This disclosure generally relates to processes and equipment for continuous compression molding of composite thermoplastic laminates, and deals more particularly with a continuous compression molding method and related tooling that reduces the amount of material required to manufacture the laminates.
Continuous compression molding (CCM) is a process used to fabricate thermoplastic composite (TPC) laminates in continuous lengths. One CCM process is described in German Patent Application DE 4017978 C2, published Sep. 30, 1993. This process is capable of producing TPCs of various shapes and sizes in a semi-continuous manner. Long or continuous lengths of laminate plies are fed through a pre-forming operation where the plies are shaped into a continuous pre-form which is then passed through a consolidation operation. The consolidation operation includes a continuously operating compression press which forces the plies together and consolidates them into the final shape of the part.
One disadvantage of the CCM process described above is material waste at the leading and trailing ends of each production run. This waste is a result of the position of the advance unit in relation to the starting point of the consolidation process, as well as the need to maintain a consistent gap in the press for proper alignment. The waste is commonly the shape of the part profile and may have a typical length of 6 to 8 feet, for example in some applications. This amount of waste may not be considered as significant in large production runs or production runs using less expensive materials. However, in the case of production runs that use more expensive materials, or relatively short production runs, the material waste may comprise a substantial amount of the cost of producing the parts.
Accordingly, there is a need for a method and related tooling that reduces the material waste. Embodiments of the disclosure are directed toward satisfying this need.
In accordance with an embodiment of the disclosure, tooling is provided for use in continuous process for forming thermoplastic laminate parts using a lay-up of laminate plies. The tooling may include a rigid body having first and second ends. The body may include a recessed area in which the part is received. The first and second ends of the rigid body extend beyond the recess and also the ends of the part. The tooling body forms a carrier used to move the part through successive operations in the continuous forming process. The recess defines first and second shoulders in the body for respectively engaging opposite ends of the part to prevent movement of the part relative to the tooling body. The depth of the recess is substantially equal to the thickness of the consolidated part so that the exterior surfaces of the tooling body and the part form a continuous profile along the length of the tool body. In one application, without limitation, the tooling body may be generally U-shaped in cross section.
According to another embodiment, tooling is provided for carrying a lay-up of laminate plies through a continuous compression molding line for producing a part. The tooling may comprise an elongated body having opposite first and second ends, and at least one recess in the body for receiving the lay-up. The first and second ends of the body extend respectively beyond the opposite ends of the lay-up and have outside surfaces forming an extension of the profile of the part when the lay-up is compressed into the shape of the part. The recess may be formed along the length of the body, between the first and second body ends. The depth of the recess may be substantially equal to the thickness of the part. The outside surfaces of the body are substantially coplanar with the exterior surfaces of the part so that the combination of the body and the part form a continuous smooth profile.
According to another embodiment, a method is provided for fabricating a thermoplastic laminate part using a continuous compression molding line. The method includes the steps of placing a laminate lay-up in a recess formed in a tool, and moving the tool through the molding line. The method may further include the steps of passing the tool through a pre-forming operation, shaping the lay-up into a preformed part, passing the tool through a consolidation operation, consolidating the preformed part, and removing the part from the tool after the part has been consolidated.
A still further embodiment of the disclosure provides a method for fabricating a composite material part, comprising the steps of: supporting a lay-up of composite material on a tool; moving the tool through a continuous compression molding line; shaping the lay-up into a preformed part; consolidating the preformed part; and, removing the part from the tool after the preformed part has been consolidated.
These and further features, aspects and advantages of the embodiments will become better understood with reference to the following illustrations, description and claims.
Embodiments of the disclosure provide material efficient tooling for forming thermoplastic composite (TPC) laminates and laminated parts using continuous compression molding (CCM) techniques. As will be described below in more detail, the laminates and laminate parts can be fabricated in a continuous process with reduced scrap material. The embodiments of the disclosure may be employed in a wide range of applications, and are especially suited for forming TPC stiffened members used in aircraft applications which may include, without limitation, fuselage skins, wing skins, control surfaces, door panels and access panels, keel beams, floor beams and deck beams. Various part cross section geometries can be fabricated including, without limitation, I-sections, Z-sections, U-sections, T-sections, etc. These parts may have uniform or non-uniform thicknesses, and can be either curved or straight along their length.
The basic process for forming TPC parts of the type described above are disclosed in U.S. patent application Ser. No. 11/347,122, filed Feb. 2, 2006, U.S. patent application Ser. No. 11/584,923, filed Oct. 20, 2006, and German Patent Application DE 4017978 C2, published Sep. 30, 1993. The entire disclosure of each of which are incorporated by reference herein.
Referring to
The preformed part 22, which has the general shape of the final part, exits the pre-forming zone 20 and moves into the consolidating operation 30. The consolidating operation 30 includes a plurality of standardized tool dies generally indicated at 36, that are individually mated with tool members (not shown) which have smooth outer surfaces engaged by the standardized dies, and inner surfaces that have tooled features. These tooled features are imparted to the preformed part 22 during the consolidation process. The commonality of the surfaces between the standardized dies 36 and the outer surfaces of the tool members eliminates the need for part-specific matched dies.
The consolidating operation 30 includes a pulsating drive mechanism 40 that moves the preformed part 22 forward within the consolidating operation 30 and away from the pre-forming zone 20, in continuous, incremental steps. As the preformed part 22 moves forward, the preformed part 22 first enters a heating zone 26 that heats the preformed part 22 to a temperature which allows the free flow of the polymeric component of the matrix resin in the plies 12, 14.
Next, the preformed part 22 moves forward into a pressing zone or operation 32 wherein standardized dies 36 are brought down collectively or individually at predefined pressures sufficient to compress and consolidate (i.e. allow free-flow of the matrix resin) the various plies 12, 14 into the desired shape and thickness. As the dies 36 are opened, the preformed part 22 is incrementally advanced within the consolidation operation 30, following which the dies 36 are closed again, causing successive sections of the part 22 to be compressed within different temperature zones, and thereby consolidate the laminate plies in the compressed section. This process is repeated for each temperature zone of the die 36 as the part 22 is incrementally advanced through the consolidation operation 30.
The fully formed and compressed (consolidated) part 22 then enters a cooling zone 34 which is separated from the pressing zone 32, wherein the temperature is brought below the free-flowing temperature of the matrix resin in the plies 12, 14, thereby causing the fused or consolidated part 22 to harden to its ultimate pressed shape. The consolidated and cooled part 38 then exits the consolidating operation 30, where the mandrels 16 are taken up on rollers 42. The final formed TPC part 44 is removed at the end of the line 10.
Although a CCM process has been described above for purposes of illustration, it should be noted that other molding processes may be used, including, but not limited to pultrusion or roll forming.
At the end of a production run, some amount of the ply materials 74 are excess because portions of the ply materials 74 remain within the CCM line 10 when production is terminated. This excess material is illustrated in
The primary cause for the scrap 80 on the trailing end of the part 76 is a result of the need to maintain a constant gap throughout the length of the presses in the consolidating operations 30. More particularly, is necessary to have the press elements (not shown) in the consolidating operation 30 applying constant pressure on the part 76 until the part 76 has completely exited the consolidating operations 30. Otherwise, unequal pressure may be applied by press platens to the end of the part 76 during the consolidation process which could deform portions of the part 76 or result in uneven pressures being applied during the consolidation process.
As previously discussed, the length of the scrap 80, 82 at the end of a production run may not be significant where the materials being used are inexpensive or where the production runs are high volume, however in the case of the use of expensive materials or short production runs, the cost of the scrap 80, 82 may be significant. In accordance with the disclosed embodiments, this scrap may be eliminated using tooling 84 shown in
In the illustrated example, the finished part 76 is U-shaped in cross section (
The recess 88 defines a pair of oppositely facing shoulders 96 within the thickness of the walls 86a, 86b and 86c against which the ends of the part 76 may abut so as to prevent longitudinal movement of the part 76 relative to the tool body 84.
Although the tooling 84 has been described in connection with its use to form a relatively simple, U-section part of constant wall thickness, other configurations of the tool body 86 can be employed to fabricate other part shapes. For example, the recess 88 may possess surface features or a non-uniform depth in order to produce a part 76 having the same surface features or a non-uniform wall thickness. Furthermore, the tool body 86 may be curved along its length in order to produce parts 76 that are also curved along their length.
In use, as best seen in
During the initial feed process, the leading end 98 of tool body 84 passes through the pulsating drive mechanism 40 just before the laminate plies 74 reach the pre-forming zone 20. In other words, the length of the leading end 98 of tool body 84 is such that the pulsating drive mechanism 40 is able to grasp the tool body 84, and begin advancing the tool body 84 before the laminate plies 74 actually reach the pre-forming zone 20. Although not specifically shown in
As the pulsating drive mechanism 40 pulls the tool body 84 forwardly, the laminate plies 74 are pressed over the tool body 84 so as to pre-form the part, following which the preformed part, designated as 76a in
Continued movement of the tool body 84 carries the finished part 76 completely through the consolidation operations, with the trailing end 100 of tool body 84 remaining in the consolidation station 30 until the finished part 76 has completely emerged from the pulsating drive mechanism 40 and any other related processing equipment, and until the part 76 can be removed from the tool body 84. The trailing end 100 of the tool body 84 functions, in effect as a shim to maintain the alignment of the presses within the consolidation operations 30 until the part 76 completes the consolidation cycle. Because the trailing end 100 of the tool body 84 remains within the consolidation operations 30 until consolidation of the part 76 is complete, gaps within the press elements within the consolidation operations 30 remain constant, even as the trailing end of the finished part 76 emerges from the consolidation operations 30.
It can be appreciated that by using tooling 84 having a tool body 86 that has extended leading and trailing ends 98, 100, the scrap represented at 80, 82 shown in
The tool body 84 may be constructed from any of various metals such as, but not limited to, stainless steel, and may be reused. The recess 88 in the tool body 86 may be created by machining the outer surface of the tool body 84 to a depth equal to the thickness of the consolidated laminate plies of the part 76.
Although the embodiments of this disclosure have been described with respect to certain exemplary embodiments, it is to be understood that the specific embodiments are for purposes of illustration and not limitation, as other variations will occur to those of skill in the art.
This application is a continuation application of U.S. application Ser. No. 13/934,884, filed Jul. 3, 2013, which is a divisional application of U.S. application Ser. No. 11/701,789, filed Feb. 3, 2007, and issued U.S. Pat. No. 8,491,745 on Jul. 23, 2013.
Number | Name | Date | Kind |
---|---|---|---|
2708288 | Fuller et al. | May 1955 | A |
4061817 | Maxel | Dec 1977 | A |
4151031 | Goad et al. | Apr 1979 | A |
4225553 | Hirota et al. | Sep 1980 | A |
4414266 | Lubowitz et al. | Nov 1983 | A |
4414269 | Lubowitz et al. | Nov 1983 | A |
2440228 | Yardeny et al. | Apr 1984 | A |
4462946 | Goldsworthy | Jul 1984 | A |
4571355 | Elrod | Feb 1986 | A |
4608220 | Caldwell et al. | Aug 1986 | A |
4674712 | Whitener et al. | Jun 1987 | A |
4749613 | Yamada et al. | Jun 1988 | A |
4759815 | Frey | Jul 1988 | A |
4818460 | Nied | Apr 1989 | A |
4859267 | Knoll | Aug 1989 | A |
4913910 | McCarville et al. | Apr 1990 | A |
4944824 | Gupta | Jul 1990 | A |
4970044 | Kim et al. | Nov 1990 | A |
4980013 | Lowery | Dec 1990 | A |
5021283 | Takenaka et al. | Jun 1991 | A |
5026447 | O'Connor | Jun 1991 | A |
5026514 | Hauwiller et al. | Jun 1991 | A |
5043128 | Umeda | Aug 1991 | A |
5057175 | Ashton | Oct 1991 | A |
5064439 | Chang et al. | Nov 1991 | A |
5139407 | Kim et al. | Aug 1992 | A |
5182060 | Berecz | Jan 1993 | A |
5192330 | Chang et al. | Mar 1993 | A |
5192383 | Cavin | Mar 1993 | A |
5320700 | Hall et al. | Jun 1994 | A |
5413472 | Dietterich et al. | May 1995 | A |
5681513 | Farley | Oct 1997 | A |
5716487 | Sumerak | Feb 1998 | A |
5759325 | Davis | Jun 1998 | A |
5820804 | Elmaleh | Oct 1998 | A |
5958550 | Childress | Sep 1999 | A |
6007917 | Weigel et al. | Dec 1999 | A |
6024555 | Goodridge et al. | Feb 2000 | A |
6114012 | Amaoka et al. | Sep 2000 | A |
6162314 | Kassuelke et al. | Dec 2000 | A |
6291049 | Kunkel et al. | Sep 2001 | B1 |
6319346 | Clark et al. | Nov 2001 | B1 |
6425969 | van den Akker | Jul 2002 | B1 |
6689448 | George et al. | Feb 2004 | B2 |
6696009 | Davis | Feb 2004 | B2 |
6764057 | Fanucci et al. | Jul 2004 | B2 |
6869558 | Polk, Jr. et al. | Mar 2005 | B2 |
7186361 | Kasai et al. | Mar 2007 | B2 |
7191982 | Vetillard et al. | Mar 2007 | B2 |
7300693 | Albers et al. | Nov 2007 | B2 |
7419372 | Kasai et al. | Sep 2008 | B2 |
7431875 | Rule | Oct 2008 | B2 |
7513769 | Benson et al. | Apr 2009 | B2 |
7670525 | Weidmann et al. | Mar 2010 | B2 |
7807005 | Rubin et al. | Oct 2010 | B2 |
7871553 | Wilkerson et al. | Jan 2011 | B2 |
8151529 | Weidmann et al. | Apr 2012 | B2 |
8163221 | Suzuki et al. | Apr 2012 | B2 |
8333858 | Rubin et al. | Dec 2012 | B2 |
8337654 | Schmier, II et al. | Dec 2012 | B2 |
8425708 | Rubin et al. | Apr 2013 | B2 |
20020088549 | Fanucci et al. | Jul 2002 | A1 |
20020135093 | Davis | Sep 2002 | A1 |
20030044570 | George et al. | Mar 2003 | A1 |
20030168555 | Livi et al. | Sep 2003 | A1 |
20030175520 | Grutta et al. | Sep 2003 | A1 |
20030232176 | Polk, Jr. et al. | Dec 2003 | A1 |
20040009338 | Jo et al. | Jan 2004 | A1 |
20040096535 | Hudeck et al. | May 2004 | A1 |
20050029707 | Kasai et al. | Feb 2005 | A1 |
20050053765 | Albers et al. | Mar 2005 | A1 |
20050056362 | Benson et al. | Mar 2005 | A1 |
20050252603 | Rule | Nov 2005 | A1 |
20060011289 | Suriano | Jan 2006 | A1 |
20060083806 | Kasai et al. | Apr 2006 | A1 |
20060216480 | Weidmann et al. | Sep 2006 | A1 |
20060226288 | Vetillard et al. | Oct 2006 | A1 |
20060249868 | Brown et al. | Nov 2006 | A1 |
20070012858 | Callis | Jan 2007 | A1 |
20070175571 | Rubin et al. | Aug 2007 | A1 |
20070175572 | Rubin et al. | Aug 2007 | A1 |
20070175573 | Fox et al. | Aug 2007 | A1 |
20070175575 | Rubin et al. | Aug 2007 | A1 |
20080168619 | Gonzalez et al. | Jul 2008 | A1 |
20080185756 | Wilkerson et al. | Aug 2008 | A1 |
20080277058 | Schmier, II et al. | Nov 2008 | A1 |
20090065977 | Suzuki et al. | Mar 2009 | A1 |
20090074905 | Matsen et al. | Mar 2009 | A1 |
20090078362 | Wilkerson et al. | Mar 2009 | A1 |
20100148005 | Weidmann et al. | Jun 2010 | A1 |
20100225016 | Prebil et al. | Sep 2010 | A1 |
20100319841 | Rubin et al. | Dec 2010 | A1 |
20110206906 | Rubin et al. | Aug 2011 | A1 |
20120175049 | Suzuki et al. | Jul 2012 | A1 |
20130126076 | Rubin et al. | May 2013 | A1 |
20130202871 | Hidaka et al. | Aug 2013 | A1 |
20140014274 | Wilkerson et al. | Jan 2014 | A1 |
20150053333 | Prebil et al. | Feb 2015 | A1 |
Number | Date | Country |
---|---|---|
834458 | Feb 1976 | BE |
1504302 | Apr 1969 | DE |
1629830 | Jan 1971 | DE |
2165470 | Jul 1973 | DE |
2647821 | Apr 1978 | DE |
3709480 | Oct 1988 | DE |
4017978 | Dec 1991 | DE |
29711917 | Aug 1997 | DE |
0024895 | Mar 1981 | EP |
0277727 | Aug 1988 | EP |
0317861 | May 1989 | EP |
1336469 | Aug 2003 | EP |
1504880 | Feb 2005 | EP |
1614624 | Jan 2006 | EP |
1666353 | Jun 2006 | EP |
1813404 | Aug 2007 | EP |
1995040 | Nov 2008 | EP |
2014448 | Jan 2009 | EP |
2384604 | Oct 1978 | FR |
2587649 | Mar 1987 | FR |
2888155 | Jan 2007 | FR |
531357 | Jan 1941 | GB |
1157239 | Jul 1969 | GB |
2007001298 | Jan 2007 | JP |
WO8302085 | Jun 1983 | WO |
WO8810186 | Dec 1988 | WO |
WO2007092371 | Aug 2007 | WO |
WO2008073164 | Jun 2008 | WO |
WO2008094227 | Aug 2008 | WO |
WO2008097847 | Aug 2008 | WO |
WO2010101744 | Sep 2010 | WO |
WO2011106117 | Sep 2011 | WO |
Entry |
---|
International Search Report dated Oct. 23, 2007, regarding Application No. PCT/US2007/003021, 3 pages. |
International Search Report dated Oct. 27, 2008, regarding Application No. PCT/US2007/018611, 3 pages. |
International Search Report dated Mar. 31, 2008, regarding Application No. PCT/US2007/022234, 3 pages. |
International Search Report dated Jul. 17, 2008, regarding Application No. PCT/US2008/052806, 2 pages. |
International Search Report dated Oct. 28, 2010, regarding Application No. PCT/US2010/025176, 5 pages. |
International Search Report dated Apr. 28, 2011, regarding Application No. PCT/US2011/022003, 3 pages. |
European Patent Office Communication, dated Aug. 9, 2011, regarding Application No. EP08728832.0, 5 pages. |
Canadian Intellectual Property Office Communication, dated Jul. 22, 2014, regarding Application No. 2,673,448, 2 pages. |
Notices of Reasons for Rejection and English Translation, dated Jul. 14, 2015, regarding Japanese Patent Application No. 2012-555007, 5 pages. |
Canadian Intellectual Property Office Communication, dated Apr. 4, 2017, regarding Application No. 2,790,614, 3 pages. |
Cai et al., “Consolidation Techniques and Cure Control,” In: Handbook of Composites, Second Edition, Peters (Ed.), Chapman & Hall, London, 1998, pp. 576-577. |
Loos et al., “Thermoplastic Composite Sheet Forming,” presented at National Science Foundation Workshop on Composite Sheet Forming, Sep. 2001, 11 pages. Retrieved Apr. 4, 2012, from http://www.mech.northwestern.edu/fac/cao/nsfworkshop/presentations/ns7_loos.pdf. |
Office Action, dated Mar. 12, 2009, regarding U.S. Appl. No. 11/347,122, 17 pages. |
Office Action, dated Nov. 23, 2009, regarding U.S. Appl. No. 11/347,122, 9 pages. |
Final Office Action, dated Jun. 24, 2010, regarding U.S. Appl. No. 11/347,122, 12 pages. |
Notice of Allowance, dated Jul. 21, 2010, regarding U.S. Appl. No. 11/347,122, 6 pages. |
Office Action, dated Apr. 15, 2010, regarding U.S. Appl. No. 11/697,378, 28 pages. |
Final Office Action, dated Oct. 27, 2010, regarding U.S. Appl. No. 11/697,378, 20 pages. |
Office Action, dated Jul. 27, 2011, regarding U.S. Appl. No. 11/697,378, 19 pages. |
Final Office Action, dated Mar. 2, 2012, regarding U.S. Appl. No. 11/697,378, 7 pages. |
Office Action, dated Jun. 18, 2012, regarding U.S. Appl. No. 11/697,378, 20 pages. |
Final Office Action, dated Sep. 19, 2012, regarding U.S. Appl. No. 11/697,378, 10 pages. |
Notice of Allowance, dated Dec. 24, 2012, regarding U.S. Appl. No. 11/697,378, 11 pages. |
Office Action, dated Feb. 4, 2010, regarding U.S. Appl. No. 11/584,923, 16 pages. |
Final Office Action, dated Jul. 13, 2010, regarding U.S. Appl. No. 11/584,923, 12 pages. |
Office Action, dated Jul. 27, 2011, regarding U.S. Appl. No. 11/584,923, 10 pages. |
Final Office Action, dated Apr. 16, 2012, regarding U.S. Appl. No. 11/584,923, 9 pages. |
Notice of Allowance, dated Jul. 25, 2012, regarding U.S. Appl. No. 11/584,923, 19 pages. |
Office Action, dated Feb. 2, 2010, regarding U.S. Appl. No. 11/699,653, 16 pages. |
Final Office Action, dated Jul. 16, 2010, regarding U.S. Appl. No. 11/699,653, 11 pages. |
Office Action, dated Feb. 16, 2011, regarding U.S. Appl. No. 11/699,653, 13 pages. |
Final Office Action, dated Jul. 7, 2011, regarding U.S. Appl. No. 11/699,653, 14 pages. |
Office Action, dated Feb. 14, 2014, regarding U.S. Appl. No. 11/699,653, 43 pages. |
Notice of allowance, dated Mar. 27, 2015, regarding U.S. Appl. No. 11/699,653, 22 pages. |
Office Action, dated Oct. 1, 2009, regarding U.S. Appl. No. 11/701,789, 18 pages. |
Final Office Action, dated Mar. 25, 2010, regarding U.S. Appl. No. 11/701,789, 15 pages. |
Office Action, dated Jun. 21, 2010, regarding U.S. Appl. No. 11/701,789, 11 pages. |
Final Office Action, dated Dec. 29, 2010, regarding U.S. Appl. No. 11/701,789, 14 pages. |
Office Action, dated Apr. 20, 2011, regarding U.S. Appl. No. 11/701,789, 15 pages. |
Final Office Action, dated Oct. 12, 2011, regarding U.S. Appl. No. 11/701,789, 17 pages. |
Office Action, dated Jul. 5, 2012, regarding U.S. Appl. No. 11/701,789, 30 pages. |
Final Office Action, dated Dec. 13, 2012, regarding U.S. Appl. No. 11/701,789, 9 pages. |
Notice of Allowance, dated Mar. 22, 2013, regarding U.S. Appl. No. 11/701,789, 22 pages. |
Office Action dated Mar. 4, 2015, regarding U.S. Appl. No. 13/934,884, 35 pages. |
Final Office Action dated Jul. 10, 2015, regarding U.S. Appl. No. 13/934,884, 17 pages. |
Office Action, dated Jan. 22, 2014, regarding U.S. Appl. No. 13/673,989, 30 pages. |
Final Office Action, dated Mar. 27, 2014, regarding U.S. Appl. No. 13/673,989, 12 pages. |
Office Action, dated Jun. 6, 2014, regarding U.S. Appl. No. 13/673,989, 11 pages. |
Final Office Action, dated Jan. 2, 2015, regarding U.S. Appl. No. 13/673,989, 19 pages. |
Office Action, dated May 6, 2016, regarding U.S. Appl. No. 13/673,989, 20 pages. |
Notice of Allowance, dated Jul. 7, 2016, regarding U.S. Appl. No. 13/673,989, 9 pages. |
Office Action, dated Sep. 11, 2009, regarding U.S. Appl. No. 11/859,057, 11 pages. |
Final Office Action, dated Mar. 23, 2010, regarding U.S. Appl. No. 11/859,057, 10 pages. |
Notice of Allowance, dated Oct. 4, 2010, regarding U.S. Appl. No. 11/859,057, 9 pages. |
Office Action, dated Jan. 24, 2011, regarding U.S. Appl. No. 12/398,071, 15 pages. |
Final Office Action, dated Jun. 8, 2011, regarding U.S. Appl. No. 12/398,071, 9 pages. |
Office Action, dated Feb. 20, 2013, regarding U.S. Appl. No. 12/398,071, 24 pages. |
Final Office Action, dated Jul. 19, 2013, regarding U.S. Appl. No. 12/398,071, 13 pages. |
Notice of Allowance, dated Nov. 20, 2013, regarding U.S. Appl. No. 12/398,071, 9 pages. |
Office Action, dated Jun. 25, 2015, regarding U.S. Appl. No. 14/182,215, 34 pages. |
Final Office Action, dated Oct. 19, 2015, regarding U.S. Appl. No. 14/182,215, 12 pages. |
Notice of Allowance, dated Sep. 8, 2016, regarding U.S. Appl. No. 14/182,215, 15 pages. |
Office Action, dated Dec. 16, 2011, regarding U.S. Appl. No. 12/711,401, 22 pages. |
Final Office Action, dated Jun. 15, 2012, regarding U.S. Appl. No. 12/711,401, 33 pages. |
Office Action, dated Jan. 18, 2013 regarding U.S. Appl. No. 12/711,401, 32 pages. |
Final Office Action, dated Jul. 1, 2013, regarding U.S. Appl. No. 12/711,401, 33 pages. |
Office Action, dated Sep. 6, 2016, regarding U.S. Appl. No. 12/711,401, 27 pages. |
Final Office Action, dated Feb. 9, 2017, regarding U.S. Appl. No. 12/711,401, 28 pages. |
Office Action, dated Jun. 13, 2017, regarding U.S. Appl. No. 12/711,401, 14 pages. |
Final Office Action, dated Nov. 20, 2017, regarding U.S. Appl. No. 12/711,401, 34 pages. |
Office Action, dated Jul. 18, 2014, regarding U.S. Appl. No. 13/419,187, 44 pages. |
Final Office Action, dated Aug. 25, 2015, regarding U.S. Appl. No. 13/419,187, 21 pages. |
Office Action, dated Nov. 21, 2016, regardsing U.S. Appl. No. 13/419,187, 31 pages. |
Office Action, dated Nov. 22, 2017, regarding U.S. Appl. No. 13/419,187, 13 pages. |
Office Action, dated Oct. 2, 2017, regarding U.S. Appl. No. 14/538,977, 14 pages. |
Office Action, dated Mar. 4, 2016, regarding U.S. Appl. No. 14/602,699, 48 pages. |
Final Office Action, dated Aug. 8, 2016, regarding U.S. Appl. No. 14/602,699, 17 pages. |
Office Action, dated Dec. 29, 2016, regarding U.S. Appl. No. 14/602,699, 18 pages. |
Final Office Action, dated Jun. 8, 2017, regarding U.S. Appl. No. 14/602,699, 20 pages. |
Office Action, dated Jan. 26, 2018, regarding U.S. Appl. No. 14/602,699, 26 pages. |
Final Office Action, dated Mar. 15, 2018, regarding U.S. Appl. No. 13/419,187, 26 pages. |
Office Action, dated May 24, 2018, regarding U.S. Appl. No. 12/711,401, 35 pages. |
Final Office Action, dated Apr. 19, 2018, regarding U.S. Appl. No. 14/538,977, 21 pages. |
Final Office Action, dated Jul. 9, 2009, regarding U.S. Appl. No. 11/347,122, 8 pages. |
Prebil et al., “Method for Fabricating Tapered Thermoplastic Composite Parts,” filed Mar. 13, 2012, U.S. Appl. No. 13/419,187, 67 pages. |
Number | Date | Country | |
---|---|---|---|
20180154596 A1 | Jun 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11701789 | Feb 2007 | US |
Child | 13934884 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13934884 | Jul 2013 | US |
Child | 15831388 | US |