Information
-
Patent Grant
-
6413469
-
Patent Number
6,413,469
-
Date Filed
Monday, February 14, 200025 years ago
-
Date Issued
Tuesday, July 2, 200223 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Smith, Gambrell & Russell, LLP
-
CPC
-
US Classifications
Field of Search
US
- 266 202
- 266 204
- 266 208
- 266 209
- 266 210
- 266 44
- 266 216
-
International Classifications
-
Abstract
The invention concerns a method and an installation for minimising the local wear of a bell during a ladle treatment of a liquid metal by rotating the bell about an axis during the treatment of the liquid metal.
Description
The present invention relates to a method and an installation for the treatment of molten metal, particularly of steel in a ladle.
At present, a series of methods exists for the treatment of molten metal, particularly of steel in the ladle, according to which a bell or a tube is plunged into the molten metal contained in a ladle. Such methods of treatment include, inter alia, those known as CAS, CAS-OB, HALT, etc.
In this type of method, the molten metal contained in the ladle is subjected to different treatments in a confined zone, defined by the bell plunging into the molten metal. A bubbling gas is injected under the bell into the molten metal in order to homogenise it during the treatment. Turbulence then occurs at the surface of the molten metal which leads to an increased local wear of the bell over its lower edge.
The objective of the present invention is to propose a method and a device making it possible to minimise the local wear of the bell during the treatment of molten metal in a ladle.
This objective is attained by a method aiming to minimise the local wear of a bell during a treatment of a molten metal in a ladle, characterised in that the bell is rotated about an axis during the treatment of the molten metal.
The fact that the bell is given a rotational movement enables the local wear of the bell to be minimised. In effect, since the bell rotates during the treatment of the molten metal, increased wear at a given place due to turbulence in the molten metal is no longer a source of concern. The bell is in fact worn uniformly over the whole of its perimeter.
Since these bells are costly and since the replacement of worn bells takes a certain amount of time, the present method also enables the running costs of the installation to be reduced.
Such a method is particularly useful when implementing the method for the treatment of molten steel in a ladle described in the European patent EP 0 110 809. In such a method, by which the steel contained in the ladle is heated by the aluminothermic process and by which a certain number of alloying elements are added to the steel, the bell is asymmetrically stressed:
on a “hot” side, the bell, or more precisely the refractory lining of the lower edge of the bell, is attacked by thermal shocks and by chemical corrosion produced by splashes of metal and slag. The wear is caused mainly by spalling of the refractory lining.
on the “cold” side, and possibly in intermittent usage when the refractory lining is cooled, the bell is “fattened” by solidification of splashes of metal and/or of slag.
These phenomena of local wear and “fattening” considerably reduce the working life of the bell and thus increase the costs of production by the method involving addition and heating under the bell. The proposed method prolongs the useful life of a refractory bell by minimising the local wear, by reducing the local “fattening” and even by compensating for local wear by a lining produced in situ.
According to a first advantageous mode of execution, the rotational speed of the bell lies between 0.5 and 2 revolutions per minute during the treatment of the molten metal. The rotational speed of the bell may be adapted as a function of the diameter of the bell, as a function of the treatment applied to the molten metal, and/or as a function of the composition and viscosity of the slag covering the molten metal in the ladle. Of course, the ladle may continue to rotate about its axis even when it is withdrawn from the bath after the treatment of the molten metal.
According to another preferred mode of execution, the bell rotates about a vertical axis, roughly perpendicular to the surface of the molten metal or the molten steel.
According to another aspect of the present invention, an installation is also proposed for the implementation of the method, the said installation incorporating a driving device for driving the bell in a rotational movement during the treatment of the molten metal.
BRIEF DESCRIPTION OF THE DRAWINGS
A preferred mode of execution of an installation according to the invention is described with the help of the appended drawings, in which:
FIG. 1
shows a transverse cross-section through a bell and a ladle filled with molten steel at rest;
FIG. 2
shows a transverse cross-section through a bell and a ladle filled with molten steel in a working position and
FIG. 3
shows an enlargement of a device for driving the bell.
A ladle
10
having a refractory lining
15
is filled with molten steel
20
and is placed below a refractory bell
30
. In the working position, during the treatment of the molten metal, the bell
30
is lowered until its lower edge
40
dips into the molten steel
20
(FIG.
2
).
The bell
30
is connected to a feed pipe
50
through which the combustible materials and the alloying elements are introduced into the molten steel
20
. It comprises a driving device
60
capable of driving the bell in a rotational movement about a vertical axis.
An inert or reducing bubbling gas may be introduced into the molten steel
20
either through a porous plug (not represented) positioned in the bottom of the ladle
10
or through a lance (not represented) which is introduced into the ladle
10
. This bubbling gas is used to homogenise the molten steel
20
contained in the ladle
10
during the treatment of the steel
20
. This bubbling gas creates turbulence at the surface of the steel
20
which causes a local wear of the bell
30
, particularly of the lower edge
40
of the bell
30
.
FIG. 3
shows an enlarged view of the device
60
for driving the bell
30
. The upper end of the bell
30
carries a ball bearing
70
attached firmly to the bell
30
enabling the bell
30
to execute a rotational movement about its vertical axis. The upper part
75
of the bearing
70
is fixed to the bell
30
while the lower part
85
of the bearing
70
may rotate freely. When the bearing
70
is not under stress, the lower part
80
rests against a stop
85
positioned below the bearing
70
. Of course, this bearing
70
must be protected against the influx of impurities.
The bell
30
is held in position by means of a mounting system (not represented) pressing from below on the lower part
80
of the bearing
70
which pushes the bell
30
against the feed pipe
50
. The mounting system for the bell
30
may, for example, comprise mounting tongs.
An annular gear
90
is provided on the upper part
75
of the bearing
70
. The bell
30
is rotated by means of a motor
100
preferably incorporating a reduction gear
110
enabling the rotational speed of the bell
30
to be varied. The motor
100
drives the annular gear
90
through the intermediary of a gear wheel
120
attached firmly to the motor
100
. There are of course other means, well known to one skilled in the art, of imparting a rotational movement to such a bell.
Sealing between the feed pipe
50
and the bell
30
is provided by a baffle
130
.
The bell
30
and the feed pipe
50
have an inner lining made of a refractory material. This lining is not shown in the figures so as not to impair the clarity of the drawings.
Claims
- 1. A method for minimizing local wear of a bell during the treatment of a molten metal in a ladle comprising lowering the bell and stopping the lowering of the bell when a lower edge of the bell contacts the molten metal and rotating the bell about an axis during the treatment of the molten metal.
- 2. The method of claim 1, wherein the rotating of the bell is carried out at a rotation rate suited for producing a lining in situ so as to compensate for local wear.
- 3. The method of claim 1, wherein the bell is rotated at a rotational speed that is between 0.5 and 2 revolutions per minute.
- 4. The method of claim 1, further comprising introducing an inert gas to homogenize the molten metal whereby the introduced bubbling gas creates turbulence at the surface of the molten metal which turbulence contacts the lower edge of the bell.
- 5. The method of claim 1, further comprising introducing a reduction gas to homogenize the molten metal whereby the introduced bubbling gas creates turbulence at the surface of the molten metal which turbulence contacts the lower edge of the bell.
Priority Claims (1)
| Number |
Date |
Country |
Kind |
| 90005 |
Jan 1997 |
LU |
|
PCT Information
| Filing Document |
Filing Date |
Country |
Kind |
| PCT/EP98/00044 |
|
WO |
00 |
| Publishing Document |
Publishing Date |
Country |
Kind |
| WO98/31841 |
7/23/1998 |
WO |
A |
US Referenced Citations (7)
Foreign Referenced Citations (4)
| Number |
Date |
Country |
| 1190479 |
Apr 1965 |
DE |
| 2 261 138 |
Dec 1972 |
DE |
| 0 110 809 |
Jun 1984 |
EP |
| 0 151 434 |
Aug 1985 |
EP |