1. Field of the Invention
The present invention first relates to a method for heating a fluid line system with at least two electric heating elements.
Furthermore, the invention also relates to a heating system for a fluid line system with at least two electric heating elements, and, in particular, for application of the method according to the present invention.
2. Related Technology
For the related technology, reference is made to documents DE 41 35 082 C1, WO 2007/073286 A1, EP 1 985 908 A1 and also EP 1 765 541 A1, for example.
Heatable fluid line systems are, in particular, frequently used in motor vehicles, namely for such media that tend to freeze even at relatively high ambient temperatures due to their freezing point. Thus, certain functions can be affected. This is the case, for example, with water lines for the windshield washer system, but especially also for lines for aqueous urea solution which is used as a NOx-reduction additive for diesel engines with so-called SCR catalyst units. Therefore, the electric heating elements can be activated at low temperatures in order to prevent freezing, or to thaw an already frozen medium.
Fluid line systems of this kind usually consist of at least one fluid line (tubing or hose line)—cf. in particular EP 1 985 908 A1 (FIGS. 13, 14) and also WP 2007/073286 A1—with two line connectors (plug connectors) at the ends. The fluid line has an electric heating element in the form of a helical heating wire wrapping over the length of the line, for example, and/or at least one of the line connectors (WP 2007/073286 A1) and/or each of the two connectors (EP 1 985 908 A1) is likewise provided with an electric heating element, in particular in the form of a heating wire wrapping. Usually all heating elements are electrically connected in series and can be connected to a common current and/or voltage supply (cf. in particular EP 1 985 908 A1, FIGS. 14a, 14b). This raises the problem that, in terms of their heating power, the individual heating elements have to be designed specifically for the particular line system, namely in adaptation to the length of the respective fluid line. This results in a great effort for providing different embodiments.
Document EP 1 764 541 A1 describes a heatable fluid line in which there is at least one electric heating conductor at the perimeter of the conducting tube and at least two electric supply lines running in the longitudinal direction of the conducting tube, wherein the heating conductor is alternatingly connected electrically to one of the two power supply lines, namely alternatingly to the plus pole and minus pole of the supply voltage. In this regard the connecting points seen in the longitudinal direction of the conducting tube are arranged equally spaced and one behind the other. The electric heating conductor is connected to the supply lines e.g. by soldering, welding or crimping. Due to this configuration, the fluid line has a constant heating power per length unit. As a result, the fluid line can be prefabricated in large lengths and cut to the required length, wherein each cut-to-length line length has the same heating power per length unit. This known fluid line has, however, the disadvantage that relatively high material costs will result, since in addition to the electric heating conductor or to the heating conductors, at least two supply lines have to be respectively be provided. An increased manufacturing effort also results from the required alternating connection points between the heating conductor and the supply lines. Each heatable fluid line prefabricated in this way has a defined heating power per length unit. But if different heating powers per length unit are required for different applications, prefabrication of differently heatable fluid lines with the respectively required heating power per length unit is necessary, so that the prefabricated fluid lines have to be stocked up or stored. This results in additionally increased production costs.
The underlying object of the present in invention is to avoid the described disadvantages and to provide a method and a heating system for heating a fluid line system, in order to optimize the electric heating power in a simple and very particularly economical and very effective manner largely independently of the length of the line and the number of electric heating elements.
According to the present invention, this object is first attained by the method, wherein the heating elements are operated electrically in parallel and each heating element is supplied separately with a controlled, in particular regulated operating current for the adjustment of its heating power. For this purpose, each heating element is preferably supplied separately with its separate operating voltage, wherein each operating voltage is generated from a supply voltage (in particular DC voltage from a vehicle battery) by a PWM (pulse width modulated) control clocked to regulate the heating power with a defined mark-to-space ratio. Thus, the respective operating current results from an effective value of the clocked pulsed operating voltage and a respective existing temperature-dependent resistance of the heating element.
The respective actual heating power of each heating element can advantageously be regulated via a power regulator by varying the PWM mark-to-space ratio to a predefined desired heating power.
According to another aspect, a heating system according to the present invention is characterized in that heating elements are electrically connected in parallel and each via a separate control element for the individual adjustment and in particular regulation of its heating power. For this purpose, the control elements are controlled by a regulator unit for regulating the heating power of the heating elements.
Further advantageous embodiments of the invention are contained in the dependent claims and in the description below.
The invention will be explained in greater detail below with reference to the drawings. The drawings show:
a), (b) and (c) are diagrams illustrating the PWM modulation of the supply voltage to generate the modulated operating voltages for the heating elements.
Throughout this specification, the same parts are always identified by the same reference numerals in the different drawings.
Inside a vehicle and in the preferred application for an SCR-catalyst system, several individual line systems 1 normally form a complete line system, namely for the required fluid connections between a tank and a conveying module (with inlet and return) and between the conveying module and a dosing unit (as an individual line or also with inlet and return), wherein the dosing unit doses the SCR reduction additive into an exhaust tract. Depending on the arrangement of the aggregate systems to be connected within the respective motor vehicle, very different lengths of the individual lines may be necessary, which also has an effect on the resistances of the respective heating elements and thus also—with a predefined supply voltage—on their heating power.
According to the present invention, as shown in
As is evident from
The regulator according to the present invention is primarily based on a PWM-driver of the control elements T1 to T3, that is, on a pulse width-modulated driver with variable switching pulses with respect to its time width. For this purpose, a supply voltage U—in a vehicle, the battery voltage of 9 to 16 V or 20 to 32 V for example—is clocked via the control elements T1 to T3 to the individual heating elements R1 to R3. The regulation takes place here by varying the so-called mark-to-space ratio and/or the degree of modulation m.
In this regard reference is made to
Thus, m can be a value in the range from 0 to 1. The voltage pulses formed in this way result in an effective value Ueff=m. U, which thus can be in the range from 0% to 100% of the supply voltage U.
If the heating elements R1 to R3 are now supplied with the respective clocked operating voltages U1, U2, U3 then according to Ohm's law:
From this equation we obtain approximate rectangular pulses for voltage and current, each with only two states, temporarily full supply voltage/full current, and temporarily no voltage/current (pauses).
The principle for the regulation according to the present invention is shown in simplified form in
The heating power is the control variable of the power regulator (regulator unit 6). As command variable/desired value (characteristic diagram) w(t) and/or for the determination thereof, the following optional variables can be used (in combination if necessary):
The output from the regulating path 20 is held constant. It is thus the principle of fixed value regulation, wherein the command variable w(t) is predefined. By using a fixed value regulator, it is advantageously possible to adjust the regulator by changing only one parameter, namely the command variable w(t), in case of changes in the area of the fluid line system 1 and/or in case of changes in the area of the heat transfer between the heating element and the line system.
As is also apparent from
The operation of the regulator will be explained in more detail below.
To determine the respectively required mark-to-space ratio m, on the one hand, the existing resistance R(t) is determined once separately for each heating element R1 to R3 in one measuring cycle for initialization at the start of operation, as well as, on the other hand, cyclically during operation. From these values and with the applied supply voltage U, the PWM mark-to-space ratio m is determined for the predefined desired heating power Psoll. For this purpose, in each measurement cycle with the operating current I1 to I3 shut off temporarily, a defined constant measuring current IM is sent from the constant power source 36 via the switching device 38 through the respective heating element. The resulting voltage UM is sent via an operating amplifier 42 to an ADC input of the microcontroller 14 and is used for evaluating the current performance data. From the constant measuring current and the associated voltage drop, the present resistance can be determined according to Ohm's law:
The desired heating power Psoll required for the PWM mark-to-space ratio m can then be determined from the product of desired heating power multiplied by the existing resistance divided by the square of the supply voltage; having:
Subsequently to each measurement cycle, the operating voltage is generated for each heating element Rn with the obtained mark-to-space ratio mn:Un=mn·U.
The output 40 of each driver circuit 30 mentioned above then provides—during operation—a current signal which represents a reference current proportional to the respective operating current (actual value). The downstream sensor 22 integrates this reference current to create a voltage average. The voltage average can, however, alternatively also be calculated. From these values the actual value of the respective heating power can then be determined with Plst=mn·I2n. R(T). The regulator then regulates the actual value to the predefined desired heating power by varying the mark-to-space ratio m.
As is still evident from the diagrams in
As is illustrated by way of example in
In addition, means for monitoring the level of the supply voltage U and for the automatic adjustment of the regulator to the particular supply voltage U are preferably provided.
Further advantageous embodiments will be explained below with reference to the method of regulation according to the present invention.
A characteristic diagram can be stored in the regulator unit 6—in particular in the form of a stored table—for determining the desired value. This characteristic diagram can consist of the parameters heating power, ambient temperature, operating temperature of the fluid system, certain geometric parameters, the predefined thawing time and/or the like. In addition, the rate of temperature change (dT/dt), the rate of resistance change (dR/dt) and/or the rate of geometry change (for example, ds/dt) can also be stored in the characteristic diagram. The latter in particular takes into account changes in the fluid volume during freezing or thawing, by detecting an axial and/or radial path change by means of suitable sensors.
Advantageous possibilities for this kind of sensor system to determine the aggregate state of a medium in a fluid line will be described below by way of example.
The publication WO 2009/040223 A2 describes a connection device in the form of a line-plug-connection with retaining means configured in such a manner that—starting from a normal operating position—a plugged-in and locked plug section can be moved along a defined path against a reset force relative to the connecting part in order to enlarge a volume within the connecting part holding the medium. So, for instance, the frozen medium (e.g. urea solution) can expand. In order to detect if the medium is frozen or not, or if the media line is ready for use of not, electric measuring means can be integrated for the evaluation of the aggregate state of the flowing medium.
Since the frozen medium expands, a path measurement unit can be integrated. This can be carried out for example, via the so-called Wiegand effect, via piezo elements (capacitive sensors) with Hall generators (inductive sensors) or also via an active resonant circuit (active sensors). Furthermore, a light signal (laser signal) can be introduced by means of a fiberglass cable into the connecting device in order to measure the change in reflection therewith. It is also conceivable to measure the path change by using a strain gauge.
1. Piezo Element
A Wiegand wire is designed as a spring element through which the Wiegand effect is generated. The spring element holds a piston against the operating pressure of the fluid medium in a stable position, but alternatively can also be attached as an overload spring.
The Wiegand wire consists of a special alloy:
Sudden reversal magnetism occurs in the core. This magnetism reversing voltage pulse can be measured by means of a coil which surrounds the Wiegand wire, and the aggregate state of the fluid can be evaluated therewith.
5. Introduction of Light Signals/Laser Pulse; Sensors Using Light Dispersion
Furthermore, by means of an empirical formula as a function of temperature (in the heating element) and of time, or of the rate of change of the heating element resistance values (dR/dt≠0) or by a corresponding characteristic diagram it can be determined whether the frozen fluid has thawed or whether there is any fluid present at all, and if the fluid line is ready for use.
It is also possible to monitor the PWM mark-to-space ratio m over time. If the PWM mark-to-space ratio m remains constant in a definite range over a certain time, that is, the heating power remains constant and ultimately also the temperature in the heating element, since the resistance of the heating element and/or the rate of change of the resistance values remains constant, it can be determined via a characteristic diagram whether the frozen medium has thawed or whether any medium is present and has thawed, and if the fluid line is ready for use.
In addition, a temperature sensor for the outside/ambient temperature and/or for the inside temperature in the fluid and/or a suitable sensor can optionally be integrated for the detection of a change in fluid volume, for example by means of a path measurement, in order thus to predefine different parameters for the regulation and for example to keep the heating temperature constant.
In addition, there is an advantageous possibility to detect and to determine the respective fluid. Thus the thawing behavior of the respective medium can be described by means of a characteristic diagram stored in the regulating unit, for example, via the change in temperature and the time difference. By comparing this stored characteristic diagram it can be detected which medium is involved, for example, if it is in fact an SCR medium (aqueous urea solution) or not. Due to this advantageous measure any possible incorrect fueling of the vehicle can be detected.
Moreover, the temperature can be measured indirectly. Based on data from the heating element (electric resistance and geometric data, for example, diameter or cross section and length of a heat conductor) and the voltage at the resistor of the heating element obtained by a constant power supply, the existing temperature and/or a temperature range in the heating element can be calculated (via the temperature-dependent resistance).
The heating system according to the present invention can advantageously be included in an on-board diagnostic system (OBD). Thus, the system according to the present invention, in particular the regulating unit 6, can be connected to a unit known as a CAN-BUS (interface to the OBD). Via this connection the temperature can be read via an ID in order thus to predefine different parameters for the regulation, and/or to predefine the power supplied for the regulation by checking the characteristic diagram, and to keep the heating temperature constant, for example, or to switch the heating off in order to save energy in certain operating states. Advantageously, the regulator according to the present invention automatically conducts a functional test and an error diagnosis of the line and outputs the information to the OBD unit by means of the CAN-BUS to determine if the line is ready or not. This means that the OBD does not output a signal to the regulator to start the functional tests of the line, but this is rather conducted by the heating system or by the regulator unit itself according to the present invention.
With respect to the PWM control explained above, it should additionally be mentioned that a preferred PWM frequency band is in the range from 0.1 Hz to 1 kHz due to the thermal inertia of the system. In this case a period of 50 ms, i.e. a frequency of 20 Hz is preferably predefined.
Owing to the regulator according to the present invention, all heating elements (for all components of the fluid line system 1, in particular for the line connectors V1, V2) can have the same design, i.e. with the same properties/values, because the heating power can be adjusted individually via the regulator. Thus, the heating elements, in particular the line connectors, can also be made of the same heat conducting material, for example, and thus be manufactured independently.
Additional sensors can be used within the scope of the system according to the present invention:
The system according to the present invention operates in a low loss environment; the regulator does not require a cooling element.
Error detection and error evaluation with respect to the line system and in particular a feedback to the OBD Unit is possible by means of the regulator, in particular to detect whether the system is operational. The following criteria are taken into account, for example:
defective line (short circuit, over-temperature in the driver)
line too hot
line does not warm up
no fluid in the line
battery voltage outside a defined operating range
sensor signal outside the operating range
resistance values outside the operating range
Based on the control of the heating elements with PWM-pulses, measures should be taken for electromagnetic compatibility (EMV):
use of shielded lines/cables
shielded housing for the regulation
shielding around all heating elements, i.e. in the region of the line casing 4 and in the region of the housings 2 of the line connector, wherein this shield can be glued or not glued and can be configured as
the shielding can in particular be used for attaching the heating element in the region of the fluid line.
The invention is not limited to the illustrated and described exemplary embodiments, but also covers all equivalent embodiments within the meaning of the invention. Furthermore, the invention is also not restricted to the combination of characteristics defined in the respective independent claim, but can also be defined by any other combination of certain characteristics of all disclosed, individual characteristics. This means that basically virtually any individual characteristic of the respective independent claim can be omitted and/or replaced by at least one individual characteristic disclosed elsewhere in the application. In this respect the claims are to be understood solely as an initial attempt at a formulation of an invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2008 059 751 | Dec 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/065844 | 11/25/2009 | WO | 00 | 6/30/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/063629 | 6/10/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4086466 | Scharlack | Apr 1978 | A |
4978837 | Eggleston | Dec 1990 | A |
6246831 | Seitz et al. | Jun 2001 | B1 |
6580059 | Kanno | Jun 2003 | B1 |
6818869 | Patti et al. | Nov 2004 | B2 |
6927368 | Cao et al. | Aug 2005 | B2 |
7167776 | Maharajh et al. | Jan 2007 | B2 |
7442902 | Stearns et al. | Oct 2008 | B2 |
7626144 | Merzliakov | Dec 2009 | B2 |
Number | Date | Country |
---|---|---|
31 39 199 | Apr 1983 | DE |
40 22 759 | Jan 1992 | DE |
40 34 635 | Jun 1992 | DE |
41 35 082 | Dec 1992 | DE |
1 764 541 | Mar 2007 | EP |
1 985 908 | Oct 2008 | EP |
2 154 813 | Sep 1985 | GB |
WO 2007073286 | Jun 2007 | WO |
WO 2009040223 | Apr 2009 | WO |
Entry |
---|
International Search Report for PCT/EP2009/065844, Mailed May 16, 2011, two pages. |
Number | Date | Country | |
---|---|---|---|
20110248017 A1 | Oct 2011 | US |