The present invention relates to tools and procedures generally and relates more particularly to the use of ablation to reduce the mass of excitable tissue of the left atrium to prevent and treat atrial fibrillation or other medical conditions.
Focal triggers initiating atrial fibrillation are thought to frequently arise from the pulmonary veins and their ostia. Surgeons have used the technique of modifying the substrate of the heart in these areas to prevent the propagation of the arrhythmia. In some patients with chronic atrial fibrillation, the Cos/MAZE III procedure has been employed. This procedure controls propagation of the depolarization wavefronts in the right and left atria by means of surgical incisions through the walls of the right and left atria. The incisions create blind or dead end conduction pathways, which prevent re-entrant atrial tachycardias from occurring.
While the Cox/MAZE procedure is successful is treating atrial fibrillation, the procedure is quite complex and is currently practiced by only a few very skilled cardiac surgeons in conjunction with other open-heart procedures. The procedure also is quite traumatic to the heart, as in essence, the right and left atria are cut into pieces and sewed back together, to define lines of lesion across which the depolarization wavefronts will not propagate. Still today, the Cox/MAZE procedure is done with traditional cut and sew techniques.
The market is demanding quicker, safer and less invasive approaches. As a result, there has been much recent research sod evaluation of mechanisms to encircle and isolate the pulmonary veins and replicate fee incisions of the MAZE operation. Companies are developing ablation techniques that heat (or cool) or chemically destroy the underlying tissue along these lines.
It has been suggested that procedures similar to the MAZE procedure could be instead, performed by means, of electrosurgical ablation, for example, by applying radio frequency energy to internal or external surfaces of the atria to create lesions across which the depolarization wavefronts will not propagate. Such procedures are disclosed in U.S. Pat. No 5,895,417, issued to Pomeranz, et ah (“the Pomeranz '417 patent”); U.S. Pat. No, 5,575,764 issued to Swartz., et al. (“the Swartz '766 patent”); U.S. Pat. No, 6,032,077, issued to Pomeranz (“the Pomeranz '077 patent”); U.S. Pat. No. 6,142,994, issued to Swanson, et at. (“the Swanson '994 patent”); and U.S. Pat. No. 5,871,523, issued to Fleischman, et al. (“the Fleischman '523 patent”), all incorporated herein by reference in their entireties.
The Pomeranz '417 patent discloses an apparatus for ablating tissue by making linear lesions within the chamber of a patient's heart by application of a plurality of spaced electrodes along an elongate member. The Schwartz '766 patent discloses a process for seating atrial arrhythmia, by creating discrete ablation tracks within both the left and right atrium. The Pomeranz '077 patent discloses an ablation catheter that is electrically connected to tissue to be ablated by a foam on the electrodes that is soaked in saline. The foam in the Pomeranz '077 patent acts as a conductive fluid to allow energy from the electrode to ablate the contacted tissue. The Swanson '994 patent discloses a surgical method and apparatus for positioning an element in the body of a patient for diagnosis or therapy. The apparatus in the Swanson '994 patent may be a catheter or a probe having a shaft with a lumen extending there through. The Fleischman '523 patent discloses a helically-wound emitter on an element with a insulating sheath movable over the emitter.
Various types of electrophyslology devices are used for ablating tissue. Typically, such devices include a conductive tip or blade that serves as one electrode In an electrical circuit that is completed via a grounding electrode coupled to the patient. The contact point is small or linear to create lesions to form linear tracks of ablated tissue. A power source creates high levels of electrical energy between the two electrodes causing the tissue to heat to a sufficient level to denature proteins within the tissue and cause cell death. In order for such procedures to be effective, if is desirable that the electrosurgically-created lesions are continuous along their length and extend completely through the tissue of the heart
Manufacturers have developed catheters that have a linear army of electrodes along a long axis (e.g., the Amazr, MECCA, and Revelation catheters). The surgeon positions the catheter and electrodes in contact with the tissue and either individually or sequentially applies energy to each electrode. Additionally, catheters that incorporate an electrode that is energized and moves along its length have been proposed, such as the Flex-10 from AFx. Inc., of 47929 Fremont Ave. Fremont, Calif. 94538.
Surgeons have also bees able to create linear lesions on the heart using applications of the same techniques. For example, Kottkamp, et. al. in an article entitled “Intraoperative Radio Frequency Ablation of Chronic Atrial Fibrillation: A Left Atrial Curative Approach by Elimination of Anatomic ‘Anchor’ Reentrant Circuits,” Journal of Cardiovascular Electrophysiology, 10:772-780 (1999), describe a hand-held device that creates as series of spot or short (less than 1 cm) linear lesions. Other investigators have used long, linear unipolar probes to create somewhat longer lesions. Still others have used multi-electrode linear catheters, similar to those described above to create a series of ablations that net a linear lesion.
The focus of most investigators has been to isolate the pulmonary veins. There is growing research that suggests this may not he necessary in the prevention and cure of atrial fibrillation, as discussed in the article by G. Stabile, P. Turco, V. La Rocca, F. Nocerino, E. Stabile, and A. De Simone entitled “Is Pulmonary Vein Isolation Necessary for Curing Atrial Fibrillation?,” Circulation, 108:657-660 (2003). Rather than focusing on only isolating the pulmonary veins, reduction in the overall volume of excitable tissue in the left atrium is sufficient to prevent atrial, fibrillation. The general concept is to ablate a large enough nonlinear area of the left atrium to prevent re-entrant waves and the propagation of atrial fibrillation.
Some embodiments of the invention provide a method of ablating target tissue including a non-linear area of tissue in the left atrium of a patient. The method can include selecting an ablation apparatus having an ablator or ablation member with a tissue engagement section, penetrating a chest cavity of the patient, and identifying the target tissue. The method can also include positioning the ablation apparatus adjacent to the target tissue so that the tissue engagement section can transfer ablation energy to the target tissue. The method can further include energizing the tissue engagement section with ablation energy in order to create a footprint on the non-linear area of tissue in the left atrium and to reduce an overall mass of excitable tissue in the left atrium.
In some embodiments, an ablation apparatus can include an insertion tool having a proximal end, a distal end, and a lumen. The ablation apparatus can include an ablator or ablation member having a conductor and a tissue engagement portion. The-conductor can include a source end extending from the proximal end of the insertion tool and a delivery end coupled to the tissue engagement portion. The ablator can be removably inserted in the lumen. The ablation apparatus can also include ah energy source connected to the conductor. The insertion tool can be Inserted into a patient so that the distal end is adjacent the target tissue. The conductor can urge the ablator out of the lumen to engage the target tissue. Energy can be conducted from the energy source to the ablator to create a footprint on the target tissue to reduce an overall mass of excitable tissue.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limited. The use of “including,” “comprising” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. The terms “mounted,” “connected” and “coupled” are used broadly and encompass both direct and indirect mounting, connecting and coupling. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings, and can include electrical connections or couplings, whether direct or indirect.
Some embodiments of the invention provide a method and apparatus for reducing the mass of the viable tissue (e.g., by rendering the mass of tissue non-contractile, non-viable, or unable to propagate an action potential) in the left atrium of the heart to prevent or cure atrial fibrillation. Some embodiments of the invention can include preventing reentry of depolarizing wavefront signals by ablating a large area of the left atrium. Furthermore, some embodiments of the invention can substantially prevent the sustenance of atrial fibrillation.
Embodiments of the invention can provide an ablation apparatus used to conduct ablating energy to a locale of contacted or non-contacted and possibly surrounding tissue with the intent to ablate an entire area, while not harming neighboring tissue. The ablation apparatus can include an electrode having a footprint of a dimension designed to cover a predetermined region of tissue in the left atrium.
According to some embodiments of the invention, an ablation apparatus can be used to ablate a non-linear area of the tissue in the left atrium en masse. This method can be performed by endocardial positioning of an ablation device in the left atrium either via a trans-atrial septal puncture or retrograde through the arterial system. Alternatively, embodiments of the invention can provide a method of ablating tissue In the left atrium in a predefined area by inserting an ablating apparatus using an epicardial approach with access to the posterior left atrium through the pericardial space, either by a sub-xiphoid or inter-costal incision.
Some embodiments of the invention provide a method of ablating tissue using a large footprint ablation electrode for the control, prevention, and cure of atrial fibrillation. The method can include ablating a predefined area of tissue in the left atrium, while protecting other areas of the heart, lungs, and esophagus using directional energy delivery, insulation, or standoffs to space, the ablation apparatus from protected areas. The method of ablating the heart tissue can include using a trans-venous catheter from the inside of the heart to deliver the ablation apparatus. Location and imaging techniques such as echogram, sonogram, magnetic resonance imaging, ultrasound, X-ray, sensors or transmitters on the ablation device, or other mapping technology can allow for proper placement to minimize damage to surrounding tissue.
Some embodiments of the invention include a locatable ablation apparatus having a predefined footprint that can be delivered through an incision in the chest wall in order to ablate by trans-myocardial engagement with a bipolar electrode. The ablation apparatus cars use any of suitable method and/or procedure with electro-surgical devices or other types of ablation devices (e.g., thermal ablation, micro-wave ablation, cryogenic ablation, ultrasound ablation, etc.) to ablate tissue in the left atrium to reduce the mass of excitable tissue therein.
The apparatuses and methods of some embodiments of the invention are designed to reduce the overall excitable mass of the left atrium and to reduce or cure atrial fibrillation (AF). Some embodiments of the invention use radio frequency energy to create heat and ablate an area of tissue. However, other embodiments of the invention may include additional or alternative energy sources, such as microwave, cryogenic, ultrasound, laser, thermal, etc. Also, some embodiments of the invention can be used for creating ablation lesions in other areas of the heart, such as the ventricles.
As shown in
Proper positioning of the ablator 43 on the targeted tissue 15 can be performed by any suitable means, such as direct visualization, fluoroscopic X-ray visualization, ultrasound positron emission tomography, fluoroscopy, intra-cardiac echo, transesophageal echo, magnetic resonance imaging, computerized tomography, or by endoscopic imaging. As shown in
The ablator 43 can include a tissue engagement section 60 (as shown in
As shown in
In some embodiments, the balloon 58 can include a conducting surface that acts as a tissue engagement section 60. A collapsed balloon 58 can be inserted into the left atrium 12 or into the pericardial space surrounding the epicardial surface of the target tissue 15. In one embodiment, the balloon 58 can then be inflated with saline from the inflation source 64 and oriented such that a thermally-transmissive, tissue engagement section 60 of the balloon 58 can be positioned against the posterior left atrium and an insulated portion of the balloon 58 can be positioned against the anterior left atrium. The saline can be heated by electrical current supplied by power source 46 to a temperature between 50 degrees Celsius and 85 degrees Celsius, and in some embodiments, between 55 degrees Celsius and 65 degrees Celsius. At these temperatures, the cells in the target area 15 generally die without collages shrinkage. Alternatively, the balloon 58 can be cooled with cryogenic technology to freeze the atrial tissue and ablate the target tissue 15. Generally, temperatures for cryogenic therapy must he less than negative 20 degrees Celsius to negative 40 degrees Celsius.
The ablator 43 can be delivered to the desired location in the patient using the insertion tool 32, such as a catheter 70, as shown in
The circular ablator 43 can be used epicardially by insertion within the pericardial space adjacent the posterior left atrium. In one embodiment, the circular ablator 43 can alternatively include an uncoiling spiral configuration. The uncoiling spiral can he positioned through a sheath 32, and when advanced beyond the sheath 32, can uncoil to take the desired shape. Pre-formed shape memory or superelastic alloys, such as NiTi, can be used to ensure that the spiral uncoils into the desired shape.
In another embodiment, two circular ablators 43 can he used in a bipolar arrangement. One ablator 43 can be on the external surface 14 of the target tissue 15 and another ablator 43 can be positioned on the internal surface 24 of the target tissue 15 in the left atrium 12. The bipolar circular ablator 43 can also be positioned using an uncoiling spiral configuration. The uncoiling spiral can be positioned through a sheath 32, and when advanced, beyond the sheath 32, can uncoil to take the desired shape. Pre-formed shape memory or superelastic alloys, such as NiTi, can be used to ensure that the spiral uncoils into the desired shape.
In some embodiments, the ablator 43 (e.g., an ablation energy transmitting member having one or more ablating elements) may be remote from the target tissue 15. For example, ultrasound energy may be focused remotely on the target tissue 15, causing ablation of the target tissue 15, while passing without ablating through non-targeted tissue located between the targeted tissue and ablator 43 The location of the energy focus on the target tissue 15 can be moved throughout the region to be ablated by steering a focal point about a non-linear area to be ablated. A steering mechanism can be manual (e.g., by physically moving an ultrasound transducer relative to the tissue) or electrical (e.g., by using phased arrays of ultrasound transducers or by otherwise modifying the ultrasound focal zone).
Some embodiments of the invention are effective at terminating atrial fibrillation, yet can be performed more safety than some conventional methods. Some embodiments of the invention can perform ablations more quickly than some conventional methods. Some embodiments of the invention can also be used to amputate, ligate, staple, etc. the left atrial appendage (LAA) of the heart—a major source of clots and strokes in the population. Some embodiments of the invention result in less trauma to the patient and less chance of accidentally damaging the heart and surrounding structures. Some embodiments of the invention can minimize the sixe of the incision required to insert the ablation apparatus 30 and/or the ablator 43 through the chest wall. Some embodiments of the invention can eliminate the need for contiguous, linear lesions to treat atrial fibrillation. Some embodiments of the invention can allow the surgeon to create lesions in the heart from the epicardial surface of the beating heart. Some embodiments of the invention can he practiced via transvenous catheters from the inside of the heart.
Various additional features and advantages of the invention are set forth in the following claims.
This application is a Division of and claims the benefit of Ser. No. 11/128,786, filed May 13, 2005, which claims the benefit of the filing date of U.S. Provisional Patent Application No. 60/571,182 filed on May 14, 2004, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3736936 | Basiulis et al. | Jun 1973 | A |
3807403 | Stumpf et al. | Apr 1974 | A |
3823575 | Parel | Jul 1974 | A |
3823718 | Tromovitch | Jul 1974 | A |
3827436 | Stumpf et al. | Aug 1974 | A |
3830239 | Stumpf | Aug 1974 | A |
3859986 | Okada et al. | Jan 1975 | A |
3862627 | Hans, Sr. | Jan 1975 | A |
3886945 | Stumpf et al. | Jun 1975 | A |
3907339 | Stumpf et al. | Sep 1975 | A |
3910277 | Zimmer | Oct 1975 | A |
3913581 | Ritson et al. | Oct 1975 | A |
3924628 | Droegemueller et al. | Dec 1975 | A |
4018227 | Wallach | Apr 1977 | A |
4022215 | Benson | May 1977 | A |
4061135 | Widran et al. | Dec 1977 | A |
4063560 | Thomas et al. | Dec 1977 | A |
4072152 | Linehan | Feb 1978 | A |
4082096 | Benson | Apr 1978 | A |
4207897 | Lloyd et al. | Jun 1980 | A |
4248224 | Jones | Feb 1981 | A |
4275734 | Mitchiner | Jun 1981 | A |
4278090 | van Gerven | Jul 1981 | A |
4377168 | Rzasa et al. | Mar 1983 | A |
4519389 | Gudkin et al. | May 1985 | A |
4562900 | Anderson et al. | Jan 1986 | A |
4598698 | Siegmund | Jul 1986 | A |
4601290 | Effron et al. | Jul 1986 | A |
4664110 | Schanzlin | May 1987 | A |
4671274 | Sorochenko | Jun 1987 | A |
4736749 | Lundback | Apr 1988 | A |
4779611 | Grooters et al. | Oct 1988 | A |
4802475 | Weshahy | Feb 1989 | A |
4815470 | Curtis et al. | Mar 1989 | A |
4872346 | Kelly-Fry et al. | Oct 1989 | A |
4916922 | Mullens | Apr 1990 | A |
4917095 | Fry et al. | Apr 1990 | A |
4936281 | Stasz | Jun 1990 | A |
4946460 | Merry et al. | Aug 1990 | A |
5013312 | Parins et al. | May 1991 | A |
5029574 | Shimamura et al. | Jul 1991 | A |
5044165 | Linner et al. | Sep 1991 | A |
5078713 | Varney | Jan 1992 | A |
5080102 | Dory | Jan 1992 | A |
5080660 | Buelina | Jan 1992 | A |
5100388 | Behl et al. | Mar 1992 | A |
5108390 | Potocky et al. | Apr 1992 | A |
5147355 | Freidman et al. | Sep 1992 | A |
5178133 | Pena | Jan 1993 | A |
5207674 | Hamilton | May 1993 | A |
5217860 | Fahy et al. | Jun 1993 | A |
5222501 | Ideker et al. | Jun 1993 | A |
5224943 | Goddard | Jul 1993 | A |
5228923 | Hed | Jul 1993 | A |
5231995 | Desai | Aug 1993 | A |
5232516 | Hed | Aug 1993 | A |
5254116 | Baust et al. | Oct 1993 | A |
5263493 | Avitall | Nov 1993 | A |
5269291 | Carter | Dec 1993 | A |
5275595 | Dobak, III | Jan 1994 | A |
5277201 | Stern | Jan 1994 | A |
5281213 | Milder et al. | Jan 1994 | A |
5281215 | Milder | Jan 1994 | A |
5295484 | Marcus et al. | Mar 1994 | A |
5309896 | Moll et al. | May 1994 | A |
5316000 | Chapelon et al. | May 1994 | A |
5317878 | Bradshaw et al. | Jun 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5322520 | Milder | Jun 1994 | A |
5323781 | Ideker et al. | Jun 1994 | A |
5324255 | Passafaro et al. | Jun 1994 | A |
5324284 | Imran | Jun 1994 | A |
5324286 | Fowler | Jun 1994 | A |
5334181 | Rubinsky et al. | Aug 1994 | A |
5334193 | Nardella | Aug 1994 | A |
5341466 | Perlin et al. | Aug 1994 | A |
5348554 | Imran et al. | Sep 1994 | A |
5353783 | Nakao et al. | Oct 1994 | A |
5354258 | Dory | Oct 1994 | A |
5361752 | Moll et al. | Nov 1994 | A |
5385148 | Lesh et al. | Jan 1995 | A |
5396887 | Imran | Mar 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5400770 | Nakao et al. | Mar 1995 | A |
5400783 | Pomeranz et al. | Mar 1995 | A |
5402792 | Kimura | Apr 1995 | A |
5403309 | Coleman et al. | Apr 1995 | A |
5403311 | Abele et al. | Apr 1995 | A |
5405376 | Mulier et al. | Apr 1995 | A |
5409483 | Campbell et al. | Apr 1995 | A |
5413550 | Castel | May 1995 | A |
5423807 | Milder | Jun 1995 | A |
5423811 | Imran et al. | Jun 1995 | A |
5427119 | Swartz et al. | Jun 1995 | A |
5431649 | Mulier et al. | Jul 1995 | A |
5433708 | Nichols et al. | Jul 1995 | A |
5435308 | Gallup et al. | Jul 1995 | A |
5437651 | Todd et al. | Aug 1995 | A |
5441499 | Fritzsch | Aug 1995 | A |
5443463 | Stern et al. | Aug 1995 | A |
5443470 | Stern et al. | Aug 1995 | A |
5448994 | Iinuma | Sep 1995 | A |
5450843 | Moll et al. | Sep 1995 | A |
5452582 | Longsworth | Sep 1995 | A |
5452733 | Sterman et al. | Sep 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5465717 | Imran et al. | Nov 1995 | A |
5469853 | Law et al. | Nov 1995 | A |
5472876 | Fahy | Dec 1995 | A |
5478309 | Sweezer et al. | Dec 1995 | A |
5478330 | Imran et al. | Dec 1995 | A |
5486193 | Bourne et al. | Jan 1996 | A |
5487385 | Avitall | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5496312 | Klicek | Mar 1996 | A |
5497774 | Swartz et al. | Mar 1996 | A |
5498248 | Milder | Mar 1996 | A |
5500012 | Brucker et al. | Mar 1996 | A |
5505730 | Edwards | Apr 1996 | A |
5516505 | McDow | May 1996 | A |
5520682 | Baust et al. | May 1996 | A |
5522870 | Ben-Zion | Jun 1996 | A |
5536267 | Edwards et al. | Jul 1996 | A |
5545195 | Lennox et al. | Aug 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5549661 | Kordis et al. | Aug 1996 | A |
5555883 | Avitall | Sep 1996 | A |
5558671 | Yates | Sep 1996 | A |
5560362 | Sliwa, Jr. et al. | Oct 1996 | A |
5562720 | Stern et al. | Oct 1996 | A |
5569241 | Edwards | Oct 1996 | A |
5571088 | Lennox et al. | Nov 1996 | A |
5571215 | Sterman et al. | Nov 1996 | A |
5573532 | Chang et al. | Nov 1996 | A |
5575766 | Swartz et al. | Nov 1996 | A |
5575788 | Baker et al. | Nov 1996 | A |
5575810 | Swanson et al. | Nov 1996 | A |
5578007 | Imran | Nov 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5588432 | Crowley | Dec 1996 | A |
5590657 | Cain et al. | Jan 1997 | A |
5595183 | Swanson et al. | Jan 1997 | A |
5607462 | Imran | Mar 1997 | A |
5617854 | Munsif | Apr 1997 | A |
5630837 | Crowley | May 1997 | A |
5637090 | McGee et al. | Jun 1997 | A |
5643197 | Brucker et al. | Jul 1997 | A |
5656029 | Imran et al. | Aug 1997 | A |
5658278 | Imran et al. | Aug 1997 | A |
5671747 | Connor | Sep 1997 | A |
5673695 | McGee et al. | Oct 1997 | A |
5676662 | Fleischhacker et al. | Oct 1997 | A |
5676692 | Sanghvi et al. | Oct 1997 | A |
5676693 | Lafontaine | Oct 1997 | A |
5678550 | Bassen et al. | Oct 1997 | A |
5680860 | Imran | Oct 1997 | A |
5681278 | Igo et al. | Oct 1997 | A |
5681308 | Edwards et al. | Oct 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5687737 | Branham et al. | Nov 1997 | A |
5688267 | Panescu et al. | Nov 1997 | A |
5690611 | Swartz et al. | Nov 1997 | A |
5697536 | Eggers et al. | Dec 1997 | A |
5697882 | Eggers et al. | Dec 1997 | A |
5697925 | Taylor | Dec 1997 | A |
5697927 | Imran et al. | Dec 1997 | A |
5697928 | Walcott et al. | Dec 1997 | A |
5713942 | Stern | Feb 1998 | A |
5716389 | Walinsky et al. | Feb 1998 | A |
5718241 | Ben-Haim et al. | Feb 1998 | A |
5718701 | Shai et al. | Feb 1998 | A |
5720775 | Lanard | Feb 1998 | A |
5722402 | Swanson et al. | Mar 1998 | A |
5730074 | Peter | Mar 1998 | A |
5730127 | Avitall | Mar 1998 | A |
5730704 | Avitall | Mar 1998 | A |
5733280 | Avitall | Mar 1998 | A |
5735280 | Sherman et al. | Apr 1998 | A |
5735290 | Sterman et al. | Apr 1998 | A |
5755760 | Maguire et al. | May 1998 | A |
5769846 | Edwards et al. | Jun 1998 | A |
5782828 | Chen et al. | Jul 1998 | A |
5785706 | Bednarek | Jul 1998 | A |
5788636 | Curley | Aug 1998 | A |
5792140 | Tu et al. | Aug 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5800428 | Nelson et al. | Sep 1998 | A |
5800482 | Pomeranz et al. | Sep 1998 | A |
5810802 | Panescu et al. | Sep 1998 | A |
5817021 | Reichenberger | Oct 1998 | A |
5827216 | Igo et al. | Oct 1998 | A |
5836947 | Fleischman et al. | Nov 1998 | A |
5840030 | Ferek-Petric et al. | Nov 1998 | A |
5844349 | Oakley et al. | Dec 1998 | A |
5846187 | Wells et al. | Dec 1998 | A |
5846191 | Wells et al. | Dec 1998 | A |
5849028 | Chen | Dec 1998 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5871525 | Edwards et al. | Feb 1999 | A |
5873845 | Cline et al. | Feb 1999 | A |
5876399 | Chia et al. | Mar 1999 | A |
5879295 | Li et al. | Mar 1999 | A |
5879296 | Ockuly et al. | Mar 1999 | A |
5881732 | Sung et al. | Mar 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5885278 | Fleischman | Mar 1999 | A |
5893848 | Negus et al. | Apr 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5897553 | Mulier | Apr 1999 | A |
5897554 | Chia et al. | Apr 1999 | A |
5899898 | Arless et al. | May 1999 | A |
5899899 | Arless et al. | May 1999 | A |
5902289 | Swartz et al. | May 1999 | A |
5904711 | Flom et al. | May 1999 | A |
5906580 | Kline-Schoder et al. | May 1999 | A |
5906587 | Zimmon | May 1999 | A |
5906606 | Chee et al. | May 1999 | A |
5908029 | Knudson et al. | Jun 1999 | A |
5916213 | Haissaguerre et al. | Jun 1999 | A |
5916214 | Cosio et al. | Jun 1999 | A |
5921924 | Avitall | Jul 1999 | A |
5921982 | Lesh et al. | Jul 1999 | A |
5927284 | Borst et al. | Jul 1999 | A |
5928191 | Houser et al. | Jul 1999 | A |
5931810 | Grabek | Aug 1999 | A |
5931848 | Saadat | Aug 1999 | A |
5954661 | Greenspon et al. | Sep 1999 | A |
5971980 | Sherman | Oct 1999 | A |
5971983 | Lesh | Oct 1999 | A |
5993447 | Blewett et al. | Nov 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6012457 | Lesh | Jan 2000 | A |
6016811 | Knopp et al. | Jan 2000 | A |
6042556 | Beach et al. | Mar 2000 | A |
6056745 | Panecsu et al. | May 2000 | A |
6063081 | Mulier | May 2000 | A |
6071279 | Whayne et al. | Jun 2000 | A |
6088894 | Oakley | Jul 2000 | A |
6090084 | Hassett et al. | Jul 2000 | A |
6096037 | Mulier | Aug 2000 | A |
6113592 | Taylor | Sep 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6120496 | Whayne et al. | Sep 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6142994 | Swanson et al. | Nov 2000 | A |
6152920 | Thompson et al. | Nov 2000 | A |
6161543 | Cox et al. | Dec 2000 | A |
6165174 | Jacobs et al. | Dec 2000 | A |
6217528 | Koblish et al. | Apr 2001 | B1 |
6217576 | Tu et al. | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6235024 | Tu | May 2001 | B1 |
6237605 | Vaska et al. | May 2001 | B1 |
6238347 | Nix et al. | May 2001 | B1 |
6238393 | Mulier | May 2001 | B1 |
6245061 | Panescu et al. | Jun 2001 | B1 |
6245064 | Lesh et al. | Jun 2001 | B1 |
6245065 | Panescu et al. | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6251128 | Knopp et al. | Jun 2001 | B1 |
6270471 | Hechel et al. | Aug 2001 | B1 |
6293943 | Panescu et al. | Sep 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6302880 | Schaer | Oct 2001 | B1 |
6311692 | Vaska et al. | Nov 2001 | B1 |
6312383 | Lizzi et al. | Nov 2001 | B1 |
6314962 | Vaska et al. | Nov 2001 | B1 |
6314963 | Vaska et al. | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6328736 | Mulier | Dec 2001 | B1 |
6332881 | Carner et al. | Dec 2001 | B1 |
6358248 | Mulier | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6364876 | Erb et al. | Apr 2002 | B1 |
6368275 | Sliwa et al. | Apr 2002 | B1 |
6371955 | Fuimaono et al. | Apr 2002 | B1 |
6383151 | Diederich et al. | May 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6398792 | O'Connor | Jun 2002 | B1 |
6409722 | Hoey | Jun 2002 | B1 |
6413254 | Hissong et al. | Jul 2002 | B1 |
6419648 | Vitek et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6430426 | Avitall | Aug 2002 | B2 |
6440130 | Mulier | Aug 2002 | B1 |
6443952 | Mulier | Sep 2002 | B1 |
6447507 | Bednarek et al. | Sep 2002 | B1 |
6461314 | Pant et al. | Oct 2002 | B1 |
6461356 | Patterson | Oct 2002 | B1 |
6464700 | Koblish et al. | Oct 2002 | B1 |
6471697 | Lesh | Oct 2002 | B1 |
6471698 | Edwards et al. | Oct 2002 | B1 |
6474340 | Vaska et al. | Nov 2002 | B1 |
6475216 | Mulier | Nov 2002 | B2 |
6477396 | Mest et al. | Nov 2002 | B1 |
6484727 | Vaska et al. | Nov 2002 | B1 |
6488680 | Francischelli | Dec 2002 | B1 |
6502575 | Jacobs et al. | Jan 2003 | B1 |
6514250 | Jahns | Feb 2003 | B1 |
6527767 | Wang et al. | Mar 2003 | B2 |
6537248 | Mulier | Mar 2003 | B2 |
6537272 | Christopherson et al. | Mar 2003 | B2 |
6558382 | Jahns | May 2003 | B2 |
6575956 | Brisken et al. | Jun 2003 | B1 |
6584360 | Francischelli | Jun 2003 | B2 |
6585732 | Mulier | Jul 2003 | B2 |
6605084 | Acker et al. | Aug 2003 | B2 |
6610055 | Swanson et al. | Aug 2003 | B1 |
6610060 | Mulier | Aug 2003 | B2 |
6613048 | Mulier | Sep 2003 | B2 |
6626855 | Weng et al. | Sep 2003 | B1 |
6645199 | Jenkins et al. | Nov 2003 | B1 |
6648883 | Francischelli | Nov 2003 | B2 |
6656175 | Francischelli | Dec 2003 | B2 |
6663627 | Francischelli | Dec 2003 | B2 |
6692450 | Coleman | Feb 2004 | B1 |
6699240 | Francischelli | Mar 2004 | B2 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6706038 | Francischelli | Mar 2004 | B2 |
6706039 | Mulier | Mar 2004 | B2 |
6716211 | Mulier | Apr 2004 | B2 |
6736810 | Hoey | May 2004 | B2 |
6755827 | Mulier | Jun 2004 | B2 |
6764487 | Mulier | Jul 2004 | B2 |
6773433 | Stewart et al. | Aug 2004 | B2 |
6776780 | Mulier | Aug 2004 | B2 |
6807968 | Francischelli | Oct 2004 | B2 |
6827715 | Francischelli | Dec 2004 | B2 |
6849073 | Hoey | Feb 2005 | B2 |
6858028 | Mulier | Feb 2005 | B2 |
6887238 | Jahns | May 2005 | B2 |
6899711 | Stewart et al. | May 2005 | B2 |
6911019 | Mulier | Jun 2005 | B2 |
6916318 | Francischelli | Jul 2005 | B2 |
6918908 | Bonner et al. | Jul 2005 | B2 |
6936046 | Hissong | Aug 2005 | B2 |
6949097 | Stewart et al. | Sep 2005 | B2 |
6949098 | Mulier | Sep 2005 | B2 |
6960205 | Jahns | Nov 2005 | B2 |
6962589 | Mulier | Nov 2005 | B2 |
7438714 | Phan | Oct 2008 | B2 |
20020002372 | Jahns et al. | Jan 2002 | A1 |
20030045872 | Jacobs | Mar 2003 | A1 |
20030144656 | Ocel | Jul 2003 | A1 |
20030191462 | Jacobs | Oct 2003 | A1 |
20030199867 | Wellman | Oct 2003 | A1 |
20030216724 | Jahns | Nov 2003 | A1 |
20040015106 | Coleman | Jan 2004 | A1 |
20040015219 | Francischelli | Jan 2004 | A1 |
20040049179 | Francischelli | Mar 2004 | A1 |
20040078069 | Francischelli | Apr 2004 | A1 |
20040082948 | Stewart et al. | Apr 2004 | A1 |
20040087940 | Jahns | May 2004 | A1 |
20040092926 | Hoey | May 2004 | A1 |
20040138621 | Jahns | Jul 2004 | A1 |
20040138656 | Francischelli | Jul 2004 | A1 |
20040143260 | Francischelli | Jul 2004 | A1 |
20040186465 | Francischelli | Sep 2004 | A1 |
20040215183 | Hoey | Oct 2004 | A1 |
20040220560 | Briscoe | Nov 2004 | A1 |
20040236322 | Mulier | Nov 2004 | A1 |
20040267326 | Ocel | Dec 2004 | A1 |
20050010095 | Stewart et al. | Jan 2005 | A1 |
20050033280 | Francischelli | Feb 2005 | A1 |
20050059962 | Phan et al. | Mar 2005 | A1 |
20050090815 | Francischelli | Apr 2005 | A1 |
20050143729 | Francischelli | Jun 2005 | A1 |
20050165392 | Francischelli | Jul 2005 | A1 |
20050209564 | Bonner | Sep 2005 | A1 |
20050267454 | Hissong | Dec 2005 | A1 |
20060009756 | Francischelli | Jan 2006 | A1 |
20060009759 | Christian | Jan 2006 | A1 |
Number | Date | Country |
---|---|---|
0916360 | May 1999 | EP |
1095627 | May 2001 | EP |
WO9725917 | Jul 1997 | WO |
WO9944524 | Sep 1999 | WO |
WO0180755 | Nov 2001 | WO |
Entry |
---|
Reexam Cert 4794F or 5,697,536, Jun. 10, 2003, Eggers et al. |
Chitwood, “Will C. Sealy, MD: The Father of Arrhythmia Surgery—The Story of the Fisherman with a Fast Pulse,” Annals of Thoracic Surgery 58:1228-1239, 1994. |
Gallagher et al., “Cryosurgical Ablation of Accessory Atrioventrical Connections: A Method for Correction of the Pre-excitation Syndrome,” Circulation 55(3): 471-479, 1977. |
Sealy, “Direct Surgical Treatment of Arrhythmias: The Last Frontier in Surgical Cardiology,” Chest 75(5): 536-537, 1979. |
Sealy, “The Evolution of the Surgical Methods for Interruption of Right Free Wall Kent Bundles,” The Annals of Thoracic Surgery 36(1): 29-36, 1983. |
Guiraudon et al., “Surgical Repair of Wolff-Parkinson-White Syndrome: A New Closed-Heart Techique,” The Annals of Thoracic Surgery 37(1): 67-71, 1984. |
Klein et al., “Surgical Correction of the Wolff-Parkinson-White Syndrome in the Closed Heart Using Cryosurgery: A Simplified Approach,” JACC 3(2): 405-409, 1984. |
Randall et al., “Local Epicardial Chemical Ablation of Vagal Input to Sino-Atrial and Atrioventricular Regions of the Canine Heart,” Journal of the Autonomic Nervous System 11:145-159, 1984. |
Guiraudon et al., “Surgical Ablation of Posterior Septal Accessory Pathways in the Wolf-Parkinson-White Syndrome by a Closed Heart Technique,” Journal Thoracic Cardiovascular Surgery 92:406-413, 1986. |
Gallagher et al., “Surgical Treatment of Arrhythmias,” The American Journal of Cardiology 61:27A-44A, 1988. |
Mahomed et al., “Surgical Division of Wolff-Parkinson-White Pathways Utilizing the Closed-Heart Technique: A 2-Year Experience in 47 Patients,” The Annals of Thoracic Surgery 45(5): 495-504, 1988. |
Cox et al., Surgery for Atrial Fibrillation; Seminars in Thoracic and Cardiovascular Surgery , vol. 1, No. 1 (Jul. 1989) pp. 67-73. |
Bredikis and Bredikis; Surgery of Tachyarrhythmia: Intracardiac Closed Heart Cryoablation; PACE, vol. 13, pp. 1980-1984. |
McCarthy et al., “Combined Treatment of Mitral Regurgitation and Atrial Fibrillation with Valvuloplasty and the Maze Procedure,” The American Journal of Cardiology 71: 483-486, 1993. |
Yamauchi et al. “Use of Intraoperative Mapping to Optimize Surgical Ablation of Atrial Flutter,” The Annals of Thoracic Surgery 56: 337-342, 1993. |
Graffigna et al., “Surgical Treatment of Wolff-Parkinson-White Syndrome: Epicardial Approach Without the Use of Cardiopulmonary Bypass,” Journal of Cardiac Surgery 8: 108-116, 1993. |
Surgical treatment of atrial fibrillation: a review; Europace (2004) 5, S20-S29. |
Elvan et al., “Radiofrequency Catheter Ablation of the Atria Reduces Inducibility and Duration of Atrial Fibrillation in Dog,” Circulation 91: 2235-2244, 1995. |
Cox et al., “Modification of the Maze Procedure for Atrial Flutter and Atrial Fibrillation. I. Rational and Surgical Results,” The Journal of Thoracic Cardiovascular Surgery 110: 473-484, 1995. |
Cox, “The Maze III Procedure for Treatment of Atrial Fibrillation,” Sabiston DC, ed Atlas of Cardiothoracic Surgery, Philadelphia: WB Saunders: 460-475, 1994. |
Sueda et al., “Simple Left Atrial Procedure for Chronic Atrial Fibrillation Associated with Mitral Valve Disease,” The Annals of Thoracic Surgery 62(6): 1796-1800, 1996. |
Tsui et al., “Maze 3 for Atrial Fibrillation: Two Cuts Too Few?” PACE 17: 2163-2166, 1994. |
Kosakai et al., “Cox Maze Procedure for Chronic Atrial Fibrillation Associated with Mitral Valve Disease,” The Journal of Thoracic Cardiovascular Surgery 108: 1049-1055, 1994. |
Cox et al., “The Surgical Treatment of Atrial Fibrillation, IV Surgical Technique,” J of Thorac Cardiovasc Surg, 1991: 101: 584-593. |
Nardella, “Radio Frequency Energy and Impedance Feedback,” SPIE vol. 1068, Catheter Based Sensing and Imaging Technology (1989). |
Avitall et. al., “A Thoracoscopic Approach to Ablate Atrial Fibrillation Via Linear Radiofrequency Lesion Generation on the Epicardium of Both Atria,” PACE, Apr. 1996;19(Part II):626,#241. |
Sie et al., “Radiofrequency Ablation of Atrial Fibrillation in Patients Undergoing Mitral Valve Surgery. First Experience,” Circulation (Nov. 1996) 96:450,I-675,#3946. |
Sie et al., “Radiofrequency Ablation of Atrial Fibrillation in Patients Undergoing Valve Surgery,” Circulation (Nov. 1997) 84:I450,#2519. |
Jais et al., “Catheter Ablation for Paroxysmal Atrial Fibrillation: High Success Rates with Ablation in the Left Atrium,” Circulation (Nov. 1996) 94:I-675,#3946. |
Cox, “Evolving Applications of the Maze Procedure for Atrial Fibrillation,” Ann Thorac Surg, 1993;55:578-580. |
Cox et al. “Five-Year Experience with the Maze Procedure for Atrial Fibrillation,” Ann Thorac Surg, 1993; 56:814-824. |
Avitall et al., “New Monitoring Criteria for Transmural Ablation of Atrial Tissues,” Circulation, 1996;94(Supp 1):I-493, #2889. |
Cox et al., “An 8 1/2 Year Clinical Experience with Surgery for Atrial Fibrillation,” Annals of Surgery, 1996;224(3):267-275. |
Haissaguerre et al., “Radiofrequency Catheter Ablation for Paroxysmal Atrial Fibrillation in Humans: Elaboration of a procedure based on electrophysiological data,” Nonpharmacological Management of Atrial Fibrillation, 1997 pp. 257-279. |
Haissaguerre et al., “Right and Left Atrial Radiofrequency Catheter Therapy of Paroxysmal Atrial Fibrillation,” Journal of Cardiovascular Electrophysiology, 1996;7(12):1132-1144. |
Haissaguerre et al., “Role of Catheter Ablation for Atrial Fibrillation,” Current Opinion in Cardiology, 1997;12:18-23. |
Kawaguchi et al., “Risks and Benefits of Combined Maze Procedure for Atrial Fibrillation Associated with Organic Heart Disease,” JACC, 1996;28(4):985-990. |
Cox, et al., “Perinodal cryosurgery for atrioventricular node reentry tachycardia in 23 patients,” Journal of Thoracic and Cardiovascular Surgery, 99:3, Mar. 1990, pp. 440-450. |
Cox, “Anatomic-Electrophysiologic Basis for the Surgical Treatment of Refractory Ischemic Ventricular Tachycardia,” Annals of Surgery, Aug. 1983; 198:2;119-129. |
Williams, et al., “Left atrial isolation,” J Thorac Cardiovasc Surg; 1980; 80: 373-380. |
Scheinman, “Catheter-based Techniques for Cure of Cardiac Arrhythmias,” Advances in Cardiovascular Medicine, 1996, ISSN 1075-5527, pp. 93-100. |
Sueda et al., “Efficacy of a Simple Left Atrial Procedure for Chronic Atrial Fibrillation in Mitral Valve Operations,” Ann Thorac Surg, 1997;63:1070-1075. |
Number | Date | Country | |
---|---|---|---|
20120316488 A1 | Dec 2012 | US |
Number | Date | Country | |
---|---|---|---|
60571182 | May 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11128786 | May 2005 | US |
Child | 13584932 | US |