The invention relates to a method for redistributing traffic in response to a traffic overload or a link failure and a node for a packet-based network with multipath distribution.
Possibly the most important development at present in the field of networks is the development of new technologies to make packet-oriented data networks and thereby primarily the internet suitable for new services. These new services relate primarily to so-called real-time traffic, eg. voice data and video data.
The success of the internet as the most widely used medium for sending or transmitting data is largely due to its flexibility. IP (Internet Protocol) technology is used for so-called destination based routing. IP packets contain an origin address and a destination address, based on which local routing decisions are made. This is also referred to as routing on a per hop basis, in other words routers forward to a subsequent node (next hop) based on the destination address specified in the data packet. Conventional IP technology has the significant advantage that states do not have to be maintained in the network and paths do not have to be determined beforehand for the transmission of data packets. This has to be offset against the disadvantage that the packets can only be switched on a “best effort” basis, i.e. there is no guarantee of quality of service.
The most commonly used routing protocol for an autonomous network domain or autonomous system at present is the so-called OSPF (Open Shortest Path First) protocol, which utilizes a distributed routing approach. The topology of the network is thereby known to the every node and is distributed by so-called link state advertisement messages to all the nodes in the network. The shortest path in each instance is calculated autonomously in every node for all the destinations known to said node based on link metrics. Link failure results in re-calculation of the paths.
Two main approaches are followed to improve the quality of service of IP networks in respect of new services with quality of service requirements. With one approach more than one path is established between a source and a drain or an origin and a destination, in order to be able to respond to bottleneck situations or fault situations by distribution via different paths. The routing protocol OSPF has been extended to this end by introducing the Equal Cost Multipath (ECMP) concept, which allows the simultaneous use of a number of paths of equal length, in the sense of a metric, between a source and a drain. The method makes it possible to distribute the traffic to paths of the same length. An extension of this concept can be understood to be the optimization of link usage based on measured or calculated network loads using traffic engineering mechanisms, i.e. mechanisms to control and regulate the packet traffic. The so-called OSPF-TE (TE: Traffic Engineering) method tries to allow regular distribution of the traffic in the network by adjusting the link metrics distributed in the network as a function of the usage of the respective link. The multipath routing methods are typically based on a central load distribution calculation, i.e. a decision is made at a central point or by a central entity about how the packets should be distributed.
The second approach is the central determination of paths through the network along with permanent reservation of the required bandwidth. The most important concept, involving the switching of paths, is the so-called Multi Protocol Label Switching (MPLS) protocol or concept. Virtual paths through the network are defined in the context of this concept. Incoming packets are allocated to virtual paths at the input router of an MPLS domain. Appropriate global selection of the paths and the assignment of packets to the paths allow regular distribution in the network.
Such approaches to improving the transmission quality of conventional data networks to some extent at least cancel out the advantages of conventional data networks, namely their flexibility and low level of complexity.
An object of the invention is to specify a method for multipath routing, with which traffic distribution or load distribution is optimized whilst avoiding the disadvantages of conventional methods.
The method is based on a packet-based network, in which there is provision for multipath routing or the distribution of packets to different paths. The network is made up of nodes and links (also referred to as edges or connection segments). It is possible, for some of the nodes at least, to send incoming packets to their destination on a number of different paths. The term array of paths or distribution array is used below for the different alternatives or different options for a node to forward a data packet to a subsequent link as a function of the destination of the data packet. The array of paths for a node in respect of a destination comprises the links out of the node, via which packets can be routed to the destination. The paths to the destination do not necessarily have the same length in the sense of a metric. A destination is generally defined by the routing criterion for the individual nodes specified in a routing table. This is not necessarily identical to the destination address generally specified in the packet but can, for example, comprise part of the destination address. In the case of IP networks the nodes or routers generally use the part of the address describing the network, in which the IP network end point (e.g. host gateway) is located, which corresponds to the full destination address of the packet.
According to the invention, nodes in the network independently or autonomously distribute the packets or the load to the links of an array of paths. This load distribution is also changed autonomously by the nodes. A node monitors the traffic load or packet rate it routes to a link. If an overload occurs in a link, this is detected by the node and an overload protection measure is then initiated. The primary overload protection measure is to redistribute traffic from the overloaded link to other links in the associated array of paths. A response to a link failure by redistributing to links of the associated array of paths that have not failed can be provided for correspondingly.
The invention has the advantage that the overload protection response by the node is autonomous, i.e. redistribution takes place locally. There is no need for a complex signaling operation or the propagation of messages through the entire network of nodes, which would very significantly increase the complexity of the routing protocol. Nor is there a need for a central entity, either for control purposes or to determine weightings if node weightings should have to be recalculated. Instead the weightings for routing purposes along an array are once again determined by the respective nodes. A central control entity is a weak point in respect of any fault in said entity and this is avoided in the present invention.
The inventive redistribution or allocation of the traffic to different paths can be infinite in the sense that any allocation ratios of packets to links of an array of paths are possible. This contrasts with various current multipath routing methods (e.g. ECMP), which specify a fixed allocation ratio. Optimum allocation ratios can for example be determined using the traffic matrix, i.e. the measured or calculated traffic loads on the links. Alternatively it is possible to optimize allocation ratios by means of a control process. The modified link loads in the event of traffic redistribution are thereby related to the traffic redistribution measures and the distribution measures to avoid overload situations are thereby determined.
According to one development, load redistribution is carried out by the individual nodes or by one individual node in stages. No further traffic redistribution measures are thereby implemented after the end of a stage during a waiting period or a time interval. After the end of the time interval any next stage that may be required for traffic redistribution is started. This allows the nodes following after a node initiating a protection measure to resolve any overload resulting at them due to the redistribution and to redistribute the traffic in turn. Also gradual load adjustment counteracts system oscillation.
The subject matter of the invention can be developed for situations, in which the overload cannot be resolved by redistribution within an array or if a link fails the data packets cannot be distributed to the other links of the associated array of paths, without generating an overload on one of these links. To this end an overloaded node sends a message to one node upstream from it at least, prompting said node to carry out a redistribution operation for its part, such that fewer data packets are transmitted to the node in question. Upstream thereby relates to the paths of the packets distributed on the distribution arrays affected by the overload or link failure. This method can be extended recursively or in a cascaded fashion to the upstream nodes in front of the node in question, such that every node that receives a message requesting redistribution but cannot achieve this by redistribution within the array or arrays for its part sends messages to nodes upstream from it, so that these for their part reduce the traffic by redistribution. It is thereby expedient for a message prompting redistribution to contain information about the required traffic reduction, e.g. its nature and scope. This method generally reaches a limit when an edge node in the network receives a message to reduce the overload. For edge nodes can generally not communicate with nodes in another network using the protocol used within the network to transmit messages. To reduce the traffic going away from it, such an edge node can reduce the traffic it allows into the network as part of a network access control, to bring about the required traffic load reduction in this fashion. Access controls are frequently used in data networks, which are intended to ensure transmission in compliance with quality of service features.
The subject matter of the invention also includes a network node or router, which is equipped [with means to identify] a traffic overload and to redistribute traffic to other links going out from nodes. Such a node can also be provided with means to send messages, said messages being able to bring about traffic redistribution in upstream nodes. These means for example include software modules, which support the protocol used to send the messages.
Additional features and advantages are described herein, and will be apparent from the following Detailed Description and the figures.
The subject matter of the invention is described in more detail below based on an exemplary embodiment with reference to two figures, in which:
It should be understood that various changes and modifications to the presently preferred embodiments described herein will be apparent to those skilled in the art. Such changes and modifications can be made without departing from the spirit and scope of the present subject matter and without diminishing its intended advantages. It is therefore intended that such changes and modifications be covered by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
103 21 953.6 | May 2003 | DE | national |
This application is a continuation of, claims priority to, and claims the benefit of U.S. patent application Ser. No. 10/556,830 filed on Nov. 15, 2005, in which 10/556,830 is a 371 of International Application No. PCT/EP2004/050782, filed May 13, 2004 and claims the benefit thereof. The International Application claims the benefits of German Application No. 10321953.6 DE filed May 15, 2003, both of the applications are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 10556830 | Nov 2005 | US |
Child | 12406748 | US |