The present invention relates to a machine for filling capsules or similar with at least one product.
More specifically, the present invention relates to a machine for filling capsules with a pharmaceutical product in granules, to which the following description refers purely by way of example.
In the pharmaceutical industry, a machine for filling capsules with a pharmaceutical product in granules is known comprising a conveyor device movable continuously along a given path and having a number of pockets, each for receiving a respective bottom shell of a capsule; at least one tank containing the product; and a metering wheel mounted to rotate continuously about its substantially vertical longitudinal axis.
The metering wheel has a number of metering devices, each of which travels with the metering wheel along a portion of the path of the bottom shells, in time with a respective bottom shell, to transfer a given quantity of product from the tank into the bottom shell.
Each metering device comprises a substantially cylindrical metering chamber for receiving the product from the tank; an unloading chute for unloading the product from the metering chamber into the relative bottom shell; and a piston, which defines the bottom of the metering chamber, and is moved along the metering chamber, by a cam follower roller engaging a cam associated with the metering wheel, to and from a feed position to feed the product to the unloading chute and, therefore, into the bottom shell.
Each pocket on the conveyor device is defined by a shaped bush with a capacitive transducer, which provides for weighing the respective empty bottom shell, weighing the respective bottom shell containing the product, and calculating the weight of the product in the respective bottom shell as the difference between the two weights.
Known machines of the type described above have various drawbacks, mainly due to the fact that, though amply tried and tested, the method used to calculate the weight of the product in each bottom shell fails to prevent a possible error in the weight of the bottom shell from impairing calculation of the weight of the product in the bottom shell, particularly in view of the high dielectric constant of the material of the bottom shell with respect to the dielectric constant of the product inside the bottom shell.
It is an object of the present invention to provide a machine for filling capsules or similar with at least one product, and designed to eliminate the aforementioned drawbacks.
According to the present invention, there is provided a machine for filling capsules or similar with at least one product, as claimed in the attached Claims.
The present invention also relates to a method of filling capsules or similar with at least one product.
According to the present invention, there is provided a method of filling capsules or similar with at least one product, as claimed in the attached Claims.
A non-limiting embodiment of the present invention will be described by way of example with reference to the accompanying drawings, in which:
a-2g shows schematics of operation of the
Number 1 in
Machine 1 comprises a metering wheel 3, in turn comprising a supporting shaft (not shown), which has a substantially vertical longitudinal axis 4, is connected to a fixed frame 5 of machine 1 to rotate continuously about axis 4 with respect to frame 5 and under the control of a known actuating device not shown, and supports a top metering drum 6.
Drum 6 comprises a bottom plate 7 perpendicular to axis 4 and connected in angularly fixed manner to the supporting shaft (not shown); and an annular top disk 8 fixed to a top edge of plate 7, coaxially with axis 4.
A sprocket 9 is formed on the outer surface of plate 7, is coaxial with axis 4, and forms part of a known conveyor device 10 for feeding each bottom shell 2 along a given path P. Device 10 comprises a chain conveyor 11 looped about a number of powered sprockets (of which only sprocket 9 is shown in
In the example shown, two tubular containers 13, 14 (
Drum 6 comprises a number of metering devices 16 equally spaced about axis 4 and fed continuously about axis 4 by wheel 3. Each device 16 is advanced by wheel 3 in time with a respective pocket 12 along a portion of path P to withdraw a given quantity of pharmaceutical product from each container 13, 14, and to feed the withdrawn pharmaceutical product into respective bottom shell 2.
Each device 16 comprises a cylindrical hole 17, which extends through plate 7 and disk 8, has a longitudinal axis 18 parallel to axis 4, is offset radially with respect to relative pocket 12, and comprises a wide top portion 19 and a narrow bottom portion 20.
Portion 19 houses a bush 21 mounted coaxially with axis 18 and having a capacitive transducer 22, which is integrated in bush 21, forms part of a weighing device 23 for weighing the product in each bottom shell 2, and is powered electrically by a connector 24 common to all of capacitive transducers 22. Connector 24 is mounted coaxially with axis 4, and comprises a fixed member 25 fitted to frame 5; and a movable member 26, which is fixed to wheel 3, is connected in rotary manner to member 25, and is connected electrically to capacitive transducers 22 of devices 16.
Bush 21, capacitive transducer 22, and weighing device 23 are described and illustrated in the Applicant's Patent Application WO-2006/035285-A2, the content of which forms an integral part of the present patent application.
Bush 21 laterally defines a substantially cylindrical metering chamber 27, which is connected to relative pocket 12 by an unloading chute 28 formed through disk 8, and is closed at the bottom by the top end of a piston 29, which is fitted through narrow bottom portion 20 of hole 17, coaxially with axis 18, and is fitted in axially sliding manner to drum 6 to move linearly in direction 15 with respect to drum 6 and under the control of an actuating device 30.
Piston 29 comprises an interchangeable top portion 29a, which is bounded at the top by a flat surface 31 sloping with respect to axis 18, is made of insulating material with little or no dielectric constant, is fitted removably to a bottom portion 29b of piston 29 made, for example, of metal, and is changeable, depending on the size of chamber 27.
Device 30 comprises a known cam 32, which extends about axis 4, is common to pistons 29 of all metering devices 16, and is engaged by a cam follower roller 33 of each piston 29. At each container 13, 14, cam 32 comprises a portion 34 (
Operation of machine 1 will now be described with reference to
As the metering device 16 considered travels between container 14 and container 13, piston 29 is lowered by cam 32 at constant speed in direction 15 to allow capacitive transducer 22 to weigh the portion of piston 29 projecting inside chamber 27 (
As shown in
As metering wheel 3 rotates about axis 4, device 16 disengages container 13 (
Since both weight measurements are made by moving piston 29 in direction 15 at the same speed and between the same positions along axis 18, the weight of the portion of piston 29 projecting inside chamber 27 has exactly the same effect in both measurements, so the weight of the product in chamber 27 can be calculated correctly by weighing device 23 as the difference between the two values recorded by capacitive transducer 22.
At this point, piston 29 is lowered in direction 15 into a position opening chamber 27 to allow the product to flow along unloading chute 28 into bottom shell 2 (
The above operating sequence described with reference to container 13 is obviously repeated for container 14 and, in the event of a number of metering wheels 3, for each container 13, 14 of each metering wheel 3.
Machine 1 has several advantages, mainly due to the fact that:
the product is weighed inside each metering chamber 27, i.e. before being fed into relative bottom shell 2, to prevent a possible error in the weight of bottom shell 2 from impairing calculation of the weight of the product in the bottom shell, particularly in view of the high dielectric constant of the material of bottom shell 2 with respect to the dielectric constant of the product inside bottom shell 2; and
by weighing the product fed into each bottom shell from each container 13, 14 of each metering wheel 3, containers 13, 14 manifesting metering errors can be detected accurately, and the position of relative portion 34 of cam 32 corrected in direction 15.
Number | Date | Country | Kind |
---|---|---|---|
07425229 | Apr 2007 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3501894 | Hayashi et al. | Mar 1970 | A |
4089152 | Zanasi | May 1978 | A |
4408641 | Yamamoto et al. | Oct 1983 | A |
4431070 | Andrews | Feb 1984 | A |
5018335 | Yamamoto et al. | May 1991 | A |
5340949 | Fujimura et al. | Aug 1994 | A |
5515740 | Gamberini | May 1996 | A |
5971037 | Ansaloni | Oct 1999 | A |
6837280 | Ragazzini et al. | Jan 2005 | B2 |
6901972 | Nelson | Jun 2005 | B1 |
7536843 | Djurle et al. | May 2009 | B2 |
20050230000 | Gamberini | Oct 2005 | A1 |
20070144674 | Gamberini | Jun 2007 | A1 |
20070284015 | Ansaloni et al. | Dec 2007 | A1 |
20080127609 | Tagliavini et al. | Jun 2008 | A1 |
20080134629 | Schmied et al. | Jun 2008 | A1 |
20080256906 | Gamberini | Oct 2008 | A1 |
20080256908 | Frabetti | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
662993 | Nov 1987 | CH |
06298201 | Oct 1994 | JP |
06345189 | Dec 1994 | JP |
03094824 | Nov 2003 | WO |
2006035285 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20080256906 A1 | Oct 2008 | US |