The invention concerns a method and apparatus for filling containers.
The dosed introduction of liquid nitrogen in the headspace of filled containers is known in particular in the drinks industry, in order on the one hand to force air and thus oxygen out of the headspace by the evaporation or degassing of the nitrogen (oxygen reduction), but on the other hand to generate an internal pressure in the sealed container, so that in this way an adequate stability is achieved even for thin-walled containers, i.e. low-weight containers, and thus the use of containers of this kind is possible. In particular, in the case of oxygen-sensitive products or filling materials, their shelf-life and quality is substantially improved due to the oxygen reduction in the headspace of the containers, e.g. the vitamin C decomposition in relevant drinks is reduced.
Also known is the sterile filling and sealing of containers, in particular, the sterilization of the closures used for sealing by charging with a suitable sterilization medium, for example with aqueous hydrogen peroxide (H2O2) at a high concentration and by subsequent drying immediately before the use of the particular container closure (EP 1 741 666 A2, EP 0 993 418 B1, EP 1 175 343 B1).
The aim of the invention is to disclose a method by which the filling and sealing of containers is possible with the admission of nitrogen, preferably liquid nitrogen, at least into the headspace of the filled container, with optimum oxygen reduction and however at a sufficient internal pressure of the container, preferably a pressure above atmospheric in the particular filled container.
In the invention, the charging of the containers or the headspace of the containers not taken up by the filling material, with the liquid nitrogen takes place during a movement phase of the timed movement of the containers, this being preferably in the movement phase of the timed movement immediately before the application or placement of the particular container closure. Achieved in this way, is inter alia, that there remains sufficient time for the evaporation or degassing of the nitrogen and thus sufficient time for the forcing-out of air and oxygen from the headspace of the containers, but at the same time after the final sealing of the particular container, the container has a sufficient internal pressure generated by the nitrogen.
By way of the method according to the invention, an oxygen reduction is possible without any problem so that far less than 1% of the original oxygen remains in the particular headspace.
In a preferred embodiment of the method according to the invention, after the charging of the particular container with liquid nitrogen, initially only a “loose” application of the container closure occurs, i.e. an application of the container closure in such a way that while it is secured sufficiently on the particular container, there are gaps between the container closure and the container through which nitrogen, and air, and in particular oxygen forced out by the nitrogen, can flow out. Only after the end of a further period, corresponding approximately to the duration of a movement step of the timed movement with which the containers are moved through the linear installation, or a complete multiple thereof, is the final tight sealing of the containers with the particular container closure carried out.
The closures are preferably cap-tight closures, for example closures that are fixed by distortion and/or screwing onto the containers or onto the container areas having the container mouth.
The “headspace” of the containers is the part of the interior of a container underneath the container opening, that is not taken up by the filling material after filling.
As used herein, the expression “substantially” means deviations from exact values in each case by +/−10%, and preferably by +/−5% and/or deviations in the form of changes that are not significant for functioning.
Further benefits and application possibilities of the invention arise also from the following description of examples of embodiments and from the figures. In this regard, all characteristics described and/or illustrated individually or in any combination are categorically the subject of the invention, regardless of their inclusion in the claims or reference to them. The content of the claims is also an integral part of the description.
The invention is explained in more detail below by means of the figures using an example of an embodiment. The following are shown:
The linear installation generally identified by 1 in
The containers 2 filled and sealed in this way are removed by means of a container outlet 8 according to arrow C. The movement of the containers 2 through the sections 5, 6 and 7 in transport direction B occurs in a timed manner, i.e. in a stepwise transport movement, in which stationary phases and movement phases follow each other in turn. It is clear that the devices needed for the particular handing of the containers 2 are provided on each movement path 4.1. Furthermore, the containers 2, which are arranged vertically, i.e. with their container axes oriented in a vertical direction, are moved through sections 5-7 so that at least the particular container opening or container mouth 2.1 is taken into a sterile chamber 9 (
In relation to the transport direction B before the closure transfer station 10, in the sterile chamber, a nozzle opening 14 is provided for the dosed supply of liquid nitrogen (N2) into the headspace of the filled containers 2. The nozzle opening 14, which is part of a nozzle head 16, extending into the sterile chamber 9 diagonally from top to bottom, of a nitrogen dosing unit 15, is arranged in this sterile chamber 9 so that its distance from the closure transfer station 10 or from the area at which the transfer of the particular container closure 12 to a container 2 occurs, in transport direction B is smaller than the distance between the closure transfer station 10 and the sealing station 11 or is smaller than a movement step of the timed transport movement of the containers 2. Furthermore, the nozzle head 16 and the nozzle opening 14 are arranged such that the axis DA of the nozzle opening 14 encloses, on a vertical or in a substantially vertical plane with the transport direction B, an acute angle α, i.e. an angle α smaller than 45°, that opens in the direction opposite to the transport direction B (
For the dosed dispensing of the liquid nitrogen, the nozzle opening 14 is embodied as a dosing valve, this being also with the use of a plunger-type valve body 16, the pointed end of which extends into the open end of the channel 16 formed in the dosing head 15 and thereby forms the annular nozzle opening 14. By axial displacement (double arrow D) of the valve body 17, the nozzle opening can be opened to a greater or lesser extent.
The described design and arrangement of the dosing head 16 and the nozzle opening 14 not only results in the headspace of the containers 2 moved past the nozzle opening 14 being reliably charged with the liquid nitrogen, but in particular also that sufficient time remains for the expansion, evaporation, or degassing of the liquid nitrogen in the particular headspace and thus for the forcing of air, and in particular, of oxygen, out of the particular headspace. However, the application of the container closures 12 occurs so soon that after the sealing of the particular container 2, there remains a sufficiently high internal pressure from the nitrogen in the sealed container 2.
After the placing of the particular container closure 12 on a container, this container closure 2 is provisionally fixed in its position, but only loosely, so that, with a further evaporation of liquid nitrogen, any oxygen still present is forced out of the headspace of the container together with a certain proportion of the nitrogen. The time available for this corresponds to the distance between the closure transfer station 10 and the sealing station 11, i.e. the duration of one movement phase of the timed transport movement or a multiple thereof.
As the nozzle opening 14 is in the way described previously on a level underneath the level of the closure supply position 10.1 of the closure transfer station 10, and the nozzle head 15 is oriented in the way described previously in the container transport direction B, diagonally downwards in the direction of the movement path of the container mouths 2.1, along with the nitrogen emerging from the nozzle opening 14 or along with the resulting and in part rising nitrogen mist, also the gaseous nitrogen on the inside of the container mouth 2.1 after the sealing, of the closure 12 waiting in the slideway 13 or already in place in the closure transfer station 10.1 of the sealing station 11, is trapped and oxygen is forced out. Thus, the gas volume on the inside of the particular closure 12, which is in the closure transfer element of the closure transfer station 10, is also deprived of oxygen before or while it is placed on a container 2. In this way, the quality of the oxygen-free or low-oxygen filling and sealing of the containers 2 is quite substantially improved.
The nozzle head 16 is furthermore formed and arranged or inclined such that its channel 16.1 and the inner surface of this channel likewise have an incline from the horizontal in all areas. The channel 16 can thus be completely emptied in particular when the nozzle opening is fully or largely open, namely for example at the end of a production phase or during a cleaning and sterilization phase, in which then not only the nozzle head 16, but also all other components of the installation 1 are treated with a suitable cleaning and/or sterilization medium.
In the embodiment shown, at least the final filling of the containers 2 by a filling station 18 occurs a few cycles, generally two to four cycles, before the application of the closures 2 on the filled containers 2, i.e. in the stationary phase of the timed movement, before the containers are moved in the next movement phase of this movement to the closure transfer station 10 and, in this movement phase before the next stationary phase, are charged with the nitrogen emerging from the nozzle opening 14.
In the sterile chamber 9, preferably only the functional elements, in particular the closure transfer station 10, the sealing station 11, the filling station 18 and also the nitrogen dosing units 15 that interact directly with the containers are provided, while the other parts or elements of such stations are disposed outside the sterile chamber 9, preferably above the sterile chamber 9, in particular also the device for the supply of the liquid nitrogen emerging at the nozzle opening 14.
In section 7, during the cleaning and sterilization phase in a cleaning and/or sterilization operation of the installation 1, the cleaning and/or sterilization media used, the media being, for example, vaporous and/or gaseous and/or liquid media, for example H2O2 in aqueous solution at a high concentration and as an aerosol or vapor, are supplied inter alia through the channels 16.1 of the nozzle heads 16, whereby the cleaning and/or sterilization medium emerging at the particular nozzle opening 14 is removed by means of a pipe section 19 arranged directly on the particular nozzle opening 14. Moreover, during the cleaning and/or sterilization operation, the particular cleaning and/or sterilization medium inter alia, is also supplied to the sterile chamber 9 at suitable places for the cleaning and/or sterilization of this chamber and the functional elements disposed there, and removed again from the chamber 9 for example at places between the movement paths 4.1 of the containers 2. The functional elements used for the supply and removal of the cleaning and/or sterilization media, in particular also pipe sections 19, are, insofar as they are disruptive during the normal filling and sealing profile, made such that they can be moved or swiveled out of the installation 1 or at least out of the area of movement of the containers 2 for this filling and sealing operation.
One particular feature of the installation 1 consists inter alia of a dosed treatment of the filled containers 2 with liquid nitrogen in the case of a linear installation 1 or linear machine for the cooling and sealing of the containers 2 under aseptic conditions, wherein a relatively long degassing phase is achieved for the nitrogen for oxygen reduction with nonetheless a safe nitrogen pressure build-up in the containers within tight tolerances.
The invention has been described above using an example of an embodiment. It is clear that numerous modifications and variations are possible without thereby departing from the inventive idea underlying the invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 106 760.8 | Jul 2011 | DE | national |
This application is the national stage entry under 35 USC 371 of PCT application PCT/EP2012/002348, filed on Jun. 2, 2012, which claims the benefit of the Jul. 5, 2011 priority date of German application DE 10 2011 106 760.8, the contents of which are herein incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/002348 | 6/2/2012 | WO | 00 | 1/6/2014 |