The invention relates to a method and a lubrication application device for regulating the flatness and/or roughness of a metal strip in the outlet of a cold rolling stand by suitable metering of the amount of at least one lubricant per unit time applied to the metal strip in the inlet of the cold rolling stand.
Such a method is described, for example, in the unpublished German patent application DE 10 2005 042 020 A1.
Starting from this technical teaching, it is the object of the invention to further develop a known method and a known lubricant application device for regulating the flatness and/or roughness of a metal strip in the outlet of a cold rolling stand such that the quality of the cold-rolled metal strip is further improved with regard to its flatness and/or its roughness.
This object is achieved by the method claimed in claim 1. This is characterised in that the applied amount of lubricant is metered in the form of a quantitative distribution over the width of the metal strip per unit time according to a detected control deviation between an actual and a desired flatness distribution over the width of the metal strip in the outlet of the cold rolling stand or a control deviation between an actual and a desired roughness distribution over the width of the metal strip in the outlet of the cold rolling stand or a combination of the two control deviations.
Unlike the technical teaching of the patent application cited initially, in the present patent application the application of a suitable amount of lubricant on the inlet side of the cold rolling stand is not made on a flat rate basis but distributed over the width of the metal strip. In this way, an individual amount of lubricant can advantageously be supplied for each section in the width direction of the metal strip, e.g. in the area of application of an individual nozzle in order to thereby adjust a predefined desired flatness in the respective width section.
The quantity of applied lubricant lies in a range of 1-20 ml/minute/100 mm width of the metal strip. The quantity is advantageously so low that it allows a specific change in the friction coefficient in the rolling gap of the cold rolling stand with regard to the desired flatness or desired roughness. The residual quantity of lubricant remaining on the metal strip in the outlet is minimal; it is advantageously so low that it need not be removed separately.
The invention provides that the residual content of lubrication on the metal strip on the outlet side of the cold rolling stand is advantageously measured. The residual content should on the one hand not fall below a predefined lower threshold because otherwise, there is a risk of rust formation on the metal strip since the lubricants typically used generally also have an anti-corrosion effect. On the other hand, the residual content of lubricant should not exceed an upper threshold value because otherwise there is a risk of a lateral profile of the metal strip on a roller table downstream of the cold rolling stand.
All the desired values predefined within the scope of the present invention are preferably based on empirical values from practice.
For carrying out the method according to the invention it is important that the lubricant is applied in a precisely metered quantity only on the inlet side. An additional application of coolant in the rolling gap on the inlet side of the cold rolling stand is not provided in the method according to the invention since this would falsify the specific adjustment of the friction coefficient in the rolling gap. In the method according to the invention, an application of coolant is therefore only provided, if at all, on the outlet side of the cold rolling stand or on the inlet side in such a manner that no coolant enters into the rolling gap.
A plurality of lubricants each having different friction-coefficient changing properties in the rolling gap is advantageously provided. Alternatively to a quantitative metering of a lubricant or a lubricant mixture, a precise friction coefficient in the rolling gap can then be adjusted by a correspondingly suitable mixing ratio of the various lubricants. The individual lubricants are advantageously only mixed within the individual nozzles of a nozzle beam; it is thereby possible to achieve a quite specific adjustment of the friction coefficient in the rolling gap for each width section of the metal strip. In addition, separate removal/storage of the unused lubricant is also possible.
In the present invention, the desired flatness or roughness of the metal strip is expressly not adjusted by varying the size of the rolling gap in the cold rolling stand; rather, the size of the rolling gap remains constant throughout the entire duration of treatment of the metal strip or is controlled by means of a separate control circuit which is not the subject matter of the present invention. In this case, for example, the difference between the speed of the metal strip in the inlet and in the outlet serves as a measure for the size of the rolling gap or the reduction in the strip.
The aforesaid object of the invention is furthermore achieved by a computer program, a data carrier with this computer program and a lubricant application device. The advantages of these solutions correspond to the advantages specified previously with reference to the method according to the invention.
A total of four figures are appended to the description, where
The invention is described in detail hereinafter with reference to said figures.
In addition to the quantity of delivered lubricant, the respective lubricant composition can also be adjusted individually with the aid of a mixer 150 for each nozzle 110-i. If a plurality of lubricants S1, S2, S3 each having different friction-coefficient varying properties in the rolling gap are provided, the mixer 100 allows a suitable lubricant mixture of the available lubricants S1, S2 and S3 to be combined with a specifically desired property with regard to the friction coefficient in the rolling gap.
The aforementioned possible metering of the applied quantity of lubricant with the aid of nozzles also allows individual nozzles 110-i to be completely switched off. This is particularly advantageous with the outer nozzles of the nozzle beam because by switching on or off, these can be adapted to the width of the rolled metal strip 400 in each case and this can prevent wastage of lubricant.
The inner control circuit comprises a desired/actual value comparator 124, a quantity controller 126 and a control element in the form of a lubricant application device 110 and a quantity detecting device 115 for detecting the amount of lubricant applied to the metal strip 400 by the nozzle beam 110 before the strip enters the cold rolling stand 300. The quantitative distribution Ist-MV over the width of the metal strip 400 thus detected as the actual value is compared in the comparator 124 with a predefined desired quantitative distribution Soll-MV, and the control deviation e−MV resulting from this comparison is fed to the downstream quantity controller 126. The quantity controller, preferably a proportional P-controller, converts the received control deviation eMV into a suitable control signal for triggering the nozzles 110-i of the nozzle beam 110. The quantity controller 126 preferably consists of l individual controllers each individually assigned to a nozzle 110-i of the nozzle beam. These individual controllers can be interlinked by means of a bus. The output signal of the quantity controller 126 in the form of the control signal for the nozzle beam 110 then comprises for its part a plurality of i individual control signals for the individual nozzles 110-i. Naturally, the detection of the quantitative distribution and its regulation with the aid of the inner control circuit is carried out separately for the upper and lower side of the metal strip 400.
The calculations according to the invention of the desired quantity Soll-MV of lubricant applied to the metal strip for the upper or lower side of the metal strip 400 with the aid of the superposed control circuit is explained in detail hereinafter with reference to
The calculations are made in the desired-value calculation device 122 on the basis of a predefined desired flatness distribution Soll-PLV and/or a predefined roughness distribution Soll-RHV. These two predefined desired values are empirical values which are suitably predefined depending on the material of the strip to be rolled in each case. As can be seen from
As can be seen in
As an intermediate result, it should thus be noted that the desired quantitative distribution for the inner control circuit within the processor unit 122-4 is determined according to the inlet-side characteristics P1, the characteristics specific to the cold rolling stand P2, the outlet-side characteristics P3′ and according to the weighted control deviations for the flatness distribution and the roughness distribution. At the same time, it should be noted that of all said characteristics, only the speed of the metal strip on the inlet side, the two control deviations and the outlet-side residual oil content per unit transport length of the metal strip are time-variable whilst all the other characteristics are considered to be constant with respect to time.
The method according to the invention is now described as an example for several cases:
a) The roughness of the metal strip 400 determined at the outlet of the cold rolling stand 300 deviates from the desired value.
This can mean, for example, that the actual roughness distribution is greater than the corresponding predefined desired value Soll-RHV so that the control deviation of the roughness distribution e−RHV resulting from a comparison of these two quantities is negative. In this example, the flatness distribution should be disregarded so that the negative control deviation for the roughness is fed 100% into the calculation device 124-4. According to the control deviation of the roughness distribution, all the constant parameters and according to the online determined residual oil content on the metal strip on the outlet side of the cold rolling stand 300, the calculation device will then preset a suitable desired quantitative distribution for the inner control circuit so that the roughness distribution in the outlet of the cold rolling stand is reset to the level of the desired roughness distribution in the shortest possible time.
In general, it can be noted that if the roughness is too great, the processor unit 122-4 will change the desired quantitative distribution and thus the amount of lubricant applied on the inlet side according to the negative control deviation of the roughness in order to match the measured roughness distribution on the outlet side to the predefined roughness distribution within a short time.
The manner in which the roughness is influenced by the quantity of lubricant and/or the type of lubricant depends on the general process conditions of the rolling case and is advantageously calculated by a process model.
b) The flatness distribution on the outlet side of the cold rolling stand deviates from the desired flatness distribution.
The manner in which the strip tensile stress distribution and therefore the flatness distribution is influenced by the quantity of lubricant and/or the type of lubricant depends on the general process conditions of the rolling case and is advantageously calculated by a process model.
The criteria of the roughness distribution and the flatness distribution can not only be considered separately but also in parallel and set to respectively predefined desired values. For this it is necessary to suitably adjust the amount of lubricant applied on the inlet side depending on the two control deviations—flatness distribution and roughness distribution.
For each calculation of the desired quantitative distribution within the calculation device 122-4 it holds that the respectively current residual oil content is only taken into account insofar as it is checked within the processor unit 122-4 that the residual oil content firstly does not exceed a predefined upper threshold value for the residual oil content and secondly does not fall below a predefined lower threshold value for the residual oil content. It is important to adhere to the upper threshold to avoid lateral running of the metal strip on a roller table downstream of the cold rolling stand. It is necessary to adhere to the lower threshold to avoid rust formation on the metal strip.
For all applications it holds that a respectively desired change in the friction coefficient in the rolling gap is achieved not only by a change in quantity, but alternatively by means of a change in the composition of the lubricant mixture from the available lubricant components S1, S2 and S3 etc., or by a combination of a change in quantity and change in mixture.
The invention is advantageously used in the last stand of a multiple-stand rolling mill.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 032 485.7 | Jul 2007 | DE | national |
10 2006 059 246.8 | Dec 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2007/009755 | 11/12/2007 | WO | 00 | 7/20/2009 |