or plication to exclude the fundic region of the stomach organ from the other functioning regions to minimize the overall volume of the organ so as to limit food intake. Additionally, the plication or plications may be placed at the region of the stomach responsible for the secretion of certain “hunger hormones” to impair secretion and thereby control the impact of these hormones on hunger. Ghrelin, for instance, is a hormone produced primarily by the stomach (more concentrated in the fundic region) that has been shown to increase food intake. A marked suppression of Ghrelin levels has been correlated to the exclusion of large portions of the stomach following gastric bypass, thus contributing to the long term weight loss of a patient from such a procedure. (Cummings et al., Plasma Ghrelin Levels after Diet-Induced Weight Loss of Gastric Bypass Surgery, NEJM, Vol 346:1623-1630, May 23, 2002.)


In yet another aspect, a partition line or plication may be placed substantially parallel to the lesser curve (LC) of the stomach organ, preferably just below the lower esophageal sphincter (LES) between the lesser curve (LC) and the greater curve (GC). Such a plication can function to reinforce the LES and therefore prevent its elongation or “unrolling” when the stomach organ distends in response to food or liquid intake.


When a patient experiences GERD, it may be associated with the LES being rendered incompetent. When the LES becomes incompetent, it fails to perform its valving or barrier function against the flow of gastric juices back into the esophagus from the higher pressure environment of the stomach. It has been documented that the overall length of the LES is critically important to its function as such a barrier. (DeMeester, Evolving Concepts of Reflux: The ups and downs of the LES, Can. J. Gastroenterol 2002; 16(5):327-331.) Typically, the LES shortens as a natural response to gastric distension, such as when food is ingested into the stomach. If the LES is compromised or weakened, such distension can lead to the LES shortening or “unrolling” to the extent that it can no longer overcome pressure against it from the gastric cavity. This may result in refluxant from the gastric cavity entering the esophageal reservoir. Acutely, such contact can cause severe discomfort and other symptoms, and over time, can lead to serious complications such as cancer, ulcerations, esophagitis, Barrett's Esophagus etc.


A plication placed just below the LES within the gastric cavity, as referenced above, works to prevent the shortening or unrolling of the LES by stabilizing the region. The anterior and posterior walls of the gastric cavity may be fixed together to minimize the distension of the region in response to gastric filling. It is also possible to plicate adjacent walls such as the anterior wall of the stomach or posterior wall of the stomach to the LC or GC, walls from the GC to walls from the GC, or other combinations thereof. Such a plication can be placed substantially parallel with the LC of the stomach so as not to affect the volume of food intake for a patient Alternatively, the plication can also be placed more horizontally if both stabilization and volume reduction of the region are desired. Certain tools have been employed to create an artificial sphincter such as those described in U.S. Pat. Nos. 6,475,136, and 6,254,642. Additionally, several devices have been suggested to plicate various regions of an organ, such as those described in U.S. Pat. Nos. 5,403,326; 5,355,897; 5,676,674; 5,571,116; 6,447,533; 6,086,600; and Publications WO 02/24080; WO 01/85034; US 2002/0078967; and US 2002/0,072,761.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts various anatomical locations with respect to the gastrointestinal tract.



FIG. 2 depicts a schematic drawing showing a body organ with a partition or plication line placed to lessen the active reservoir of the gastric cavity.



FIGS. 3, 5 and 6 depict schematic drawings showing a body organ with partitions or plications placed to reduce the volume capacity and to interfere with the constant fundic pressure urging food into the antral pump.



FIGS. 4A and 4B depict a schematic drawing showing a body organ with partitions or plications placed to disrupt the motility function of the organ.



FIG. 7 depicts a schematic drawing showing distension of the gastric cavity and the resulting shortening of the LES.



FIG. 8 depicts a schematic drawing showing a plication or partition placed near the LES to control the impact of distension of the gastric cavity on the LES.



FIGS. 9 to 9B depict schematic drawings and cross-sectional views showing a plication of adjacent tissue placed along the length of the greater curve GC of the stomach to exclude the plicated portion from contact with the remaining tissue in the organ (for example to impair secretion of the hormone Ghrelin).





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides, in part, for methods and devices to manipulate, partition, divide or restrict a hollow organ and, more particularly, provides methods and devices to treat diseases, such as obesity and gastroesophageal reflux disease (GERD), that can be mediated by the gastrointestinal organs.



FIG. 1 depicts an external view of various anatomical locations related to the gastrointestinal tract, including the esophagus (ES), lower esophageal sphincter (LES), gastroesophageal junction (GEJ), lesser curve (LS) of the stomach, greater curve (GC) of the stomach, fundic region of the stomach or fundus (FN), antrum of the stomach (AN), and pylorus (PY).



FIG. 2 depicts an external view of a stomach organ 100 with an example of a partition or fastening line 101 placed in a location between the GEJ and the LC of the stomach 100. The partition 101 may be angled toward the LC relative to the GEJ to create a “pouch” (P) to achieve an overall reduction in volume of the active reservoir, i.e., the portion of the stomach 100 which is actively involved in food digestion. Arrows 102 represent the flow paths of potential refluxant that are prevented by the plication 101 from flowing upwards into the ES. In addition, pouch (P) operates to limit the volume of food or intake possible from the esophageal region (ES), and may therefore also effect weight loss in the target patient.



FIGS. 3 and 4 represent alternative placements of the partition or fastening line 101 to achieve various configurations of organ division. Each configuration may have a potential clinical application depending on the preference of the physician and clinical needs of the patient. In FIG. 3, plications may be placed within the fundic region FN and may function to both lessen distension of that region in response to food intake. The plications may also inhibit the fundic reservoir's ability to produce contractions by either attenuating or baffling the frequency and/or intensity of the contractions to slow digestion and reduce gastric emptying time. FIGS. 4A and 4B show yet another configuration of plications 101 located within the lower region LR of the stomach, which includes the lower body and the antrum AN region of the stomach 100. FIG. 4A shows plications 101 in the lower region (LR) and FIG. 4B shows plications 101 in the antrum (AN) region of the stomach 100. This placement is designed to disrupt or slow the contractile function of this region to slow gastric emptying time by interfering with the gastric pumping action and thereby enhance weight loss. As shown, the plications 101 may be aligned such that they point or extend angularly from the ES between the fundic region FN and a distal portion of the stomach 100. Plications 101 may extend partially within the stomach 100 or they may extend along a majority of a length of the stomach 100. Moreover, although only three plications 101 are shown, this is intended to be merely illustrative and a fewer or a greater number of plications may be utilized, depending upon the desired clinical results.



FIGS. 5 and 6 represent further alternative placements of partitions or fastening lines 101 within the stomach 100. The plications depicted in FIGS. 5 and 6 not only reduce organ volume, but also operate to effect organ motility, distension and pressure. The plications 101 shown in FIG. 5 may be created such that they extend a partial length within the stomach 101 in a “radial” pattern extending between the LC and the GC. The plications 101 shown in FIG. 6 may include a first plication 101 extending from the GEJ and extending a length towards the AN with a second plication extending partially between the LC and the GC from a distal end of the first plication.


In FIG. 7, stomach 100 is shown by the solid line 201 prior to intake of substances such as food or liquid. Measurement D1 represents the desired length of a healthy LES prior to food intake (in most cases, approximately 2 cm). Dotted line 202 depicts distension of the stomach following intake. Measurement D2 indicates shortening of the LES in response to the stomach 100 becoming distended. Once the LES shortens (e.g. in some cases to some length less than 2 cm), refluxant can then contact the esophageal region ES, as depicted by the arrows 204 which indicate refluxant flow paths, as the pressure created within the stomach 100 overwhelms the closing pressure of the shortened sphincter region D2. FIG. 8 depicts a stomach undergoing similar distension to that as shown in FIG. 7; however, plication 301 has been created at the base of the LES extending from the LES into the stomach. This placement of the plication 301 may limit the ability of the LES to shorten in response to gastric cavity distension. As a result, upon distension, D1 may approximately equal D2 after stomach distension where D2 may be greater than or equal to 2 cm. This measurement is approximately the length of a healthy functional LES, post stomach distension. Plication 301 is shown as extending partially into the stomach cavity; yet plication 301 may alternatively extend along a majority of the stomach cavity as well. The angle at which plication 301 extends relative to a longitudinal axis of the LES may also vary. For instance, plication 301 may be parallel to the longitudinal axis, or they may be relatively angled over a range suitable for preventing the LES from unrolling.



FIG. 9 depicts a schematic of a procedure where adjacent tissue (e.g., tissue from along the greater curve GC of the stomach) is acquired and plicated in a pattern configured to exclude certain portions of the stomach organ (e.g., fundus). Excluding certain portions, such as the fundus, from the other functioning regions of the stomach not only minimizes the overall volume of the organ so as to limit food intake, but also impairs the secretion of certain hormones, e.g., Ghrelin, which helps to control hunger levels. Suppression of Ghrelin or the exclusion of Ghrelin from the remaining stomach may suppress a hunger response in a person to facilitate weight loss. Plication line 402 can start at the GEJ and extend to below the antrum AN. Plication line 402 can terminate above the AN or extend further to the pylorus PY. FIG. 9A depicts cross section 9A-9A which shows a dotted line that represents the former location of the stomach GC prior to the region being acquired and plicated. FIG. 9A further depicts plication lines 402 and 406, and excluded tissue region 404 that, once plicated, is excluded from communication with the remaining organ volume along the length of the plication.



FIG. 9A illustrates two plication lines 402, 406 created adjacent to one another and creating tissue region 404. Although two plications are shown, a single plication may be created or three or more may be created depending upon the desired effects. Moreover, the plications may be adhered together via fasteners 408 along the length of the plications. Fasteners may include any number of types of fasteners ranging from staples, sutures, clips, helical screws, adhesives, etc. A further detailed discussion on fasteners is described in U.S. patent application Ser. Nos. 09/871,297 and 10/188,547, which have been incorporated herein by reference above. FIG. 9B shows another view in cross section 9B-9B of the plicated stomach from FIG. 9.


It is anticipated that the placement of partitions or fastening lines, as described above, may vary from those depicted herein as necessary for a physician to achieve a desired clinical effect, or to overcome variations in the anatomy of the patient. These configurations may include, additional plications, various angles along a plication relative to the anatomic location, such as 0.degree to 180.degree from the LC, or the GC, depending on the region to be effected. Such configurations that utilize the methods and devices of the present invention are contemplated to be within the scope of this disclosure.

Claims
  • 1. A method of inhibiting elongation of a proximal portion of a stomach, comprising: creating at least one plication between a first tissue region and a second tissue region from within the stomach;wherein the at least one plication extends from adjacent a lower esophageal sphincter to within the body of the stomach; andwherein a placement of the at least one plication is such that a consistent length of the lower esophageal sphincter prior to and after stomach distension is maintained.
  • 2. The method of claim 1, wherein creating the at least one plication comprises configuring the plication to extend from a distal portion of the lower esophageal sphincter.
  • 3. The method of claim 1, wherein creating the at least one plication comprises configuring the at least one plication to maintain the length of the lower esophageal sphincter at 2 cm or greater.
  • 4. The method of claim 1 wherein creating the at least one plication comprises configuring the plication parallel to a longitudinal axis defined by the lower esophageal sphincter.
  • 5. The method of claim 1 wherein creating the at least one plication comprises configuring the plication angled relative to a longitudinal axis defined by the lower esophageal sphincter.
  • 6. The method of claim 1 wherein creating the at least one plication comprises configuring the plication to extend along a majority of the stomach.
Parent Case Info

This application is a continuation of U.S. Ser. No. 10/417,790, now U.S. Pat. No. 7,175,638, filed Apr. 16, 2003, the contents of which are incorporated herein by reference.

US Referenced Citations (418)
Number Name Date Kind
2108206 Meeker Feb 1938 A
2508690 Schmerl Jul 1948 A
3372443 Daddona, Jr. Mar 1968 A
3395710 Stratton et al. Aug 1968 A
3986493 Hendren, III Oct 1976 A
4057065 Thow Nov 1977 A
4063561 McKenna Dec 1977 A
4133315 Berman et al. Jan 1979 A
4134405 Smit Jan 1979 A
4198982 Fortner et al. Apr 1980 A
4246893 Berson Jan 1981 A
4258705 Sorensen et al. Mar 1981 A
4311146 Wonder Jan 1982 A
4315509 Smit Feb 1982 A
4343066 Lance Aug 1982 A
4402445 Green Sep 1983 A
4416267 Garren et al. Nov 1983 A
4458681 Hopkins Jul 1984 A
4485805 Foster, Jr. Dec 1984 A
4501264 Rockey Feb 1985 A
4547192 Brodsky et al. Oct 1985 A
4558699 Bashour Dec 1985 A
4592339 Kuzmak et al. Jun 1986 A
4592354 Rothfuss Jun 1986 A
4598699 Garren et al. Jul 1986 A
4607618 Angelchik Aug 1986 A
4610383 Rothfuss et al. Sep 1986 A
4636205 Steer Jan 1987 A
4641653 Rockey Feb 1987 A
4643169 Koss et al. Feb 1987 A
4646722 Silverstein et al. Mar 1987 A
4648383 Angelchik Mar 1987 A
4671287 Fiddian-Green Jun 1987 A
4694827 Weiner et al. Sep 1987 A
4696288 Kuzmak Sep 1987 A
4716900 Ravo et al. Jan 1988 A
4723547 Kullas et al. Feb 1988 A
4739758 Lai et al. Apr 1988 A
4744363 Hasson May 1988 A
4773393 Haber et al. Sep 1988 A
4790294 Allred, III et al. Dec 1988 A
4795430 Quinn et al. Jan 1989 A
4803985 Hill Feb 1989 A
4841888 Mills et al. Jun 1989 A
4899747 Garren et al. Feb 1990 A
4905693 Ravo Mar 1990 A
4925446 Garay et al. May 1990 A
4927428 Richards May 1990 A
4969474 Schwarz Nov 1990 A
5037021 Mills et al. Aug 1991 A
5059193 Kuslich Oct 1991 A
5080663 Mills et al. Jan 1992 A
5084061 Gau et al. Jan 1992 A
5112310 Grobe May 1992 A
5129915 Cantenys Jul 1992 A
5146933 Boyd Sep 1992 A
5156609 Nakao et al. Oct 1992 A
5171233 Amplatz et al. Dec 1992 A
5197649 Bessler et al. Mar 1993 A
5220928 Oddsen et al. Jun 1993 A
5222961 Nakao et al. Jun 1993 A
5226429 Kuzmak Jul 1993 A
5234454 Bangs Aug 1993 A
5246456 Wilkinson Sep 1993 A
5248302 Patrick et al. Sep 1993 A
5250058 Miller et al. Oct 1993 A
5254126 Filipi et al. Oct 1993 A
5259366 Reydel et al. Nov 1993 A
5259399 Brown Nov 1993 A
5261920 Main et al. Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5284128 Hart Feb 1994 A
5297536 Wilk Mar 1994 A
5301658 Zhu et al. Apr 1994 A
5306300 Berry Apr 1994 A
5309896 Moll et al. May 1994 A
5309927 Welch May 1994 A
5327914 Shlain Jul 1994 A
5330486 Wilk Jul 1994 A
5330503 Yoon Jul 1994 A
5331975 Bonutti Jul 1994 A
5334209 Yoon Aug 1994 A
5334210 Gianturco Aug 1994 A
5345949 Shlain Sep 1994 A
5346501 Regula et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5376095 Ortiz Dec 1994 A
5382231 Shlain Jan 1995 A
5403312 Yates et al. Apr 1995 A
5403326 Harrison et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5433721 Hooven et al. Jul 1995 A
5437291 Pasricha et al. Aug 1995 A
5449368 Kuzmak Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5458131 Wilk Oct 1995 A
5462559 Ahmed Oct 1995 A
5465894 Clark et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5486183 Middleman et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5503635 Sauer et al. Apr 1996 A
5527319 Green et al. Jun 1996 A
5535935 Vidal et al. Jul 1996 A
5542949 Yoon Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5551622 Yoon Sep 1996 A
5555898 Suzuki et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5571116 Bolanos et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5578044 Gordon et al. Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5584861 Swain et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5601604 Vincent Feb 1997 A
5603443 Clark et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5624381 Kieturakis Apr 1997 A
5626588 Sauer et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5649937 Bito et al. Jul 1997 A
5651769 Waxman et al. Jul 1997 A
5655698 Yoon Aug 1997 A
5662664 Gordon et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5667520 Bonutti Sep 1997 A
5676659 McGurk Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5685868 Lundquist Nov 1997 A
5690656 Cope et al. Nov 1997 A
5697943 Sauer et al. Dec 1997 A
5707382 Sierocuk et al. Jan 1998 A
5722990 Sugarbaker et al. Mar 1998 A
5728178 Buffington et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5749893 Vidal et al. May 1998 A
5755730 Swain et al. May 1998 A
5766216 Gangal et al. Jun 1998 A
5776054 Bobra Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5788715 Watson, Jr. et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5797931 Bito et al. Aug 1998 A
5810851 Yoon Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5810882 Bolduc et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5820584 Crabb Oct 1998 A
5824008 Bolduc et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5833690 Yates et al. Nov 1998 A
5836311 Borst et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5860581 Robertson et al. Jan 1999 A
5861036 Godin Jan 1999 A
5868141 Ellias Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5876448 Thompson et al. Mar 1999 A
5879371 Gardiner et al. Mar 1999 A
5887594 LoCicero, III Mar 1999 A
5888196 Bonutti Mar 1999 A
5897534 Heim et al. Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5904147 Conlan et al. May 1999 A
5906625 Bito et al. May 1999 A
5910105 Swain et al. Jun 1999 A
5910149 Kuzmak Jun 1999 A
5921993 Yoon Jul 1999 A
5927284 Borst et al. Jul 1999 A
5928264 Sugarbaker et al. Jul 1999 A
5935107 Taylor et al. Aug 1999 A
5938669 Klaiber et al. Aug 1999 A
5947983 Solar et al. Sep 1999 A
5964772 Bolduc et al. Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5972001 Yoon Oct 1999 A
5972002 Bark et al. Oct 1999 A
5976161 Kirsch et al. Nov 1999 A
5980537 Ouchi Nov 1999 A
5993464 Knodel Nov 1999 A
5993473 Chan et al. Nov 1999 A
6015378 Borst et al. Jan 2000 A
6030364 Durgin et al. Feb 2000 A
6030392 Dakov Feb 2000 A
6042538 Puskas Mar 2000 A
6044847 Carter et al. Apr 2000 A
6067991 Forsell May 2000 A
6074343 Nathanson et al. Jun 2000 A
6083241 Longo et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6113609 Adams Sep 2000 A
6119913 Adams et al. Sep 2000 A
6120513 Bailey et al. Sep 2000 A
6136006 Johnson et al. Oct 2000 A
6159146 El Gazayerli Dec 2000 A
6159195 Ha et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6179195 Adams et al. Jan 2001 B1
6186942 Sullivan et al. Feb 2001 B1
6186985 Snow Feb 2001 B1
6197022 Baker Mar 2001 B1
6200318 Har-Shai et al. Mar 2001 B1
6206822 Foley et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6224614 Yoon May 2001 B1
6231561 Frazier et al. May 2001 B1
6248058 Silverman et al. Jun 2001 B1
6254642 Taylor Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6290674 Roue et al. Sep 2001 B1
6293923 Yachia et al. Sep 2001 B1
6302917 Dua et al. Oct 2001 B1
6312437 Kortenbach Nov 2001 B1
6328689 Gonzalez et al. Dec 2001 B1
6338345 Johnson et al. Jan 2002 B1
6352543 Cole Mar 2002 B1
6358197 Silverman et al. Mar 2002 B1
6379366 Fleischman et al. Apr 2002 B1
6387104 Pugsley, Jr. et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6416535 Lazarus Jul 2002 B1
6423087 Sawada Jul 2002 B1
6432040 Meah Aug 2002 B1
6447533 Adams Sep 2002 B1
6460543 Forsell Oct 2002 B1
6475136 Forsell Nov 2002 B1
6491707 Makower et al. Dec 2002 B2
6494888 Laufer et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6535764 Imran et al. Mar 2003 B2
6540789 Silverman et al. Apr 2003 B1
6551310 Ganz et al. Apr 2003 B1
6554844 Lee et al. Apr 2003 B2
6558400 Deem et al. May 2003 B2
6561969 Frazier et al. May 2003 B2
6572629 Kalloo et al. Jun 2003 B2
6579301 Bales et al. Jun 2003 B1
6592596 Geitz Jul 2003 B1
6605037 Moll et al. Aug 2003 B1
6626899 Houser et al. Sep 2003 B2
6632227 Adams Oct 2003 B2
6656194 Gannoe et al. Dec 2003 B1
6663598 Carrillo, Jr. et al. Dec 2003 B1
6663639 Laufer et al. Dec 2003 B1
6663640 Kortenbach Dec 2003 B2
6675809 Stack et al. Jan 2004 B2
6682520 Ingenito Jan 2004 B2
6689062 Mesallum Feb 2004 B1
6692485 Brock et al. Feb 2004 B1
6716222 McAlister et al. Apr 2004 B2
6733512 McGhan May 2004 B2
6736822 McClellan et al. May 2004 B2
6740098 Abrams et al. May 2004 B2
6740121 Geitz May 2004 B2
6746460 Gannoe et al. Jun 2004 B2
6746489 Dua et al. Jun 2004 B2
6754536 Swoyer et al. Jun 2004 B2
6755849 Gowda et al. Jun 2004 B1
6755869 Geitz Jun 2004 B2
6756364 Barbier et al. Jun 2004 B2
6764518 Godin Jul 2004 B2
6773440 Gannoe et al. Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6786898 Guenst Sep 2004 B2
6790214 Kraemer et al. Sep 2004 B2
6802868 Silverman et al. Oct 2004 B2
6821285 Laufer et al. Nov 2004 B2
6830546 Chin et al. Dec 2004 B1
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6837848 Bonner et al. Jan 2005 B2
6840423 Adams et al. Jan 2005 B2
6845776 Stack et al. Jan 2005 B2
6896682 McClellan et al. May 2005 B1
6916332 Adams Jul 2005 B2
6926722 Geitz Aug 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6981978 Gannoe Jan 2006 B2
6991643 Saadat Jan 2006 B2
6994715 Gannoe et al. Feb 2006 B2
7020531 Colliou et al. Mar 2006 B1
7025791 Levine et al. Apr 2006 B2
7033373 de la Torre et al. Apr 2006 B2
7033378 Smith et al. Apr 2006 B2
7033384 Gannoe et al. Apr 2006 B2
7037343 Imran May 2006 B2
7037344 Kagan et al. May 2006 B2
7063715 Onuki et al. Jun 2006 B2
7083629 Weller et al. Aug 2006 B2
7083630 DeVries et al. Aug 2006 B2
7087011 Cabiri et al. Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
20010014800 Frazier et al. Aug 2001 A1
20010020190 Taylor Sep 2001 A1
20010037127 De Hoyos Garza Nov 2001 A1
20020022851 Kalloo et al. Feb 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020040226 Laufer et al. Apr 2002 A1
20020047036 Sullivan et al. Apr 2002 A1
20020058967 Jervis May 2002 A1
20020072761 Abrams et al. Jun 2002 A1
20020077661 Saadat Jun 2002 A1
20020078967 Sixto, Jr. et al. Jun 2002 A1
20020082621 Schurr et al. Jun 2002 A1
20020143346 McGuckin, Jr. et al. Oct 2002 A1
20020165589 Imran et al. Nov 2002 A1
20020183768 Deem et al. Dec 2002 A1
20020193816 Laufer et al. Dec 2002 A1
20030040804 Stack et al. Feb 2003 A1
20030040808 Stack et al. Feb 2003 A1
20030065340 Geitz Apr 2003 A1
20030065359 Weller et al. Apr 2003 A1
20030093117 Saadat May 2003 A1
20030109931 Geitz Jun 2003 A1
20030109935 Geitz Jun 2003 A1
20030120285 Kortenbach Jun 2003 A1
20030120289 McGuckin, Jr. et al. Jun 2003 A1
20030132267 Adams et al. Jul 2003 A1
20030158563 McClellan et al. Aug 2003 A1
20030158601 Silverman et al. Aug 2003 A1
20030171760 Gambale Sep 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030216754 Kraemer et al. Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20040006351 Gannoe et al. Jan 2004 A1
20040009224 Miller Jan 2004 A1
20040010271 Kortenbach Jan 2004 A1
20040024386 Deem et al. Feb 2004 A1
20040037865 Miller Feb 2004 A1
20040039452 Bessler Feb 2004 A1
20040044354 Gannoe et al. Mar 2004 A1
20040049209 Benchetrit Mar 2004 A1
20040059349 Sixto, Jr. et al. Mar 2004 A1
20040059354 Smith et al. Mar 2004 A1
20040059358 Kortenbach et al. Mar 2004 A1
20040082963 Gannoe et al. Apr 2004 A1
20040087977 Nolan et al. May 2004 A1
20040088008 Gannoe et al. May 2004 A1
20040089313 Utley et al. May 2004 A1
20040092892 Kagan et al. May 2004 A1
20040092974 Gannoe et al. May 2004 A1
20040097989 Molina Trigueros May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040116949 Ewers et al. Jun 2004 A1
20040122456 Saadat et al. Jun 2004 A1
20040122473 Ewers et al. Jun 2004 A1
20040122526 Imran Jun 2004 A1
20040133147 Woo Jul 2004 A1
20040133238 Cerier Jul 2004 A1
20040138525 Saadat Jul 2004 A1
20040138526 Guenst Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138531 Bonner et al. Jul 2004 A1
20040138682 Onuki et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040158331 Stack et al. Aug 2004 A1
20040162568 Saadat Aug 2004 A1
20040167546 Saadat et al. Aug 2004 A1
20040172141 Stack et al. Sep 2004 A1
20040181242 Stack et al. Sep 2004 A1
20040193190 Liddicoat et al. Sep 2004 A1
20040210243 Gannoe et al. Oct 2004 A1
20040215180 Starkebaum et al. Oct 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225194 Smith et al. Nov 2004 A1
20040225305 Ewers et al. Nov 2004 A1
20040236357 Kraemer et al. Nov 2004 A1
20040249362 Levine et al. Dec 2004 A1
20050010162 Utley et al. Jan 2005 A1
20050033328 Laufer et al. Feb 2005 A1
20050038415 Rohr et al. Feb 2005 A1
20050049718 Dann et al. Mar 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055039 Burnett et al. Mar 2005 A1
20050075622 Levine et al. Apr 2005 A1
20050075653 Saadat et al. Apr 2005 A1
20050080438 Weller et al. Apr 2005 A1
20050080444 Kraemer et al. Apr 2005 A1
20050085787 Laufer Apr 2005 A1
20050096750 Kagan et al. May 2005 A1
20050119671 Reydel et al. Jun 2005 A1
20050119674 Gingras Jun 2005 A1
20050143760 Imran Jun 2005 A1
20050148818 Mesallum Jul 2005 A1
20050149067 Takemoto et al. Jul 2005 A1
20050149114 Cartledge et al. Jul 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050192599 Demarais Sep 2005 A1
20050192601 Demarais Sep 2005 A1
20050194038 Brabec et al. Sep 2005 A1
20050194294 Oexle et al. Sep 2005 A1
20050194312 Niemeyer et al. Sep 2005 A1
20050195925 Traber Sep 2005 A1
20050195944 Bartels et al. Sep 2005 A1
20050196356 Leinen et al. Sep 2005 A1
20050197540 Liedtke Sep 2005 A1
20050197622 Blumenthal et al. Sep 2005 A1
20050197684 Koch Sep 2005 A1
20050198476 Gazsi et al. Sep 2005 A1
20050203547 Weller et al. Sep 2005 A1
20050203548 Weller et al. Sep 2005 A1
20050228415 Gertner Oct 2005 A1
20050228504 Demarais Oct 2005 A1
20050256533 Roth et al. Nov 2005 A1
20050256587 Egan Nov 2005 A1
20060020247 Kagan et al. Jan 2006 A1
20060020254 Hoffmann Jan 2006 A1
20060020276 Saadat et al. Jan 2006 A1
20060036267 Saadat et al. Feb 2006 A1
20060106288 Roth et al. May 2006 A1
20060111735 Crainich May 2006 A1
20060122462 Roth et al. Jun 2006 A1
20060142787 Weller et al. Jun 2006 A1
20060151568 Weller et al. Jul 2006 A1
Foreign Referenced Citations (51)
Number Date Country
0 137 878 Apr 1985 EP
0 174 843 Mar 1986 EP
0 246 999 Nov 1987 EP
0 540 010 May 1993 EP
63277063 Nov 1988 JP
63279854 Nov 1988 JP
63302863 Dec 1988 JP
01049572 Feb 1989 JP
04297219 Oct 1992 JP
WO 9418893 Sep 1994 WO
WO 9917662 Apr 1999 WO
WO 9953827 Oct 1999 WO
WO 0032137 Jun 2000 WO
WO 0039708 Jul 2000 WO
WO 0048656 Aug 2000 WO
WO 0078227 Dec 2000 WO
WO 0078229 Dec 2000 WO
WO 0166018 Sep 2001 WO
WO 0167964 Sep 2001 WO
WO 0185034 Nov 2001 WO
WO 0224080 Mar 2002 WO
WO 0235980 May 2002 WO
WO 0239880 May 2002 WO
WO 02071951 Sep 2002 WO
WO 02091961 Nov 2002 WO
WO 02096327 Dec 2002 WO
WO 03007796 Jan 2003 WO
WO 03017882 Mar 2003 WO
WO 03078721 Sep 2003 WO
WO 03086247 Oct 2003 WO
WO 03088844 Oct 2003 WO
WO 03094785 Nov 2003 WO
WO 03099140 Dec 2003 WO
WO 03105563 Dec 2003 WO
WO 03105671 Dec 2003 WO
WO 2004009269 Jan 2004 WO
WO 2004014237 Feb 2004 WO
WO 2004017863 Mar 2004 WO
WO 2004019787 Mar 2004 WO
WO 2004019826 Mar 2004 WO
WO 2004037064 May 2004 WO
WO 2004049911 Jun 2004 WO
WO 2004058102 Jul 2004 WO
WO 2004060150 Jul 2004 WO
WO 2004087014 Oct 2004 WO
WO 2004103189 Dec 2004 WO
WO 2005023118 Mar 2005 WO
WO 2005037152 Apr 2005 WO
WO 2005058239 Jun 2005 WO
WO 2005060882 Jul 2005 WO
WO 2006078781 Jul 2006 WO
Related Publications (1)
Number Date Country
20070181138 A1 Aug 2007 US
Continuations (1)
Number Date Country
Parent 10417790 Apr 2003 US
Child 11700528 US