The embodiments of the invention generally relate to gas operating systems for firearms and, more particularly, to automatic gas regulation systems for firearms.
Semi-automatic firearms, such as rifles and shotguns, are designed to fire a round of ammunition, such as a cartridge or shotshell, in response to each squeeze of the trigger of the firearm, and thereafter automatically load the next shell or cartridge from the firearm magazine into the chamber of the firearm. During firing, the primer of the round of ammunition ignites the propellant (powder) inside the round, producing an expanding column of high pressure gases within the chamber and barrel of the firearm. The force of this expanding gas propels the bullet/shot of the cartridge or shell down the barrel.
In semi-automatic and automatic rifles and shotguns that rely on such gases from firing to drive operation of the firearm, gas from a fired cartridge is directed to a gas piston or the bolt carrier to cycle the action of the firearm. For example, upon firing a cartridge in a firearm having a direct gas impingement system, high-temperature, high-pressure gas follows the exiting projectile down the barrel; and a portion of the gas from the fired cartridge travels into a port and along a gas tube, rearwardly to a gas key that is coupled to the bolt carrier and includes an internal port to allow the high-pressure gas to flow against the bolt carrier. As the gas expands, the pressure from the gas drives the bolt carrier and bolt apart. The bolt carrier and bolt continue to be driven apart until the bolt rotates following the cam path and unlocks from the barrel extension. The bolt carrier and bolt then translate rearwardly against the return spring located in the buttstock, extracting the empty cartridge. Thereafter, forward movement of the bolt and bolt carrier by the return spring loads a next cartridge from the ammunition magazine and returns the bolt. The bolt returns to a locked position for firing.
In standard auto loading rifles, the addition of a suppressor to the muzzle of the firearm can generate an increase in bore pressure, causing the rifle to cycle faster than it would normally cycle if the suppressor were not installed. In known systems, the operator manually switches a gas regulating device to modify the operating characteristics of the firearm to compensate for this increased bore pressure. This manual switch will typically have a lever or rotational plug that requires the operator to manually switch the system from one setting to the other. In a manually switched gas system, gases are either diverted (bled off) or restricted in order to reduce the overall energy available to operate the firearm.
The embodiments disclosed are directed to a system and method in which the action of installing a suppressor on the firearm directly actuates a regulating mechanism to reduce the initial energy available to a gas operating system and to match operating speeds between suppressed and unsuppressed operation of the firearm.
In an autoloading firearm, installing a suppressor on the firearm will typically cause the cyclic operation of the firearm to speed up due to residual pressures in the suppressor and bore of the firearm. Commonly available systems require the manual activation of a regulator to reduce the initial energy available to the operating system to balance the extra energy imparted by the residual bore pressure.
In one embodiment, an auto regulating gas system is provided for an auto loading firearm wherein the firearm includes a barrel having a bore, at least one gas port, and a muzzle. The gas system includes a gas block attached to the barrel to redirect a volume of propellant gases to cycle the auto loading firearm, the gas block including at least one gas port for directing propellant gases received from the at least one gas port of the barrel into the gas system to cycle the auto loading firearm. A spring-loaded plunger assembly is at least partially positioned within the gas block. The plunger assembly includes a plunger component having a plurality of gas ports and a plunger cap at a forward end, the plunger cap having at least one of a cam pin and a cam path, wherein the position of the plunger component within the gas block automatically controls an amount of gas that is allowed to enter the gas system. Mounting a suppressor to the muzzle depresses the plunger cap and drives it linearly rearward causing the plunger component to rotate as the cam pin travels along the cam path to automatically restrict the volume of propellant gases directed into the gas system through a restricted flow gas port in the plunger component.
In another embodiment, an auto regulating gas system for an auto loading firearm is provided, including a gas block attached to the barrel and configured to redirect a volume of propellant gases to cycle the operation of the firearm, the gas block having at least one gas port for directing propellant gases received from at least one gas port of the barrel into the gas system; a flow regulator at least partially positioned in the gas block, the flow regulator comprising a regulator body rotatably positioned in a passageway connected to the at least one gas port of the gas block, wherein a position of the regulator body in the passageway controls an amount of gas that is allowed to enter the gas system; and a linkage comprising a plunger part configured to extend forwardly from the gas block for being engaged and moved rearwardly by a suppressor mounted to the muzzle end of the firearm barrel. The linkage further generally will be configured to rotate the regulator body in the passageway by an amount as needed to control an amount of gas that is allowed to enter the gas system in response to the plunger part being engaged and moved rearwardly by the suppressor mounted to the muzzle.
Another aspect of this disclosure is the provision of a method of regulating a gas system for an auto loading firearm. Such a method will include mounting a suppressor to a muzzle of a barrel of the firearm wherein a linkage is engaged by the suppressor in response to the mounting of the suppressor to the muzzle of the barrel of the firearm. The linkage is operable to rotate a flow regulator in response to the linkage being engaged by the suppressor mounted to the muzzle. The flow regulator is operable to adjust an amount of gas that is allowed to enter the gas system in response to the rotation of the flow regulator.
The above-discussed and other advantages and aspects of the embodiments of the disclosure will become apparent and more readily appreciated from the following detailed description of the embodiments taken in conjunction with the accompanying drawings, as follows.
The following description is provided as an enabling teaching of embodiments of the invention including the best, currently known embodiment. Those skilled in the relevant art will recognize that many changes can be made to the embodiments described, while still obtaining the beneficial results. It will also be apparent that some of the desired benefits of the embodiments described can be obtained by selecting some of the features of the embodiments without utilizing other features. Accordingly, those who work in the art will recognize that many modifications and adaptations to the embodiments described are possible and may even be desirable in certain circumstances. Thus, the following description is provided as illustrative of the principles of the invention and not in limitation thereof, since the scope of the invention is defined by the claims.
As described in the embodiments herein, the use of a cam path to transfer linear or translatory motion of the plunger cap or part into rotational motion of the plunger component or flow regulator body is a unique feature that regulates the amount of propellant gas being allowed to enter the gas tube when a suppressor is attached to the end of the firearm muzzle. The disclosed embodiments improve the reliability and durability of the firearm when operating in a suppressed condition or mode. This provides the further advantage of the firearm being less prone to carbon fouling which causes the mechanism to become stuck in one position.
A gas block 34 can be attached to the barrel 30 to redirect the propellant gases to cycle the action of the firearm F through the use of a gas tube 44 that redirects the gases into the bolt carrier (not shown). Pins 62, 64 or one or more other suitable fasteners retain the gas block 34 to the barrel 30.
The barrel 30 of the auto loading firearm F may have a suppressor 40 attached to its muzzle end 14. Attaching the suppressor 40 to the muzzle 14 forces the plunger part or cap 18 to move linearly rearward which rotates the plunger component 36 in order to restrict the amount of gas entering the gas tube 44, thereby reducing the amount of energy used to cycle the firearm.
As shown in
Gas from at least one port 31 (
A suppressor 40 may be mounted to the muzzle 14 of the barrel 30 in any suitable manner, such as by being mounted directly to the muzzle by way of a threaded connection comprising cooperative, direct engagement between at least one internal helical thread of the suppressor and at least one external helical thread of the muzzle, or the suppressor may be indirectly mounted to the muzzle. For example,
In one embodiment shown in the drawings, the gas block 34 can be located and/or configured so that when a suppressor 40, as shown in
As best understood with reference to
Due to the large amount of carbon and combustion by-product build-up that can occur in gas blocks, this embodiment is superior to prior plunger devices that rely solely on linear motion of a plunger to constrict flow from the gas block. As fouling and carbon build-up occurs in the gas block, prior plunger devices can prevent a linear plunger from translating properly. As disclosed herein, linear motion of the plunger cap 18 causes rotational motion of the plunger component 36 via a cam pin 50 and cam path 52. It only takes a very slight rotational motion of the plunger component 36 to change the gas setting, reducing the likelihood that the plunger assembly 10 will get stuck. In one embodiment, the amount of rotation of the plunger component 36 is around 60°.
In operation, a gas block 34 with a spring loaded plunger assembly 10, having one end protruding from the muzzle side of the gas block 34, are attached to firearm F so that when a suppressor 40 is mounted to the muzzle device 20, the suppressor 40 depresses the plunger cap 18. The plunger cap 18 interfaces with the plunger component 36 via a cam pin 50 and cam path 52 that causes the plunger component 36 to be rotated when the cap 18 is translated linearly. When the suppressor 40 is fully attached, the plunger component 36 will have rotated so that the plunger component 36 partially obstructs the flow of gas between the gas port 32 in the gas block 34 and the gas tube 44 via the restricted flow gas port 43 in the plunger component 36. The spring 54 can be located between the plunger component 36 and the plunger cap 18 so that when the suppressor 40 is not mounted to the muzzle device 20, the spring force causes the cap 18 and plunger component 36 to return to their original positions. The plunger assembly 10 is retained within the gas block via a cross pin 26. In one embodiment, the cross pin 26 is retained to the gas block 34 via a spring plunger and has a detent at the open and closed position.
It is known that the addition of a suppressor 40 to a semi-automatic firearm F can have adverse effects on the reliability and durability of the firearm due to the suppressor. As illustrated in
In one embodiment, the regulator or plunger assembly 10 can be disassembled only when the plunger assembly 10 is removed from the gas block 34. The plunger assembly 10 may be removed from the gas block 34 by at least partially withdrawing the cross pin 26 and then pulling the plunger assembly out of the front of the gas block. Then, the plunger assembly 10 can be disassembled by removing the cam pin 50 from the front shaft 56 of the plunger component 36, so that the plunger cap 18 may be removed from the plunger component 36. More specifically, the plunger cap 18 may be removed from the plunger component 36 by depressing the plunger cap 18 to the bottom of its stroke, and then rotating the plunger component 36 so that an end of the cam pin 50 aligns with a hole in the plunger cap 18, wherein the hole in the plunger cap may be located at the opposite side of the plunger cap from the cam path 52. Once the subject end of the cam pin 50 is aligned with the subject hole, the camp pin can be pushed out from the opposite side via a punch or bullet tip. The cam pin 50 has a shoulder on one end (not shown) to prevent the cam pin 50 from becoming disassembled during operation.
In some embodiments, the gas block 34 could have one or more slot cuts that interface with the plunger cap 18 so as to prevent rotation of the plunger cap 18 during operation. For example, the plunger cap 18 can include one or more wings or lateral protrusions 60 extending outwardly from the body of the plunger cap, wherein the protrusions 60 respectively extend outwardly through forwardly and laterally open slots 62 in the gas block 34.
The plunger cap 18 includes a feature or features that allow the operator to pull the plunger assembly 10 out of the front of the gas block 34 using a bullet tip, fingers, spent cartridge, or other tool. For example and reiterating from above, in one example the plunger assembly 10 may be removed from the gas block 34 by at least partially withdrawing the cross pin 26 and then pulling the plunger assembly out of the front of the gas block.
The corresponding structures, materials, acts, and equivalents of all means plus function elements in any claims below are intended to include any structure, material, or acts for performing the function in combination with other claim elements as specifically claimed.
Those skilled in the art will appreciate that many modifications to the exemplary embodiments are possible without departing from the scope of the present invention. In addition, it is possible to use some of the features of the embodiments disclosed without the corresponding use of the other features. Accordingly, the foregoing description of the exemplary embodiments is provided for the purpose of illustrating the principles of the invention, and not in limitation thereof, since the scope of the invention is defined solely by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/931,069 filed Jan. 24, 2014, the entire disclosure of which is incorporated herein by reference.