The invention relates to a method and an equipment for bending and tempering of glass, in which method the glass is first heated up to the bending temperature in oven while it is moved in the oven by transfer means like on rotating rollers and after the bending temperature has been reached, it is transferred into bending section, in which the glass is allowed to bend located onto a special mould, before cooling for tempering.
Earlier this kind of method is known of US patent publication 3,338,695, in which the glass is conveyed by rollers from heating section into bending section over the bending ring all the time by means of rollers. The method includes larger diameter rollers, which can receive flat glass in the bending section. The rollers are deeply grooved in the locations, in which the ring mould is “embedded” below the top level of the rollers. When the glass has been transferred over the larger rollers just above the ring mould, the roller frame of larger rollers is descended so that hot glass is located on the ring mould and it bends. The disadvantage of this method is, that while the glass arrives onto larger rollers, these rollers are so few, that glass bends somewhat down due to the large roller distance. This causes optical distortions, which do not disappear in actual bending on the ring mould. Different ring moulds require variations into large rollers, at least on locations of the grooves, which reason leads into expensive rollers sets for different kinds of ring moulds.
Also from US publication 4,282,026 is known is vacuum lifter by which the flat glass is lifted up from rollers, transferred over the ring mould and dropped onto the ring mould. The disadvantage of this is, that the glass is in contact with vacuum lifter and therefore the vacuum lifter, which would damage the glass, has to be covered by ceramic, fibre glass or other hot resistant material. Another disadvantage is detaching of the glass from vacuum lifter while the glass is laid down onto the ring mould. If the vacuum is stopped slowly, the glass may hover sideways just before it is loses contact with the lifter, as the friction disappears from between the lifter and the glass. The glass will not locate accurately on the ring mould. If the vacuum is eliminated quickly and changed into blow, the hot glass drops quickly on the mould. This may easily cause excess sag in the central areas of the glass, as there is no support in the middle of the glass. This kind of lifter is not suitable for coated, selective glass, as the easily damaged coating has to be on the top side of the glass due to rollers underside.
Therefore, the problems has been, how to transfer the flat glass from rollers onto ring mould so, that the surface of the glass is not damaged and it will not be distorted or and no optical faults will be induced on the glass during the transfer. The intent of the invention is to create a new reliable method, by which the glass can be transferred onto a ring mould. The characteristic to the invention for achieving this goal is, that the transfer of the glass over the ring mould takes place by moving the glass horizontally by force exerted onto the glass and supporting the glass from underneath by blowing air from below and maintaining the elevation plane of glass during the transfer by forming above the glass planar the glass lifting stop means and blowing film air through the planar lifting stop means creating air film in between the glass and the stopping means so that the glass is prevented from lifting up and from touching the lifting stop means and after the glass has been moved over the ring mould, the blowing from underneath is stopped and the glass is allowed to bend on the mould.
Characteristic to the equipment according to this invention is, that for transferring the glass over the ring mould, there is air blowing from under the glass and in order to maintain the elevation plane of the glass during the transfer, there is a vertical planar glass lifting stopping means, which includes equipment, like blowing arrangement, perforated plate or planar arrangement of air nozzles in order to create air film between the glass and the glass lifting stop means.
Other advantageous ways to conduct the novel invention are described in the dependent claims.
The advantage of the novel invention is, that it provides reliable means to transfer hot glass from rollers of roller heart oven onto ring mould firstly without special tools. The rollers and ring mould can be ordinary tools and they do not require changes. The glass can be transferred accurately on the correct position over the ring mould. The top side of the glass is not touched during the transfer. The glass is not subjected to unwanted distortions, optical faults nor surface scratches. The glass transfer can take place in hot oven, in glass bending temperature and with short change over time. The method is well suited for medium and high capacity serial production levels.
In the following the novel invention is described more in detail with reference to the drawings, in which
Just about 2-5 mm above the glass there is glass lifting stop means. The blower Bcp causes quite small but sufficient air flow through the perforated plate towards the glass top surface so that it creates air film between the glass and perforated plate. Thus glass will never touch the perforated plate or tips of the nozzles. Rotation of rollers and especially the last roller keeps the glass moving so that it moves over the ring mould. The convey of glass during the last stage can be ensured by inclining counter surface CP down in direction of the glass travel or directing air jets in the direction of glass travel.
The ring mould is furnished by stoppers, which stop the glass onto the correct location.
When the glass has been stopped over the ring mould, the bottom side blowing is stopped so that the glass descends on to the ring mould BR. As the lower side unit SP, together with nozzles, can be lowered down by distance ΔH, so also by this movement the glass descends down onto the ring mould. At least the nozzles SU must be lowered down so that the glass can bend. Alternatively the whole unit SP is lowered or both, nozzles SU and unit Sp are lowered. After the bending the glass is processed further by press bending or it is just tempered.
A special detail is shown in
Alternatively a separate template, located under the lower blowing box Sp can be used to lift up the nozzles. The lift able template lifts up via lifting bars only those nozzles, which are in the same position with the template. Template can be used to move the nozzles in up-or down position. The nozzles can also be numbered and equipped with actuators for the lifting purposes.
The arrangement of
Number | Date | Country | Kind |
---|---|---|---|
20020632 | Apr 2002 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI03/00252 | 4/2/2003 | WO | 10/1/2004 |