The invention relates to a method and an electromechanical device for stabilizing the illumination produced by the front light of a motorcycle.
At present, a moped or motorcycle must be equipped with an illumination system or set of lighting devices appropriately mounted or installed on the front, side and rear of the motorcycle. These lighting devices improve the luminosity of the motorcycle, offering increased safety when riding the motorcycle, particularly in low visibility conditions. In turn, this increase in the motorcycle's luminosity provides the rest of the road users and drivers with information regarding the presence, position, size or direction of the motorcycle as well as information regarding the intentions of the motorcyclist in terms of route and speed.
Normally, the front lighting of the motorcycle is provided by means of short and long-range headlamps or lighting devices, supplemented with fog lights or other additional headlamps. More specifically, a short-range lighting device, also known as dipped light, serves to provide an appropriate front distribution of light or light beams generated by the lighting device. Furthermore, this lighting distribution must not dazzle other road users. However, diverse situations may arise whilst riding that vary the lighting distribution provided by the lighting devices, which translates into inadequate road lighting. At present, available front lighting devices for motorcycles present a lack of road adaptation in certain situations, whereby lack of adaptation is understood to be inadequate lighting distribution provided by these lighting devices.
A first common situation in which there is an inadequate distribution of the motorcycle's front lighting occurs when the motorcyclist deviates from a straight-line path, on turning the motorcycle to the left or to the right to take a curve. On turning, the motorcycle experiences a lateral tilting angle with respect to the vertical position. This lateral tilting angle modifies the lighting distribution on the road so that the lighting distribution also moves or tilts towards the left or the right, coinciding with the direction of the turning movement. In consequence, there is an inadequate distribution of the front lighting which may lead to visibility problems of the road layout and/or traffic signals, as well as potentially dazzling drivers that may be on the road at that moment. In the aforementioned situation, the road safety of the motorcyclist and other drivers is endangered.
A second common situation in which there is an inadequate distribution of the motorcycle's front lighting occurs during acceleration of the motorcycle. During positive acceleration, the front of the motorcycle lifts slightly with respect to the horizontal position. This lifting of the front of the motorcycle causes upward pitching of the distribution of the front lighting, which may dazzle another road user travelling in the opposite direction. On the other hand, during negative acceleration or braking, the front of the motorcycle lowers slightly with respect to the horizontal position. This lowering of the front of the motorcycle causes downward pitching of the distribution of the front lighting, which causes insufficient lighting throughout the braking distance.
Some solutions to the first problem of lack of appropriate adaptation of the front lighting distribution, which occurs when the motorcycle makes a turning movement, are known.
For example, some motorcycle models available on the market incorporate electric mirrors in the front lighting device or dipped beam in order to modify the lighting distribution when the motorcycle takes a curve. These electric mirrors reflect part of the light generated inside the lighting device towards the exterior of the lighting device, similarly to a periscope. However, these systems are not very compact, as they take up considerable space inside the lighting device and are therefore not applicable to most motorcycles.
Another known solution, also based on redirecting part of the light generated by the lighting device, is the system described in U.S. Pat. No. 5,599,085. This mechanical system modifies and moves certain areas of some light reflectors in the lighting device in order to direct part of the light to compensate the lack of lighting on certain parts of the road due to the lateral tilting of the motorcycle when taking bends. A limitation of the disclosed solution is that it does not provide constant lighting distribution, producing areas of shadow or areas with insufficient lighting on the road.
Other systems are also known, based on adding auxiliary lighting devices to the motorcycle in order to compensate for the lack of lighting that occurs as a result of the lateral tilting of the motorcycle when taking curves. U.S. Pat. No. 8,550,673 describes a system of this type, based on incorporating auxiliary lighting devices around the sides of the motorcycle. However, an important limitation of this solution is that these auxiliary lighting devices are not contemplated in the European Union regulation UNECE Reg. 53. Therefore, these auxiliary lighting devices are not approved to be installed and used on motorcycles in the European Union.
The aim of the invention is to provide a method and a device to ensure the adequate distribution of a motorcycle's front lighting when turning to the left or right. It is also the aim of the invention to propose an approved device in accordance with the prevailing regulations in all markets worldwide. Furthermore, at least one embodiment for the device as per the invention should improve the inadequate distribution of the motorcycle's front lighting when accelerating, whether it be positively or negatively (i.e. braking).
The object of the invention is a method and an electromechanical device for stabilizing the front lighting of a motorcycle fitted with a front lighting device that emits a light beam. The electromechanical device presents the particularity of comprising: a sensor set that comprises tilting angle sensors for detecting a lateral tilting angle α experienced by the motorcycle; a processing unit, electrically linked to the sensor set, which comprises a memory that stores instructions to generate a coded signal based on the lateral tilting angle α detected by the sensor set; a motor comprising a rotating shaft arranged in a longitudinal direction, wherein the shaft has an adjustable angular position based on the coded signal generated by the processing unit; and a gear system coupled to the motor shaft, wherein the gear system comprises a connection element for connecting the electromechanical device to the lighting device to rotate jointly, and wherein the gear system is configured to transmit a rotation of the motor shaft to a rotation of the connection element.
The functioning of the electromechanical device as per the invention presents the particularity that, as of a certain lateral tilting angle α detected by the sensor set, the processing unit calculates a rotation angle α1. This rotation angle α1 is transmitted to the motor shaft via the coded signal so that the rotating motor shaft drags the gear system, which, in turn, forces the lighting device to turn a rotation angle α2. In this way, by having the lighting device turns an angle α2, the adverse effect in the lighting distribution when the motorcycle tilts to take curves to the left or right is automatically compensated and corrected. Thanks to this automatic correction or adaptation, adequate lighting distribution is achieved throughout the motorcycle's path, no matter whether it is straight or curvilinear. Therefore, an electromechanical device as per the invention provides a mechanism for stabilizing the distribution of the motorcycle front lighting.
The fact that the entire lighting device turns a rotation angle α2 to compensate the variation of the lighting distribution causes all of the lighting distribution to be re-directed in the appropriate direction. This represents an improvement with respect to the known solutions based on re-directing part of the lighting distribution generated by the lighting device through certain areas, mirrors or other reflective components of the lighting device. This improved adaptation or stabilization of the front lighting minimizes the risk of accidents caused by a lack of visibility when the lighting distribution is varied. Furthermore, the fact that the entire lighting device rotates with the electromechanical device means that the lighting distribution is maintained horizontally regardless of whether the motorcycle is tilted or not.
On the other hand, using the electromechanical device described herein, stabilization of the front lighting is achieved without the need to add additional lighting devices. Thus, the solution as per the invention represents an alternative that complies with prevailing regulations in the European Union and rest of the world markets.
Because a connection element is included, different lighting devices can be connected to the electromechanical device as per the invention. This versatility of the electromechanical device represents a huge advantage as it enables the stabilizing function of the electromechanical device to be used with different lighting devices available on the market.
In a particularly advantageous embodiment of the electromechanical device, a second motor is included to cause the lighting device to rotate to an angle that compensates a certain positive or negative acceleration of the motorcycle. This characteristic enables the the front lighting distribution to be stabilized in acceleration situations, which are particularly critical, significantly reducing risk of accident. These acceleration situations are referred to as particularly critical in terms of road safety, as a positive acceleration situation is a moment at which the motorcyclist has reduced reaction capacity due to the increased speed. Likewise, a negative acceleration situation occurs when the motorcyclist activates a brake whilst the motorcycle is travelling, often, at high speed. In these situations, in which there is a lower manoeuvring capacity in the event of unforeseen circumstances, having adequate lighting distribution is particularly advantageous.
In short, the present invention provides a device and method that automatically maintain and stabilize the motorcycle's front lighting distribution not only when the motorcycle turns to take curves, but also in acceleration and braking phases.
The details of the invention can be seen in the accompanying figures, which do not intend to limit the scope of the invention:
The invention is related to a device for stabilizing the front lighting of a motorcycle, wherein this front lighting comprises a lighting device generating a lighting distribution or light beam. When a conventional motorcycle experiences a lateral tilting angle α with respect to the vertical position as a result of a turning movement, this lighting distribution tends to be unintentionally modified or undergo undesired variations, deteriorating visibility conditions. The invention is also related to a stabilization method that uses this device.
Preferably, the sensor set (3) of the electromechanical device (1) comprises accelerometers and gyroscopes. The accelerometers and gyroscopes constitute an inertial measurement unit which functions like those used in navigation systems or inertial guide systems, and in other known applications. These inertial systems allow a processor or processing unit to follow the position of a device or vehicle through dead reckoning. The accelerometers measure the inertial acceleration and the gyroscopes measure the angular or rotational changes with respect to an orthogonal coordinate system. Both the accelerometers and the gyroscopes work together to detect accelerations, decelerations (i.e. braking), turning and tilting with respect to a known initial position. Thus, in the electromechanical device (1) shown in
The electromechanical device (1) also presents the particularity of comprising a motor (4) and a processing unit (5) which is electrically linked to the sensor set (3). The processing unit (5) comprises a memory that stores instructions to generate a coded signal (6) based on the lateral tilting angle α detected by the sensor set (3). The motor (4) comprises a rotating shaft (7) arranged in a longitudinal direction, whereby the angular position of this shaft (7) is adjustable by means of the coded signal (6) generated by the processing unit (5). The electromechanical device (1) as per the invention is also characterised in having a gear system (8) (shown in
Preferably, the value of the rotation angle α2 is the same as the value of the lateral tilting angle α plus a small positive or negative error margin. Therefore, the angular rotation value transmitted to the connection element (9) is equal to, or very similar to, the lateral tilting angle α of the motorcycle, allowing for an optimum stabilization of the front lighting.
Optionally, the motor (4) is a servomotor. A servomotor is an electric motor that can be controlled in terms of speed and position. It comprises a controlled position arrow or controlled-position shaft that can be moved to specific angular positions based on a coded signal. To do so, the servomotor usually comprises a direct current motor, a gearbox and control electronics. The servomotor uses pulse width modulation, in such a way that the control electronics of the servomotor responds to the pulse width of the modulated signal. The duration of the pulse indicates the control electronics whether the servomotor motor should remain in a rest position or move in a clockwise or anti-clockwise direction. The duration of the pulse also determines the number of turns required by the servomotor motor to place the controlled-position shaft in the desired angular position. The motor rotation is transmitted to the controlled-position shaft of the servomotor via the gearbox. Using a servomotor is advantageous because of its beneficial features in terms of effectiveness in controlling the shaft position, its small size and reduced energy consumption. In the embodiment of
As can also be seen in
Optionally, the coupling between the shaft (7) and the sprocket (14) is carried out by means of a disc (16), as shown in the embodiment of
On the other hand, in the embodiment in
On the other hand, the type of lighting device used is not relevant for the invention, whereby other lighting devices may be used, such as lighting reflectors or other lighting devices on the market, to which the electromechanical device (1) can be coupled in accordance with the invention using the appropriate connection element. Therefore, other embodiments of the invention are contemplated in which the configuration of the connection element is completely different to the configuration of the connection element (9) in the figures. These connection means or elements may be different ones; for example, they may be different to the links (18), as long as these elements allow the joint rotation of the lighting device and the gear system (8).
Optionally, the electromechanical device (1) comprises an anchoring or fixing element (25) to mount the assembly made up of the lighting device (2) and the electromechanical device (1) on the motorcycle. In the embodiment shown in
In a particularly advantageous embodiment of the electromechanical device (1), the processing unit (5) generates a second coded signal (22) based on an acceleration value experienced by the motorcycle and detected by the sensor set (3).
By means of these additional technical characteristics, the processing unit (5) calculates a rotation angle β based on a certain acceleration value detected by the sensor set (3), and this rotation angle β is transmitted to the shaft (21) of the second motor (20) through the second coded signal (22). The unit made up of the electromechanical device (1) and the lighting device (2) rotates or basculates, with respect to the auxiliary part (24) and around the shaft (21), this rotation angle β. As this shaft (21) is positioned on a plane that is substantially parallel to the plane of the road, the rotation angle β is contained in a plane perpendicular to the shaft (21) and substantially perpendicular to the plane of the road. This embodiment is particularly advantageous because it provides the added function of automatically correcting the distribution of the front lighting during the motorcycle's acceleration and braking processes.
Optionally, the second motor (20) is also a servomotor due to the advantages mentioned heretofore.
Number | Date | Country | Kind |
---|---|---|---|
P201430662 | May 2014 | ES | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/ES2015/070307 | 4/16/2015 | WO | 00 |