This invention is in the field of controlling temperature in buildings, tents, and like enclosed spaces, and in particular heating and cooling structures using portable means.
Temporary camps are set up to provide housing, office, and like enclosures for personnel in many different situations. There may be a work force needed for a short time in a location where conventional buildings are not available on a short-term basis, or in a remote location where conventional buildings are not available at all. Construction, mining, oilfield, and military operations often require temporary housing and operations structures to accommodate significant numbers of people, as well as considerable supplies and equipment, for a relatively short time.
For cost efficiency and convenience, it is desirable to have the camp comprise structures and ancillary equipment that can be quickly taken down, moved, and set up again. For example it is imperative that military camps be quickly portable to preserve the ability of the force to move quickly in the field. At the same time, in order to maintain a reasonably content and efficient work force, it is desirable to provide a camp environment that is as comfortable as possible in the circumstances.
Often such camps are set up in remote areas with no access to an electrical grid, requiring that electrical requirements be provided by an engine driven generator. Also in order to preserve the ability of a military unit to set up camp wherever necessary, it is desirable that it be self contained such that there is no reliance on or necessity for outside resources. Reducing electrical power requirements so that same can be readily supplied by a portable generator is thus desirable.
Conventionally when setting up camps, heating is provided by portable heaters that burn fuel such as diesel or propane and are located as required in each tent, portable building, or like structure. Such heaters can be fire hazards, and can also release fumes into the structure. Resistance type electric heaters are therefore commonly used, however operating them is especially costly when power must be locally generated by a diesel generator. Diesel fuel to heat energy conversion efficiency can be as low as 30%.
Cooling is less commonly provided in temporary camps, since portable air conditioning units require significant electricity, and also add considerably to the amount of equipment that must be transported. Where such heating and cooling is desired in temporary structures, systems that are essentially similar to building rooftop units are used. These units sit on the ground outside and must therefore be connected to the structure with supply and return ducts. Thus set-up and re-packing for transport is time consuming, and operation is costly, again commonly using diesel generated electricity for operating the units.
In addition to heating and cooling, in military camps it would also be desirable to be able to scrub the air inside the temporary structures to remove micro-organisms used in biological warfare, such as anthrax bacteria and spores, that might be used in an attack. Field hospitals and medical stations especially would benefit from such scrubbing.
It is an object of the present invention to provide a method and portable apparatus for controlling the temperature inside structures that overcomes problems in the prior art.
The present invention provides, in a first embodiment, a portable apparatus for heating and cooling a plurality of structures. The apparatus comprises a fluid heater operative to supply warm fluid, a fluid chiller operative to supply cool fluid, and a plurality of portable heat exchanger units, each portable heat exchanger unit comprising a fluid coil and a fan operative to create an air stream through the fluid coil by drawing air from an intake and discharging the air through an outlet. At least one pump is operatively connected to the fluid heater, fluid chiller, and fluid coils and is operative, when the apparatus is in a heating mode, to pump warm fluid from the fluid heater through the fluid coils, and is operative, when the apparatus is in a cooling mode, to pump cool fluid from the fluid chiller through the fluid coils. The fluid heater, fluid chiller, portable heat exchanger units, and at least one pump are operatively connected by releasable connections such that the apparatus can be transported in parts and assembled at a desired destination.
The present invention provides, in a second embodiment, a portable apparatus for heating and cooling a plurality of structures. The apparatus comprises a portable heating module comprising a fluid heater operative to supply warm fluid and a warm pump operative to pump warm fluid from the fluid heater to an outbound manifold; a portable cooling module comprising a fluid chiller operative to supply cool fluid and a cool pump operative to pump cool fluid from the fluid chiller to the outbound manifold; and a plurality of portable heat exchanger units, each portable heat exchanger unit comprising a fluid coil and a fan operative to create an air stream through the fluid coil by drawing air from an intake and discharging the air through an outlet. A return manifold is operatively connected to the fluid heater and fluid chiller. A flexible outbound conduit connects the outbound manifold to an inlet end of each fluid coil, and a flexible return conduit connects the return manifold to an outlet end of each fluid coil. A control system is operative to switch the apparatus between a heating mode, wherein the warm pump pumps warm fluid from the fluid heater through the fluid coils and back to the fluid heater, and a cooling mode wherein the cool pump pumps cool fluid from the fluid chiller through the fluid coils and back to the fluid chiller. The heating module, cooling module and portable heat exchanger units are operatively connected by releasable connections such that the apparatus can be transported in parts and assembled at a desired destination.
The present invention provides, in a third embodiment, a method of heating and cooling a plurality of temporary structures at a camp site. The method comprises providing at least two separately transportable modules comprising a fluid heater operative to supply warm fluid; a fluid chiller operative to supply cool fluid; a plurality of portable heat exchanger units, each portable heat exchanger unit comprising a fluid coil and a fan operative to create an air stream through the fluid coil by drawing air from an intake and discharging the air through an outlet; and at least one pump; transporting the at least two transportable modules to the camp site; operatively connecting the fluid heater, fluid chiller, fluid coils, and at least one pump such that the at least one pump is operative to selectively pump warm fluid and cool fluid through the fluid coils; orienting the outlet of each portable heat exchanger unit to discharge the air stream into at least one temporary structure; to heat the temporary structures, pumping warm fluid through the fluid coils and operating the fans to create a warm air stream; and to cool the temporary structures pumping cool fluid through the fluid coils and operating the fans to create a cool air stream.
The present invention provides a method and apparatus that provides both heating and cooling with a single portable heat exchanger unit located inside or adjacent to the structure. The apparatus comprises a portable heat exchanger unit comprising a fluid coil connected to either a boiler or like heating device such that hot fluid flows through the fluid coil to heat the structure, or a fluid chiller such that cool fluid flows through the fluid coil to cool the structure.
The apparatus can be configured to draw outside air into the structure to generate a positive pressurize inside the structure, and filter air being drawn in using HEPA (High Efficient Particulate Attenuation) filters to remove hazardous micro-organisms that can be hazardous to health. The apparatus can be further configured to use ultra-violet light to kill micro-organisms.
The invention provides a conveniently portable apparatus and method for heating and cooling a number of structures at a remote camp site using a fuel source that is readily available at the site. In addition the air inside the structures could be scrubbed to remove micro-organisms for biological warfare, such as anthrax bacteria and spores, that might be used in an attack. Outside air could be drawn in through the HEPA filters and irradiated with ultra-violet light, thereby removing a very high proportion of the microorganisms, and pressurizing the interior of the structure. With positive pressure on the interior, contaminated outside air is substantially prevented from entering the structure.
While the invention is claimed in the concluding portions hereof, preferred embodiments are provided in the accompanying detailed description which may be best understood in conjunction with the accompanying diagrams where like parts in each of the several diagrams are labeled with like numbers, and where:
The apparatus 1 comprises a portable heating module 4 and a portable cooling module 7. The heating module 4 comprises a fluid heater 5 operative to supply warm fluid and a warm pump 6, operative to pump warm fluid from the fluid heater 5, mounted on a pallet, deck or the like such that the heating module 4 can be readily transported. Similarly the cooling module 7 comprises a fluid chiller 8 operative to supply cool fluid and a cool pump 9, operative to pump cool fluid from the fluid chiller 8, mounted on a pallet, deck or the like such that the cooling module 7 can be readily transported.
A plurality of portable heat exchanger units 10 each comprise, as illustrated in
Once the heating and cooling modules 4, 7 and portable heat exchanger units 10 have been transported to the camp site, the warm and cool pumps 6, 9 are operatively connected to the fluid coils 12 using releasable connectors. The portable heat exchanger units 10 can be placed as required. Larger temporary structures could require two portable heat exchanger unit 10, while other structures might be small enough that a single portable heat exchanger unit 10 could be used to heat two or more structures by connecting a plurality of output ducts to the outlet 20. Considerable flexibility is thus provided by the system of the invention.
A control system is operative to switch the apparatus 1 between a heating mode, wherein the warm pump 6 pumps warm fluid from the fluid heater 5 through the fluid coils 12 and back to the fluid heater 5, and a cooling mode wherein the cool pump 9 pumps cool fluid from the fluid chiller 8 through the fluid coils 12 and back to the fluid chiller 8.
In the illustrated embodiment the outputs of the warm and cool pumps 6, 9 are connected to an outbound manifold 22 through output control valves 24. A flexible outbound conduit 26 releasably connects the outbound manifold 22 to the inlet end of each fluid coil 12 and a flexible return conduit 28 releasably connects the outlet end of each fluid coil 12 to a return manifold 30 that in turn is connected to the fluid heater 5 and fluid chiller 8 through return control valves 32. The flexible conduits 26, 28 would typically be insulated hoses which could be placed around corners and the like as required to suit a typical layout of structures.
A basic control system could comprise simply turning the fluid heater 5 and warm pump 6 on and the fluid chiller 8 and cool pump 9 off to operate the apparatus 1 in the heating mode, and vice versa to operate in the cooling mode. The pumps 6, 9 would be configured such that when turned off fluid could not pass through them, so when one was operating, the only path would be through the operating pump and its associated fluid heater or cooler.
The illustrated embodiment further provides outbound and return control valves 24, 32 that are manipulated either manually or remotely to positively control the flow of fluid through the apparatus 1 during the heating and cooling modes.
The releasable connection of the heating module, cooling module and portable heat exchanger units facilitate quickly breaking the apparatus 1 down into parts that can be readily transported and then re-assembled at a desired destination.
As illustrated in
Conveniently the fluid heater 5 will be provided by a boiler and the fluid chiller 8 will be provided by an absorption chiller. Such boilers and absorption chillers are well known in the art and are available in various capacities and fuel types. These can both be conveniently operated using the same fuel, such as propane, diesel, or the like and thereby reduce electrical requirements to a small amount required to operate pumps, controls and the like. The actual heating and cooling is accomplished by burning the fuel. For example a military or construction camp will typically use a considerable amount of diesel fuel, and it would be convenient to fuel the boiler and absorption chiller using the same fuel in order to avoid separate fuel storage and transport. In some situations a conventional refrigeration unit could provide the fluid chiller, however driving such units with electricity is not usually convenient, and is less efficient. Such refrigeration units are also available where the compressor is driven by an internal combustion engine, however these are considerably more expensive than absorption chillers.
It is contemplated that a 1,200,000 British Thermal Unit (BTU) boiler and a 300,000 BTU absorption chiller could be teamed to handle heating and cooling of five portable heat exchanger units in a temperate climate area such as the upper mid-west of the United States. The connection of the fluid heater 5 and cooler 8 to the outbound manifold 30 would typically be by a 2 inch diameter insulated hose up to about 400 feet long, with portable heat exchanger units located about 50 feet from the outbound manifold 22. Various configurations could be made by adding more manifolds 22, 30 by teeing into the manifold feed and return conduits, and adding portable heat exchanger units 10 by teeing into outbound conduits 26 and return conduits 28 at various locations.
It is typical that a common fluid distribution system capable of transferring 200,000 Btu/hour, at predetermined heating mode conditions, would be capable of transferring 60,000 Btu/hour (or 5 tons) at predetermined cooling mode conditions, if the fluid flow rate is equal in both cases. In temperate climate areas such as the upper mid-west of the United States this balance of winter heating and summer cooling needs is probably about correct. Colder or warmer climates would require designing system capacity in favor of the mode that has the greater demand.
The portable heat exchanger unit 10 illustrated in
The portable heat exchanger unit 10 includes coarse filters 39, 41 located upstream from the HEPA filter 37 such that the air stream passes through the coarse filters 39, 41 and is pre-filtered prior to passing through the HEPA filter 37. A typical pre-filtration process could be in two stages whereby the air stream 16 first passes through a rough, “loose-media” filter 39 followed by a pleated filter 41 with a MERV (minimum efficiency reporting value) of “8” by ASHRAE Standard 52.2. By changing the coarse filters 39, 41 regularly, the life of the more costly HEPA filter 37 can be prolonged.
The portable heat exchanger unit 10 also includes an activated carbon filter 43 located upstream from the HEPA filter 37 such that the air stream passes through the activated carbon filter 43 prior to passing through the HEPA filter 37. Such activated carbon filters will adsorb most airborne gases and odours.
Yet further the illustrated portable heat exchanger unit 10 also includes an ultra-violet light 45 oriented to irradiate the air stream 16 after the air stream 16 has passed through the HEPA filter. The ultra-violet rays are able to kill a significant proportion of most typical bacteria. The ultra-violet light 45 in combination with the HEPA filter 37 removes a very high proportion of micro-organisms, bacteria and the like, as well as other undesirable particles, from the air stream 16. In the illustrated embodiment, a drip pan 46 is oriented to catch condensed water dripping from the fluid coil 12 during a cooling operation. The ultra-violet light 45 is oriented to irradiate water collected in the drip pan 46 with ultra-violet light and prevent growth therein of bacteria and the like.
Thus the portable heat exchanger unit 10 has the capability of scrubbing as well as heating or cooling the intake air. In
The foregoing is considered as illustrative only of the principles of the invention. Further, since numerous changes and modifications will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all such suitable changes or modifications in structure or operation which may be resorted to are intended to fall within the scope of the claimed invention.
Number | Date | Country | Kind |
---|---|---|---|
2,479,639 | Aug 2004 | CA | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10751455 | Jan 2004 | US |
Child | 11137486 | May 2005 | US |