The present invention relates to a method and a machine for fabricating a stopper for a container neck. It also relates to a stopper as obtained by implementing this fabricating method.
The invention relates generally to stoppers in which each stopper has a skirt that surrounds the neck of a container and that has a bottom portion, “bottom” when the neck is extending vertically with its rim pointing upwards, that is designed to remain permanently around the neck after the stopper has been opened for the first time, while the remainder of the skirt, i.e. the top portion thereof, is designed to be removable from the neck, while initially being connected to the non-removable bottom portion of the skirt by breakable bridges that are distributed around the periphery of the skirt and that are suitable for being broken when the stopper is opened for the first time. The line of weakness formed by said bridges serves as an indicator to inform users whether or not the stopper has been opened for a first time. In the context of the present invention, the removable link between the top skirt portion and the neck of the container may be of any type, so that the invention is applicable both for screw stoppers, and also for snap-shut stoppers, i.e. stoppers that are suitable for snapping onto bottle necks.
The invention relates more particularly to stoppers in which the line of weakness is subdivided, i.e. it is made up of a succession of through notches, cut through the wall of the skirt and around the periphery thereof, in such a manner as to define respective ones of the above-mentioned breakable bridges between successive pairs of notches. Obtaining the line of weakness by cutting rather than by molding is preferred because it is less expensive and more practical since it does not require the use of complex molds, e.g. provided with slides. Unfortunately, lines of weakness obtained by cutting are conventionally designed to extend in a plane perpendicular to the longitudinal axis of the skirt, as proposed in EP-A-0 619 168, thereby limiting the possibilities for converting the stoppers, unlike with stoppers in which the line of weakness is obtained by molding, it being possible for such molded lines to include, in particular, a non-breakable portion of material that connects the removable skirt portion to the non-removable skirt portion permanently, even after the stopper has been opened.
An object of the present invention is to improve fabrication of stoppers having lines of weakness that are cut and to do so in simple and inexpensive manner, so as to have a stopper in which the removable skirt portion remains connected to the non-removable skirt portion after the stopper has been opened for the first time.
To this end, the invention provides a method of fabricating a stopper for a container neck, as defined in claim 1.
By means of the method of the invention, the line of weakness is cut in the shape of a helix, centered on the axis of the skirt and turning through more than 360° so that, along the axial direction of the skirt, the two peripheral ends of the line are disposed one above the other and they define a non-breakable strip between them. This strip is dimensioned to form a non-breakable link between the removable and the non-removable skirt portions. Thus, when the stopper obtained by implementing the method of the invention is opened for the first time, the breakable bridges break, while the above-mentioned strip remains. The method of the invention is particularly simple to implement, since it requires only limited conversions relative to the existing methods.
Advantageous characteristics of the method of the invention, taken in isolation or in any technically feasible combination, are specified in dependent claims 2 to 4.
The invention also provides a stopper for a container neck, as defined in claim 5.
The stopper is preferably obtained by implementing the above-defined method, with the structural advantages that are mentioned above.
Advantageous characteristics of this stopper, taken in isolation or in any technically feasible combination, are specified in dependent claims 6 to 8.
The invention also provides a machine for fabricating a stopper for a container neck, starting from a tubular skirt suitable for surrounding the neck and provided both with retainer means for retaining it permanently around the neck and also with fastener means for fastening it removably to the neck, this machine being as defined in claim 9.
The machine of the invention makes it possible to implement the method as defined above.
A practical embodiment of this machine is specified in claim 10.
A simple and effective embodiment is specified in claim 11.
The invention can be better understood on reading the following description given merely by way of example and with reference to the accompanying drawings, in which:
The stopper 1 and the neck 2 have respective shapes that are substantially tubular, and that have central longitudinal axes that substantially coincide with each other, as indicated by the reference X-X, when the stopper is snapped onto the neck. For reasons of convenience, the description below considers that the terms “top” and “upwards” correspond to a direction that is substantially parallel to the axis X-X and that goes from the body of the container towards its neck 2, i.e. to a direction going towards the tops of all of the figures except for
The neck 2 has a body 4 that is substantially cylindrical with the cylindrical shape having a circular base and being of axis X-X. At its top end, the body 4 defines a rim 3 at which the liquid contained in the container is poured out. As shown in chain-dotted lines in the right portion of
The stopper 1, as considered snapped onto the neck 2, is open at its bottom end and is closed at its top end by an end-wall 10, at the outside periphery of which a tubular skirt 12 extends axially downwards, which skirt is centered on the axis X-X and has a circular base. In this example, the stopper is advantageously provided with a lip 14 that extends axially downwards from the end-wall 10 in such a manner as to be centered on the axis X-X, inside the outer skirt 12. When the stopper is snapped onto the neck 2, the end-wall 10 extends above and across said neck, while the skirt 12 surrounds the body 4 externally and the lip 14 is pressed in leaktight manner against the inside face of said body.
At its top end, the skirt 12 is provided with an external tab 16 that extends radially outwards from a small peripheral portion of the skirt, which portion is considered below as the front of the stopper 1, insofar as it is the side of the stopper that is designed to face the user when the stopper is in service.
In its top portion, the skirt 12 is internally provided with a snapping band 18 that is in the form of a bulge of material that both extends radially inwards from the main wall of the skirt, and also runs around the inside periphery of the skirt, while, in this example, being interrupted over the front of the stopper. In longitudinal section through the stopper, this snapping band has a convex surface that is connected to the end-wall 10 while forming a recess for receiving the edge 5 of the neck 2. Thus, snapping the stopper consists in engaging said convex surface with the bottom end of the edge 5, which edge is then received in the above-mentioned recess, as shown in the right portion only of
When the stopper 1 is opened for the first time, the skirt 12 is adapted to separate into two distinct portions, namely a top portion 121, formed integrally with the end-wall 10, and a bottom portion 122, initially connected to the top portion 121 at a peripheral line of weakness 20 situated axially in the main portion of the skirt. The skirt portion 121 is designed to be disengaged in full from the neck 2 so that said portion 121 externally carries the tab 16 and internally carries the snapping band 18. The skirt portion 122 is designed to remain around the neck 2. To this end, the portion 122 is internally provided with a ledge 22 extending radially by projecting inwards from the inside surface of the skirt 12, while running all the way around the periphery of the skirt. When the stopper is assembled on the neck 2, said ledge extends axially below the projection 6 and is adapted, when the stopper is lifted for the first time, to come axially into abutment against said projection.
The line of weakness 20 is made up of peripheral notches 24, each of which passes radially through the wall of the skirt 12. The notches succeed one another along the line 20, in other words around the periphery of the skirt. Each pair of two immediately successive notches defines a breakable bridge 26 between the two notches in the pair, which bridge interconnects the skirt portions 121 and 122 in the same direction as the axis X-X.
The line of weakness 20 does not lie within a plane that is perpendicular to the axis X-X, but rather it forms a helix (a circular helix in this example) that is centered on the axis. Thus, projected into a longitudinal section plane of the skirt 12, the line 20 is inclined at an angle α relative to the perpendicular to the axis X-X, as indicated in
In addition, the helical line 20 turns through more than 360°, so that the two peripheral ends of the line 20, respectively referenced 20A and 20B, are disposed one above the other in the same direction as the axis X-X, as can be seen clearly in
In practice, it can be understood that the strip 28 should have breaking strength that is significantly higher than the breaking strength of the breakable bridges 26, this strength of the strip 28 being dependent on its length L, on its thickness that corresponds to the radial thickness of the wall of the skirt 12, and on its axial width that corresponds to the pitch P of the helix formed by the line 20, as well as on the material of which the skirt is made. By way of example, if the stopper 1 is made of a plastics material that is usual for food-grade stoppers, and if the skirt 12 has a diameter of about 25 millimeters (mm) with a wall thickness of about 0.5 mm, the angle α is chosen to be equal to about 3°, which results in a helix pitch P of about 1 mm.
In order to prevent the portion of the skirt 121 from interfering with the neck 2 when the stopper 1 is open, provision is made for the length L of the strip 28 to be greater than 5 mm.
Advantageously, the ends 20A and 20B of the line 20 are not provided with bridges along the strip 28, the bridges 26 thus preferably being distributed substantially uniformly along the remainder of the line 20. In this way, when the stopper 1 is opened for the first time, all of the bridges 26 are broken, thereby enabling the ends 20A and 20B to open freely, i.e. the edges of the notches 24 respectively constituting the ends 20A and 20B are free to move apart and thus to enable the strip 28 to be deployed over its entire length L relative to the skirt portions 121 and 122.
On the periphery of the skirt 12, the strip 28 is situated substantially diametrically opposite from the tab 16. In this way, the presence of the strip 28 in no way hinders opening the skirt portion 121 by driving this portion by swinging it about an axis that is circumferential to the axis X-X and situated behind the skirt 12, by pushing against the tab 16 with the fingers.
There follows a description of an example of a method making it possible to fabricate the stopper 1 by using the fabricating machine shown in
In order to fabricate the stopper 1 by means of the machine shown in
The head 104 is then inserted into the skirt 12, while interposing axially between said head and the end-wall 10 a resilient compression pusher 116 so that said pusher holds the end-wall 10 pressed against the surface 108 of the support plate 106, with the axis X-X perpendicular to said surface. By radially offsetting the axis 102 relative to the axis X-X, the head 104 presses the skirt 12 against the sharp edge 112 of the blade 110, in a direction substantially radial to the axis X-X.
The chuck 100 is then driven in rotation about its own axis 102, as indicated by the arrow 120 in
While the skirt 12 and the blade 110 are moving in rotation relative to each other, the end-wall 10 slides against the support plate 106, while being held pressed against the surface 108 by the pusher 116. This surface 108 is not strictly parallel to the blade 110, but rather it is inclined relative thereto, at an angle referenced β in
At the same time, in order to enable the ends 20A and 20B of the line 20 to be situated one above the other in the same direction as the axis X-X, the skirt 12 and the blade 110 are moved in rotation relative to each other through a total angular stroke that is strictly greater than 360°. In practice, this stroke is preferably greater than 375°, with a view to obtaining a sufficient length L for the strip 28.
To make the pitch P of the helix-shape of the line 20 greater than or equal to 1 mm, provision is made for the skirt 12 to move in translation by at least 0.5 mm relative to the blade 110 while the skirt moves exactly through one turn about its axis.
In practice, it is necessary for the groove 118 to follow axially the edge 112 that cuts notches in the skirt 12, so that the chuck 100 is designed to move along its axis 102 in a movement in translation T, as indicated by the arrow 126 in
Various conversions and variants may be made to the method, to the stopper 1, and to the machine that are described above. By way of example:
Number | Date | Country | Kind |
---|---|---|---|
07 07790 | Nov 2007 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR2008/051991 | 11/5/2008 | WO | 00 | 5/3/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/068778 | 6/4/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3904062 | Grussen | Sep 1975 | A |
4474302 | Goldberg et al. | Oct 1984 | A |
4534478 | Sawicki | Aug 1985 | A |
4573602 | Goldberg | Mar 1986 | A |
4909404 | Rozenberg | Mar 1990 | A |
5725115 | Bosl et al. | Mar 1998 | A |
5941404 | Charrette | Aug 1999 | A |
6460712 | Smith et al. | Oct 2002 | B2 |
20030066815 | Lucas | Apr 2003 | A1 |
20030127419 | Shenkar et al. | Jul 2003 | A1 |
20050045578 | Schwarz et al. | Mar 2005 | A1 |
Number | Date | Country |
---|---|---|
0619168 | Oct 1994 | EP |
Number | Date | Country | |
---|---|---|---|
20100258520 A1 | Oct 2010 | US |