This is a 371 National stage application of International application no. PCT/FI03/00262, filed on Apr. 8, 2003, which claims priority to Finnish application no. 20020671, filed on Apr. 9, 2002.
The invention relates to a method for mechanically moulding an article that is produced from paperboard or cardboard. The invention also relates to equipment for applying the method.
Containers, disposable tableware and packages are made of paperboard by means of a technique comprising the following typical stages of operation: cutting a blank from a board web, folding and/or bending and joint sealing the blank to give the item being made its final shape. Paperboard containers and plates are also produced by press-moulding or deep-drawing the blank. Other moulding machining operations of paperboard products include providing paperboard containers, such as cups and mugs, with a rolled-up or creased rim or a so-called mouth roll, and forming annular reinforcing ribs or similar creases on the sides of the paperboard vessels or packages.
In the press moulding of paperboard articles, the blank is brought between a pair of heated press moulds, whereby the paperboard bends or folds under compression, forming creases on the rim or in the corners of the article thus formed. Heating is necessary to make the deformation of the paperboard permanent. Press moulding has been used in the manufacture of foodstuff dishes and plates made of paperboard in particular.
The purpose of the mouth roll that is formed on paperboard drinking cups and mugs, on the one hand, is to stiffen the cup and, on the other hand, to provide the desired touch with the user's mouth, when enjoying a beverage. The mouth roll is provided by a tool that bends and/or presses the paperboard, mostly at the final stage of manufacture of a cup that is already bent and sealed. To make the mouth roll sufficiently tight and permanent, a heated tool is used, as well as additives, such as oils, and moistening of the paperboard. However, as fluctuations in the moisture of air have an effect on it, the moistening of the paperboard in particular is difficult to control in practice; in addition, moistened paperboard tends to warp or, when becoming too damp, completely loses its stiffness.
The purpose of the invention is to provide a new solution for the mechanical moulding of paperboard articles, such as containers, tableware, packages and similar products, avoiding the problems of prior art mentioned above. The method according to the invention is characterized in that a spot of the board is moulded mechanically by means of a moulding tool while irradiation of microwave-frequency is Simultaneously exerted on said spot.
The basic idea of the invention is to provide a local effect of radiation that heats the spot of the board that is to be moulded and makes the board deformable for the time the heating is maintained. As the board does not require moistening or the use of oil or other similar additives, and there is no need to heat the actual moulding tools, the moulding is easy to control.
According to the invention, microwave radiation is exerted on the mouldable spots of the board, its frequency being in the range of 1 to 1000 GHz (corresponding to a wavelength interval of about 0.03-30 cm), preferably in the range of 2 to 100 GHz, the radiation being absorbed by the board. Paperboard or cardboard intrinsically contains about 5 to 9% of moisture; whereby there are water molecules attached to the free hydroxyl groups in the cellulose fibres, forming bridges between the fibres. The radiation hitting the board instantly vaporizes the water so that the bonds between fibres are dissolved, while heat is absorbed by the board. The board thus turns plastic for a moment, and it can be worked mechanically. When the board solidifies into the form it has been given by the mechanical, the result of the moulding operation becomes permanent.
In the invention, a radiation frequency of 2.45 GHz can be used (corresponding to a wavelength of 12.2 cm), which is standard in conventional microwave ovens made for cooking. The frequency in question is somewhat below the absorption peak of water, its purpose being to prevent the heating effect from excessively concentrating on the surface layer of the food. However, as the object of irradiation of the invention is a fairly thin board, the most preferable frequency range that maximally utilizes the radiation is slightly higher, closer to the absorption peak of water.
In the invention, the irradiation pulse is sufficient, if it vaporizes the moisture contained by the board in the area that is moulded. It is preferable, if in momentary heating the moisture evaporates inside the board without exiting the board. In practice, the duration of the irradiation pulse can be about 0.1 to 1.0 seconds, corresponding to the time it takes to mould a single article in mass production. It is preferable to start irradiation slightly before starting the mechanical working by the tool.
The mechanical moulding of board products according to the invention can comprise measures that bend, fold or press the board, or combinations thereof. The essential objects of the invention include local expansions, protrusions or reinforcements that are provided on board articles, such as the rolled-up or creased rims of cups, mugs or plates. Similarly, further objects of the invention include creases or projections formed to the sides of the board articles, such as containers or packages, circling around them for the purpose of stiffening the article. Other objects of the invention comprise press moulding or deep drawing paperboard or cardboard articles, such as containers and plates, wherein the moulding provides bent or folded creases in the corners of the article or annularly on the rim of the article.
The equipment according to the invention for moulding articles of paperboard or cardboard in accordance with the description above comprises not only the moulding tool that mechanically works the spot of the board that is to be moulded, but also a source of radiation that produces radiation on the microwave frequency, from which source an irradiation pulse of a short duration can be directed at the mouldable spot of the board. The source of radiation can selectively be installed as part of the moving moulding tool, part of the stationary counterpart of the moving tool or completely separate from the moulding tool and its counterpart.
In the following, the invention is explained in detail with the aid of examples and with reference to the appended drawings, in which:
The tool according to
In order to make the cup board mouldable and the mouth roll 7 thus formed permanent, an irradiation pulse on the microwave frequency is directed from the irradiators 8 towards the rim 6 of the cup, the pulse being indicated by broken lines 9 in
The operation of the moulding tool 13 in forming the crease 11 is illustrated in
The mechanical moulding of board products according to the invention, utilizing irradiation on the microwave frequency, can also be applied to products made by means of press moulding or deep-drawing. In the manufacture of the products, conventional moulding tools as such can be used, having irradiators installed therein as accessories, and an irradiation pulse on the microwave frequency can be directed from the irradiators to the spots of the board that are to be moulded.
It is obvious to those skilled in the art that the different applications of the invention are not limited to the above examples, but can vary within the following claims.
Number | Date | Country | Kind |
---|---|---|---|
20020671 | Apr 2002 | FI | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FI03/00262 | 4/8/2003 | WO | 00 | 9/22/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/084739 | 10/16/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3336847 | Durat | Aug 1967 | A |
5215634 | Wan et al. | Jun 1993 | A |
5313167 | Marshall | May 1994 | A |
5431619 | Bacon et al. | Jul 1995 | A |
5637332 | Ridout | Jun 1997 | A |
5759624 | Neale et al. | Jun 1998 | A |
6077377 | Bentz et al. | Jun 2000 | A |
6120426 | Bacon | Sep 2000 | A |
20020012759 | Asayama et al. | Jan 2002 | A1 |
20050257878 | Thomas et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
1282819 | Feb 2001 | CN |
0 909 634 | Apr 1999 | EP |
2001301737 | Oct 2001 | JP |
A-2002-036395 | Feb 2002 | JP |
A-H07-214705 | Aug 2005 | JP |
WO 9964213 | Dec 1999 | WO |
WO 0200522 | Jan 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050164859 A1 | Jul 2005 | US |