The invention relates to a method for logistics, the configuration and the structure of injection molding machines at the machine manufacturer, in particular for the production and the transport of injection molding machines, and to an injection molding machine having a two-part structure with an injection unit side.
Two concepts have been established with injection molding machines. For practical and logistic reasons, these concepts are based on the total weight of the machines. Injection molding machines with a closing force of up to about 400 tons have a weight of less than 25 tons. They are manufactured as one piece and can be transported in large containers from the manufacturer to the operator of the machines over any distance as a single piece, i.e., undivided. Handling can be accomplished by different means, for example cranes and air cushions, with which loading can be performed without problem. Typically, machines with a closing force of less than 400 tons have outside dimensions so that they can be easily transported by motor vehicles and railroad cars. Conversely, large injection molding machines with a closing force of substantially more than 400 tons are typically transported in two pieces and assembled at the customer site.
Various concepts are implemented with large machines. The substructure is sometimes constructed as a single piece, sometimes in two pieces and transported separately as a mold clamping structure and an injection unit structure. Most manufacturers offering the entire spectrum of smaller, midsize and large machines have implemented correspondingly adapted concepts. The term logistics partially includes handling of “hardware” and processing. Logistics also includes administrative handling and includes the conceptional phase during the development of a machine: when, how and where individual parts are produced, optionally produced for inventory, recalled and assembled. As described before, the way the machine is transported, i.e., either as several pieces or as a one-piece machine, follows from the selected concept. Once the structure of an injection molding machine is conceptionally defined, handling and logistics is largely also determined. The definition of the term handling also includes all manipulation, from the production of the machine parts to the delivery and the installation of the injection molding machine at the customer site. Several conceptual configurations are frequently examined in parallel by the manufacturer. Handling and logistics are then also complex, because the same company must process several concepts. It is an important aspect, if a machine is designed as a single piece and assembled by the manufacturer, or if the machine is assembled at the customer site. In practical applications, both solutions are offered, each having advantages and disadvantages. If the machines are assembled at the customer site, then the manufacturer supplies longitudinal connections as assembly aids, with which the mold clamping side and the injection unit side can be exactly positioned with the appropriate longitudinal orientation. Such longitudinal connections would be unable to withstand, when transported as a single piece, handling, such as lifting with a crane, or moving or placing the machine on uneven support surfaces.
Another, not unimportant aspect, is a protective cover for the entire machine. Practical applications have suggested a large variety of possibilities. Each machine manufacture has several configurations that match the respective machine concept.
As can be seen from the above discussion, each manufacturer incurs significant expenses, from the first discussion with a customer, the conceptual stage, work planning, pre-production, to the final assembly and delivery to the customer. Upon closer scrutiny, some expenses are uneconomical. There is a risk for a company to limit itself to only a single type or a standard line of a single injection molding machine type, because market demand, for example in relation to machines for producing pre-forms, for optical disk manufacture, or the manufacture of other injection molding machines, for example for the producing consumer goods or packaging components, is subject to severe variations.
It is therefore an object of the invention to search for solutions which make both the production and the logistics, especially for the machine manufacturer, more economical without creating problems for the customer.
The method of the invention is characterized in that at least the mold clamping side and the injection unit side are designed in modular form with standard assembly and coupling interfaces, and assembled via the coupling interfaces during final assembly into a one-piece injection molding machine.
The injection molding machine of the invention is characterized by a modular structure, wherein the machine bed is constructed in two parts and has standardized assembly and coupling interfaces, which connect the mold clamping side and the injection unit side to form a one-piece injection molding machine.
According to a particular preferred embodiment, the mold clamping side together with a mold clamping bed is selected as a module from a line of mold clamping products and the injection unit with a support element from a line of injection unit products, and connected via a standardized or uniform machine bed coupling interfaces.
The novel invention surprisingly has a large number of advantages, without the adverse effects of conventional solutions. The inventors have recognized that conventional injection molding machines were always optimized to attain a certain goal. For example, the applicant has developed a production-series-related preproduction only for one particular machine type, either in the applicant's factory or by third-party manufacturers. The type and dimensions of each product series need to be determined first, before the components can be determined. The significant advantage of the novel invention is particularly in the following points:
Due to standardization of the interfaces, prefabricated modules can be selected for each of the suitable configured modules from a line of modules and assembled to a customer-specific machine. In this way, the entire logistics, from the first discussion with a customer to the production of the machine, delivery and installation at the customer site, is reduced for the machine manufacturer to a simple task that was unattainable until now. Once the manufacturing and sales price of the individual modules is known, not only can several solutions be offered to the customer at minimal expense, but the production can also be accelerated. The production costs are also reduced, because the largest possible number of identical individual modules can be manufactured. Another significant advantage of the novel solution makes it possible that each module can be manufactured by a different manufacturer, thereby taking advantage of the particular advantages of each manufacturer.
The novel invention does not only allow to optimally solve the task, but also allows arbitrary combinations with respect to:
A customer order can be quickly defined and realized from the corresponding lines of modules by selection of:
The novel invention makes possible a significant number of particularly advantageous embodiments. Reference is made to claims 2 to 8, and 10 to 20. According to an advantageous approach, at least small and midsize machines are handled after final assembly as one piece, and transported and installed at the customer also as one piece. Additional handling of the machine at the customer or injection molder occurs as an inseparable machine. Preferably, the mold clamping side together with a mold clamping bed is selected as a first module from a line of mold clamping products, and the injection unit with support element or support tube is selected as second module from a line of injection unit products, with the goal of assembly via standardized installation and/or coupling interfaces. The idea of modular structure thereby far exceeds the component construction employed to this day in practice. With conventional lines of products, the individual machine type is merely subdivided into smaller units. The modular structure considers entire lines of products of different machines and machines of different size, which can be assembled with standardized installation and/or coupling interfaces like Lego® blocks. In a particularly preferred embodiment, the injection module substructure is implemented as a drive module or third module and selected from a line of drive modules. The new concept therefore envisions three lines of modules which can be freely selected and combined already “on paper” or later during manufacture to form an entire machine. Each line of modules has modules of different size and type, for example for the production of optical discs, the production of preforms or for injection molding machines in general for the production of consumer goods or packaging components.
According to an additional contemplated embodiment, the injection unit is implemented as a second module with a support element or support tube, which is connected with the drive module via a standardized assembly or coupling interface. The support tube is fixedly connected with a drive module, so that the injection unit is movable relative to the support tube by corresponding drives. According to another advantageous embodiment, the height of the injection axis can be determined through selection of the mold clamping module, wherein the injection axis with the support tube is connected with the drive module by way of height-adjustable assembly and/or coupling interfaces. In this way, identical lines of products can be used and assembled for machines of types and sizes, which has thus far not been possible.
In a particular preferred embodiment, the mold clamping module is connected to the injection unit side or the drive module in a manner resistant to bending by way of standardized assembly and/or machine bed coupling interfaces, so that an entire machine can be lifted in the assembled state with a hoist and transported. This applies in particular to smaller and midsize machine sizes with a closure force up to about 400 tons.
Advantageously, for transmitting the closing force via the tie rods, the injection unit is connected directly with the nozzle-side platen with the mold clamping module via standardized injection unit interfaces arranged symmetrical to the injection axis.
As a device, the injection molding machine preferably includes
a mold clamping module,
an injection unit module or injection module, and
a drive module.
These three modules can now be selected, assembled and, as described above, manufactured based on a defined standard program or a catalogue with the customer's requirements. It is important that all assembly and coupling interfaces are formed as standardized interfaces.
In particular, an oil reservoir, a pump drive, as well as a chiller and filter, are arranged in or on the drive module; furthermore, a control box is arranged on the drive module. Different from the mold clamping bed, the drive module houses several components having different functions. In particular, these are the components associated with the main drive for a hydraulic machine. For the production of plastic parts, the injection unit is directly connected at the nozzle-site platen with the mold clamping module by way of tie rods which are formed as standardized injection screw interfaces. The tie rods support only a pulling function and must not be subjected to other forces resulting from handling of the entire machine. The mold clamping module is connected in the upper region with the injection unit module via the tie rod interface. In this way, the forces from clamping the mold and from the melt pressure are primarily absorbed in the molds. These operate primarily in the longitudinal direction of the machine.
In a particular preferred embodiment, the mold clamping bed and the injection unit substructure and/or the drive module are connected to a bending-resistant substructure via upper and lower coupling interfaces, such that the mold clamping side and the injection unit side form in the installed state a closed force-parallelogram. The forces, which are generated during handling or transport, for example during lifting with the crane or by a non-uniform support on the shipping crates, are absorbed by the force parallelogram, in particular the standardized coupling interfaces. Importantly, while the machine bed for the injection molding machine, which consists of the mold clamping bed and the injection unit substructure, are formed as two pieces, the machine bed can stay connected as one unit with the mechanical superstructure, so that the entire machine is transported as a unit. The mold clamping module can be preassembled, except for the electrical and hydraulic lines, independent of the injection unit side.
The injection unit is preferably configured as an injection unit module with a support tube, wherein the injection unit or the support tube can be connected with the injection unit substructure via an assembly and/or coupling interface.
According to another advantageous embodiment, the individual modules have independent standardized protective covers:
In this way, the protective cover for the entire machine is also constructed according to the modular concept and can be selected from standardized parts. The individual protective covers can also be installed quickly by way of standardized coupling interfaces on the respective modules or supported or screwed on the floor.
Because the novel invention not only relates to the individual manufacture of modules, but also the logistics area which includes handling and transport, injection molding machine with a clamping force greater than 400 tons can be transported in two or more pieces based on the same fundamental concept. As described above, the majority of advantages of the invention, from the first discussion with a customer, to inventory control, module production and initial assembly in the factory of the manufacturer can also be used with the large machines. The components of the injection unit machines with clamping forces substantially greater than 400 tons may then also be assembled at the production site of the customer, preferably employing a reduced number of screw connections between the mold clamping bed and the drive module. Electrical, electronic and hydraulic coupling interfaces can be provided between the mold clamping side and the injection unit side.
According to another embodiment, the height of the injection unit is defined in the context of a standard line of mold clamping devices, whereby height differences relating to the injection unit module and the drive module are compensated by spacers arranged between the injection unit module and the drive module.
The invention will now be described in more detail with reference to several exemplary embodiments:
a to 3e show five different injection molding machines with modules from three lines of modules;
Reference is made hereinafter to
a to 3e show five examples of injection molding machines according to the concept of the novel invention. X-X and Y indicate the boundary planes of the main modules. On the left side of the Figure, a mold clamping module 1 is illustrated which has a main elements a fixed support plate 2 and a movable platen 3, as well as a platen 4 located on the nozzle side. Not shown is the mold clamping mechanism 5. Below the plates 2, 3 and 4 is a mold clamping bed 6. The injection unit 9, which in conjunction with a support tube 10 forms the injection unit module 16, is shown on the right side of
The injection axis height Hx is defined by the setting of the mold clamping force and/or the resulting mold clamping force on the platens. Any height differences between the injection unit module 16 and the drive module 17 are compensated by spacers 19 (
The injection unit 9 is arranged on the support tube 10 for movement by way of linear guides 20 and guide rails 20′. The injection unit 9 can be moved towards and away from the nozzle-side platen 4, whereby the nozzle tip 21 can be moved in contact with or spaced away from the mold injection opening. The injection unit 9 has as main elements an injection cylinder 22, a feed hopper 23 for the pellets, gears 24 and drives 25 with transmissions 26. Various lines for supply and removal of energy are located below the support tube 10. The lines, which are only schematically indicated, can be implemented in different ways, for example in form of oil hoses, electrical connections, control lines, etc. The novel invention makes it optional to provide suitable subcomponents for economical manufacture.
A complete injection molding machine has the following protective covers:
a mold clamping cover, and
an injection unit cover, and
an injection unit substructure cover.
The individual modules have independent protective covers. The individual protective covers are designed as standard elements and can be selected from a line of protective covers, with the advantage of large-scale manufacturing and the smallest possible number of individual elements.
Number | Date | Country | Kind |
---|---|---|---|
2006 01486-06 | Sep 2006 | CH | national |
This application is a division of prior filed copending U.S. application Ser. No. 12/441,473, filed Mar. 16, 2009, which in turn is the National Stage of International Application No. PCT/EP2007/007928, filed Sep. 12, 2007, which designated the United States and has been published as International Publication No. WO 2008/031574 and which claims the priority of Swiss Patent Application, Serial No. 2006 01486-06, filed Sep. 14, 2006, pursuant to 35 U.S.C. 119(a)-(d). The contents of U.S. application Ser. No. 12/441,473, International Application No. PCT/EP2007/007928, and Swiss Patent Application, Serial No. 2006 01486-06 are incorporated herein by reference in their entireties as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
Parent | 12441473 | Mar 2009 | US |
Child | 13478879 | US |