Method and precoder information feedback in multi-antenna wireless communication systems

Information

  • Patent Grant
  • 9401750
  • Patent Number
    9,401,750
  • Date Filed
    Wednesday, November 25, 2015
    8 years ago
  • Date Issued
    Tuesday, July 26, 2016
    7 years ago
Abstract
A method for two component feedback in wireless communication systems is disclosed, with a wireless communication device sending a first representation of a first matrix chosen from a first codebook, wherein the first matrix has at least two columns, the wireless communication device sending a second representation of a second matrix chosen from a second codebook, and the base station obtaining a precoder from the first representation and the second representation.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to wireless communications and, more particularly, to a feedback framework in wireless communication systems.


BACKGROUND

In wireless communication systems, channel state information at a transmitter, for example, at a base station, is important for beam-forming transmissions (also referred to as precoding) that deliver more power to a targeted user while minimizing interference on other users. Precoding operations can be in the context of single-user multiple input multiple output (SU-MIMO) or multi-user MIMO (MU-MIMO), where two or more users are served by a single base station. An eNB needs accurate spatial channel information in order to perform a high rank transmission to a single UE or to perform precoding to two or more UEs simultaneously so that the mutual interference among multiple transmissions can be minimized at each UE.


Precoding operations may also be in the context of SU/MU-MIMO users served by coordinated multi-point (CoMP) transmissions where antennas belonging to different eNBs, rather than to the same eNB, can coordinate their precoding to serve multiple users simultaneously. Further support for up to eight transmit antennas is enabled in the next generation cellular standards like 3GPP LTE Release-10. Due to such a relatively large number of antennas (4-Tx or 8-Tx) involved in such transmissions, it is desirable that the UE feedback be designed efficiently with good performance overhead trade-off, so that feedback does not scale linearly with the increasing number of antennas.


The antenna configurations which support a large number of antennas in practice must allow large beamforming gains and also larger spatial multiplexing gains achieved from higher rank transmission. Beamforming allows efficient support for low geometry users and also for multi-user transmission thereby improving cell-edge and cell-average throughput with larger number of users in the system, while spatial multiplexing allows higher peak spectral efficiency. A typical antenna configuration to achieve this would be to have groups of antennas where each group is a set of correlated antennas and each group is uncorrelated with the other groups. A cross-polarized antenna configuration is one such setup. The correlated antenna elements provide the required beamforming gains and the uncorrelated antenna elements enable high rank transmissions.


The above structure in the antennas has some unique spatial characteristics that can be exploited. For example, the correlation among correlated antennas changes slowly and is confined to a smaller vector space on an average. This can be used to feedback the correlated and uncorrelated channel characteristics, i.e., two components, at different rates and/or with different levels of quantization/overhead in time and frequency to reduce feedback overhead. One of the components representing the correlated channel characteristics can be fed back on a wideband basis and/or slowly in time, while the other component is fed back on a subband basis and/or more frequently in time.


However, one of the key challenges in designing such a two component feedback system is identifying the parameters used in the two components and the construction of the final precoder matrix as a function of the two components.


The various aspects, features and advantages of the invention will become more fully apparent to those having ordinary skill in the art upon a careful consideration of the following Detailed Description thereof with the accompanying drawings described below. The drawings may have been simplified for clarity and are not necessarily drawn to scale.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a wireless communication system.



FIG. 2 illustrates an embodiment with a base station transmitting to a device.



FIG. 3 illustrates an example of a frame structure used in the 3GPP LTE Release-8 (Rel-8) specification and different reference symbols.



FIG. 4 illustrates exemplary antenna configurations at a base unit.



FIG. 5 illustrates a first subset of antennas and a second subset of antennas transmitting two spatial layers to a device.



FIG. 6 illustrates a wideband and subbands, each of which is further composed of contiguous subcarriers.





DETAILED DESCRIPTION

In FIG. 1, a wireless communication system 100 comprises one or more fixed base infrastructure units 110 and 120 forming a network distributed over a geographical region for serving remote units in the time and/or frequency domain. The base infrastructure unit may also be referred to as the transmitter, access point (AP), access terminal (AT), base, base station (BS), base unit (BU), Node-B (NB), enhanced Node-B (eNB), Home Node-B (HNB), Home eNB (HeNB) or by other terminology used in the art. The base units are generally part of a radio access network that includes one or more controllers communicably coupled to one or more corresponding base units. The access network is generally communicably coupled to one or more core networks, which may be coupled to other packet or data networks, like the Internet, and to public switched telephone networks (PSTN), among other networks. These and other elements of access and core networks are not illustrated but they are well known generally by those having ordinary skill in the art.


The one or more base units each comprise one or more transmitters for downlink transmissions and one or more receivers for receiving uplink transmissions from the remote units as described further below. The one or more base units serve a number of remote units, for example, remote unit 102 and 104 in FIG. 1, within a corresponding serving area, for example, a cell or a cell sector of the base unit, via a wireless communication link. The remote units may be fixed units or wireless communication devices. The remote unit may also be referred to as a receiver, subscriber station (SS), mobile, mobile station (MS), mobile terminal, user, terminals, user equipment (UE), user terminal (UT) or by other terminology used in the art. The remote units also comprise one or more transmitters and one or more receivers. In FIG. 1, the base unit 110 transmits downlink communication signals to serve remote unit 102 in the time and/or frequency domain. The remote unit 102 communicates directly with base unit 110 via uplink communication signals.


The term “transmitter” is used herein to refer to a source of a transmission intended for receipt by a user or receiver. A transmitter may have multiple co-located antennas each of which emits, possibly different, waveforms based on the same information source. In FIG. 1, for example, antennas 112 and 114 are co-located. A transmitter is typically associated with a cell or a cell sector in the case of a base unit having or serving multiple sectors. Also, if a base unit has geographically separated antennas (i.e., distributed antennas with remote radio heads), the scenario is also referred to as “a transmitter”. Thus generally one or more base units transmit information from multiple antennas for reception by a remote unit.


In the diagram 200 of FIG. 2, at 210, a base unit transmits from a plurality of antennas. Also in FIG. 2, a remote unit receives transmissions from a plurality of antennas, which may or may not be co-located. In a typical embodiment, a base unit may be associated with a cell-ID, by which it identifies itself to a remote unit. As a conventional mode of operation, also sometimes referred to as a single-point transmission scheme, a remote unit 240 receives transmissions from a plurality of antennas of a single base unit 210. Such a base unit is also referred to as a serving cell (or serving base unit) to the user device/remote unit.


In one implementation, the wireless communication system is compliant with the Third Generation Partnership Project (3GPP) Universal Mobile Telecommunications System (UMTS) Long Term Evolution protocol, also referred to as Evolved Universal Terrestrial Radio Access (EUTRA), or some future generation thereof, wherein the base unit transmits using an orthogonal frequency division multiplexing (OFDM) modulation scheme on the downlink and the user terminals transmit on the uplink using a single carrier frequency division multiple access (SC-FDMA) scheme. In another implementation, the wireless communication system is compliant with the IEEE 802.16 protocol or a future generation thereof. More generally, however, the wireless communication system may implement some other open or proprietary communication protocol where channel feedback is useful or desired. Thus the disclosure is not intended to be limited to or by the implementation of any particular wireless communication system architecture or protocol. The teachings herein are more generally applicable to any system or operation that utilizes multiple antennas in a transmission, whether the multiple antennas belong to a single base unit or to multiple base units or whether the multiple antennas are geographically co-located (e.g., belong to a single base unit) or distributed (belong to either remote radio heads or multiple cells).


In a general embodiment, pilots or reference symbols are sent from each antenna in a transmitter. These pilots occupy the operational bandwidth to allow users to estimate the channel state information (CSI) of the entire bandwidth. Typically the pilots from different antennas are orthogonal so the pilots do not interfere with each other. Such orthogonality can be ensured if the pilots are sent using different time and/or frequency resources or code resources. For example, in systems based on OFDM technology, the pilots can occupy different subcarriers in frequency or different OFDM symbols in time or share the same set of resources, but different code sequences.


In FIG. 3 illustrates a frame structure used in the 3GPP LTE Release-8 (Rel-8) protocol to illustrate a possible reference symbol (RS) pattern in an OFDM system. A subframe 310 in a radio frame 302 spans 14 OFDM symbols in time. Further a subframe 310 contains multiple resource blocks 312, each spanning 12 consecutive subcarriers in frequency. In typical OFDM based systems like 3GPP LTE, a block of consecutive OFDM symbols are referred to as a subframe. Each sub-carrier location in each of the OFDM symbols is referred to as a resource element (RE), since a single data modulation symbol can be mapped to such a resource element. A resource block (RB) is defined as a block of REs comprising a set of consecutive sub-carrier locations in frequency and a set of symbols. In LTE Rel-8, a slot is defined to span 7 symbols and each subframe is made of two slots, and hence 14 symbols. A minimum resource unit allocated to a user is the two RBs corresponding to two slots in a subframe for a total of 2×12×7 REs. A resource block may be more generally defined as a set of resource elements/OFDM subcarrier resources in time and frequency domain.


Some of the REs in a RB are reserved for reference symbols (also referred to as pilots) to help in the demodulation and other measurements at the UE. These reference symbols, as defined in Release 8 specification of LTE can be further divided into two types. The first type is cell-specific reference symbols, which are cell-specific and “common” to all users, and are transmitted in all the RBs. A common reference symbol (CRS) may or may not correspond to actual physical antennas of the transmitter, but CRSs are associated with one or more antenna “ports”, either physical or virtual. In FIG. 3, as an example only, RE 304, 305, 306, 307, 308 and 309 may be a CRS. The second type is user-specific or a dedicated reference symbol (DRS), which are user-specific and hence applicable only to that user, and allocated in the RB's allocated to that user's data. Furthermore, DRS typically correspond to “precoded” or beam-formed RSs, which can be directly used by a user for the demodulation of the data streams. The precoding operation is explained later. In FIG. 4, as an example only, RE 320, 325, 330, 335, 340, 345, 350 and 355 may be a DRS. In LTE Release-10, a new spare RS, namely CSI-RS are defined to enable channel measurements, while DRSs are primarily relied upon for demodulation. These can be used similar to CRSs in LTE Release-8 to derive channel feedback information.


The location of the reference symbols is known to the UE from higher layer configurations. For example, depending on the number of antenna ports as configured by a transmission unit, UE knows the location of all the reference symbols corresponding to all configured antenna ports. As another example, when a UE is instructed to use a DRS, the UE also knows the DRS locations, which may depend on the user identification.


In typical FDD operation of a LTE Rel-8 system, CRSs are used for both channel related measurements at the UE and also for demodulation. If eNB employs a precoder at the transmitter, such information is made available to the UE, which allows it to construct the channel for demodulation based on the CRSs. In a FDD operation of a future LTE Rel-10 system, CSI-RS (and possibly CRSs that may still be available) may be used for channel related measurements, while DRSs are used for demodulation. Hence an eNB may apply precoder which are not exactly the same as the UE feedback, and does not have to signal the precoder explicitly. This is further described in detail later.


The “precoding” operation is explained in the following. The base station transmits a signal via weighting each antenna signal with a complex value, an operation referred to as precoding, which may be mathematically represented by the matrix equation:

Y=HVs+n


in which, when transmitting one spatial layer of data, or rank-1, may be represented as:







[




y
1











y

N
R





]

=




[




h

1
,
1








h

1
,

N
T



















h


N
R

,
1








h


N
R

,

N
T






]



[




v
1











v

N
T





]



s

+
n





in which, when transmitting two spatial layers of data, or rank-2, may be represented as:







[




y
1











y

N
R





]

=




[




h

1
,
1








h

1
,

N
T



















h


N
R

,
1








h


N
R

,

N
T






]



[




v

1
,
1





v

1
,
2















v


N
T

,
1





v


N
T

,
2





]




[




s
1






s
2




]


+
n





where y1 . . . yNR may be the received data at the UE receive antenna #1 to #NR, respectively. In the example with a rank-1 transmission, or a transmission with one data stream denoted as “s”, the Matrix V may be a precoding vector with weights v1,1 . . . vNT,1 for base station transmit antenna #1 to #NT respectively. In an embodiment with a rank-2 transmission, or a transmission with two data streams s1 and s2 on the same subcarrier, V may be a precoding matrix. Precoding vector and precoding matrix can be referred to as precoding matrix given vector is a degenerated case of matrix.


Matrix H may be the propagation channel matrix between transmit antennas and receive antennas with entry hij representing a channel between the jth transmit and ith receive antennas. Value n may represent noise and interference. The precoding weights V, either a vector or matrix, may be determined by the base station, typically based on the channel particular to the UE or can be UE-specific and may also take into account a preference indicated by feedback from the UE. Further the matrix HV can be referred to as the effective channel between a user's data streams and its receivers. The effective channel, instead of the propagation channel H, is all a UE needs for demodulation purposes. The precoding weights may or may not be constrained to a predefined codebook that consists of a set of pre-defined vectors or matrices. In an embodiment with constrained precoding, the precoding matrix may be signaled by the base unit efficiently with a precoding matrix index (PMI) or with an index to a precoding matrix within a predefined codebook. The term “matrix” in this context may include the degenerated special case of vector, which applies to single stream transmission. In the most generic sense, the term “precoding” refers to any possible transmission scheme that may be deemed as mapping a set of data streams to an antenna set using a matrix V.


The applied precoding could be based on corresponding feedback from the UE or channel measurements at a base station. In a simple single-user single base unit scheme, one set of DRSs could be defined corresponding to the effective precoded channel (i.e., “HV” in the above equation). If two streams are transmitted to a user in a rank-2 transmission, then only 2 DRS ports (i.e., 2 subsets of DRS each corresponding to a precoded antenna port) are sufficient, even though the actual signal transmission may come from all the NT antennas at the base unit where NT can be greater than 2. In FIG. 3, as an example only, RE 320, 340, 330 and 350 may correspond to one DRS port while RE 325, 345, 335 and 355 may correspond to another DRS port.


In a future migration of a system, for example in 3GPP LTE Release 10 and beyond, user-specific RS (or DRS) are expected to be used widely with advanced Multiple-Input Multiple-Output (MIMO) modes like Coordinated Multipoint transmission (CoMP) and multi-user (MU) MIMO modes described earlier. As described earlier, DRSs are sufficient to enable demodulation. This is also helpful since an eNB is not required to signal exact transmission parameters like precoders, co-ordinating points, etc. However, an estimate of the actual (un-precoded or explicit) channel is required at the eNB to derive such transmission parameters. So as mentioned before, feedback measurements for this purpose are enabled in LTE Release-10 by defining lower density reference signals specifically for the purpose of feedback measurements (CSI-RS). Since they do not need to support demodulation, like CRS in LTE Release 8, a lower density is sufficient. Further, with CoMP, CSI-RS may be setup to enable measurements at the user device on a plurality of antennas from multiple base units. In FIG. 3, as an example only, RE 304, 305, 306, 307, 308 and 309 may also be CSI-RS.


From either CRS or CSI-RS, the remote unit receiver can estimate the CSI. For the OFDM example, the receiver estimates CSI at each subcarrier between each receiver antenna and each transmitter antenna. The CSI may be denoted as a channel matrix on a sub-carrier k represented by







H
k

=

[




h
11




h
12







h

1

Nt







h
21





























h

Nr





1











h
NrNt




]





where hij is the channel matrix from jth transmit antenna to the ith receive antenna.


A correlation between antenna port i and antenna port j may be computed as follows






R
=


1


S








k

S





h
ki
*



h
kj








where hki is the channel measured corresponding to antenna port i on subcarrier k, S is a set of subcarriers, typically corresponding to the whole operational bandwidth (denoted as RWB) or a sub-band/narrowband (denoted as RNB).


More generally, an antenna correlation matrix that represents the spatial covariance among a plurality of transmit antennas can be computed as follows






R
=



1


S








k

S





H
k
H



H
k




=

[




R
11










R

1
,
Nt



































R

Nt
,
1











R

Nt
,
Nt





]






The Eigen Decomposition of R may be expressed in a well-defined format as

VDVH  (1)

where V is a unitary matrix of Eigen vectors, where the first column is the most dominant vector, the second column the second dominant vector and so on. D is a diagonal matrix with diagonal entries as Eigen values of R. The full knowledge of R at the transmitter will enable advanced beamforming/precoding techniques that will improve spectral efficiency and system throughput. However, the overhead may be large and approximations suitable to the transmission mode are applied.


For SU-MIMO precoding, the Eigen space information as represented by V above can be viewed as optimal precoding transmission weights in a capacity maximizing sense.


Existing 4th Generation (4G) air interfaces (i.e., 3GPP LTE and IEEE 802.16e) already support beamforming operation via the precoding operation as described earlier. To support precoding operation from the base station, a user terminal will be reporting back to the base station a preferred Precoding Matrix Index (PMI) which is an index to a set of predetermined precoding matrices. The recommended precoding matrix is obtained at the user terminal based on a certain metric such as maximizing the post-precoding link quality or throughput and is selected from one of the quantized codebook entries, wherein the codebook is known to the transmitter and the receiver. Specifically, the standard requires the UE to feedback the PMI that supports a MCS (modulation and coding scheme) with the highest rate, while satisfying a probability if block error target. In future releases, different or more explicit definitions of PMI may be defined. However, in general, the preferred PMI approximately represents a vector quantization of the dominant Eigenspace of R. Further PMI is feedback with an associated rank and as such PMI is an quantized approximation of V(1:r), where ‘r’ is the rank.



FIG. 4 illustrates some exemplary antenna configurations at a base unit. A closely spaced ULA, with a typical spacing of 0.5 to 1 wavelengths, is illustrated in 410. A large spaced ULA with typical spacing of 4 to 10 wavelengths is illustrated in 420. A cross-polarized configuration with two sets of cross-poles each with two antennas at +/−45 polarizations is illustrated in 440. Depending on the configuration, the correlation between different antenna elements may have a certain structure. Some exemplary cases are described herein.


We now illustrate how the structure of the antenna configuration can be used to develop efficient precoder structures.


One of the structures that can be exploited is a Kronecker based approximation of the channel covariance. For example, an 8×8 long term covariance matrix corresponding to 8 antennas, as in FIG. 4 at 460, for the transmitter can be approximated as a Kronecker product of a 4×4 correlation matrix corresponding to the ULA and a 2×2 correlation matrix, corresponding to the cross-polarized component i.e.,

R=RXPOLcustom characterRULA


Conceptually, the ULA Kronecker component RULA captures the correlation submatrix between two non-overlapping subsets of antennas with similar ULA configuration, which in FIG. 4 at 460 are antenna sets (461-464) and (465-468). The polarization Kronecker component RPol captures the correlation submatrix between subsets with similar cross-polarized configuration, namely antenna subsets (461,465), (462,466), (463,467) and (464,468) in FIG. 4. More generally, the spacing/location and polarization of antenna elements introduce some redundant structure in the antenna correlation, which lead to good Kronecker approximations and can be used as effective compression schemes for feedback overhead reduction. The above representation in the covariance matrix also translates to similar structure for the precoder.


Even for ULA, the transmit antennas can also be divided into two non-overlapping subsets of antennas. An example is shown in FIG. 4 for subset 431 and 432.


The final precoder for SU-MIMO rank-r may be computed as

V=SVD(RXPOL,bcustom characterRULA,WB)  (0.2)


The principal Eigen vectors and Eigen values of the constructed matrix are related to that of the Kronecker components as

D=permute(DXPcustom characterDULA)
V=permute(VXPcustom characterVULA)  (0.3)

where the “permute” operation performs re-ordering of Eigen values.


We can further illustrate how the reordering influences the structure of the precoder for a 4 Tx cross-pole as an example, where both the ULA and cross-pole sub-matrices are of size 2×2, i.e.,










R
ULA

=




[


v

ula
,
1


,

v

ula
,
2



]



[




λ
1



0




0



λ
2




]




[


v

ula
,
1


,

v

ula
,
2



]


H





(
0.4
)







R
XP

=




[


v

xp
,
1


,

v

xp
,
2



]



[




κ
1



0




0



κ
2




]




[


v

xp
,
1


,

v

xp
,
2



]


H





(
0.5
)








Let us consider a rank-2 SU-MIMO transmission as a further example. Typically the cross-pole covariance matrix is highly rank-2 and ULA covariance can be approximated as rank 1. To express it quantitatively, if the two Eigen values ratios satisfy









λ
1


λ
2


>


κ
1


κ
2



,





then the rank-2 SU-MIMO precoder, after corresponding re-ordering, can be approximated as











[




v

xp
,
1





v

xp
,
2





]



v

ula
,
1



=

[





v

ula
,
1




v

xp
,
11







v

ula
,
1




v

xp
,
21









v

ula
,
1




v

xp
,
12







v

ula
,
1




v

xp
,
22






]





(
0.6
)








On the other hand, in case of








λ
1


λ
2


<


κ
1


κ
2







(which is less likely but could occur on short-term basis, like a subband of contiguous subcarriers), then the rank-2 precoder may be approximated as











[

v

xp
,
1


]



[




v

ula
,
1





v

ula
,
2





]


=

[





v

ula
,
1




v

xp
,
11







v

ula
,
2




v

xp
,
11









v

ula
,
1




v

xp
,
12







v

ula
,
2




v

xp
,
12






]





(
0.7
)







As can be seen, two structures are shown which allow expressing the overall precoder as a Kronecker product of two precoders. Further, the ULA component of the precoder may be feedback at a different time/frequency granularity than the cross-pole component of the precoder, and allows two component feedback schemes.


Though the Kronecker representation leads to an elegant separation to two component precoders and is one way to achieve two-component feedback, it also imposes some limitations, where either the ULA or the cross-pol component is assumed to be rank 1 for deriving an overall rank-2 precoder. In general, however a more general two-component precoder structure is useful for higher ranks, which will be further discussed below.


For the purpose of discussion, we will assume the long-term/correlated component corresponds to a wide frequency band such as the whole system bandwidth and the short-tem component corresponds to a subband/narrowband that is composed of a set of contiguous subcarriers and is a part of the wideband.


The optimal precoding vector V (optimal in an information theoretic capacity maximizing sense) can be obtained from the Eigen decomposition of the narrowband covariance matrix for band indexed ‘b’ as follows.

RNB,b=VNB,bDNB,bVNB,bH  (0.8)

For the rank-2 or 2-layer precoder, the ideal precoder is simply the first two columns of VNB,b. Let us denote the rank-2 Eigen decomposition based precoder as follows (a partition based representation of VNB,b)









[




v
11




v
12






v
21




v
22




]




(
0.9
)








where vij is a 4×1 (assuming 8-Tx eNB) vector. Clearly, each block corresponds to a vector of weights applied on a subset of antennas (e.g., ULA subset) corresponding to one spatial layer of data stream.


In a preferred embodiment, we approximate or otherwise represent VNB,b as









[





v
11



γ
11






v
12



γ
12








v
21



γ
21





j






θ
1








v
22



γ
22





j






θ
2







]




(
0.10
)








and then we can impose the constraint ∥v11∥=∥v12∥=∥v21∥=∥v22∥=1 and γij are real values and θ12 ε[0, 2π].


Clearly, the above precoder representation is based on a matrix with a block of sub-matrices, where each sub-matrix is represented with a vector multiplied with a scalar. More importantly, each sub-matrix corresponds to transmission from a subgroup of antennas, and as one special case, where they all have the same polarization.



FIG. 5 further describes the above precoding operation from two subsets of antennas. Two non-overlapping subsets of antennas 510, 520 are weighted by a first and a second sub-precoder matrix, respectively. Each sub-precoder matrix corresponds to one or more spatial layers of data transmission, for example in FIG. 5, the first sub-precoder is for spatial layer 1 (530) and layer-2 (540). Similarly for the second-precoder, it corresponds to two spatial layers. Mathematically, as an example with eight antennas composed of two groups of 4 antennas, where the first subgroup is number 1-4, and second subgroup numbered 5-8, a rank r precoder may be expressed as follows









[




v
11




v
12







v

1

r







v
21















v
31















v
41










v

4

r







v
51




v
52







v

5

r







v
61

















v
71















v
81










v

8

r





]




(
11
)








In the above the first sub-precoder is the top 4 rows (1-4) and the second sub-precoder is the bottom 4 rows (5-8)


A precoder matrix of one or more vectors associated with one or more spatial layers consists of a first sub-precoder matrix, which comprises of a first set of weights on a first subsets of transmit antennas of the base station, and a second sub-precoder matrix which comprises of a second set of weights on a second subset of transmit antennas of the base station as illustrated above. The set of weights here can be for one or more spatial layers of transmission.


In the final precoder matrix, the first sub-precoder matrix is one or more column vectors, which are of length equal to the number of antennas in the first subgroup, multiplied by one or more scalars. Similarly for the second sub-precoder.


For practical reasons, it is often preferred to have the precoder satisfy two constraints, namely i) Full power utilization on each transmit antenna, for maximum Power Amplifier (PA) use and ii) Equal power on each transmitted stream. These constraints can be imposed on the precoder structure VNB,b. To satisfy equal power constraint on each transmit stream, we can impose additional constraint of γ11211222. To satisfy full power utilization on each individual transmit antenna, we could impose as a sufficient condition, that γ11122122 and that vij are constant modulus vectors. With these constraints, we have another preferred embodiment of the precoder structure as follows,







[





v
11


ρ





v
12




1
-

ρ
2










v
21




1
-

ρ
2







j






θ
1








v
22



ρⅇ

j






θ
2







]

,





θ
1

,


θ
2



[

0
,

2

π


]


,


ρ
2



[

0
,
1

]






The above discussion on the precoder structure is tied to feedback method in this invention. In the feedback scheme for a wireless communication device to send a precoder matrix information to a base station, the wireless communication device sends a first representation of a first matrix chosen from a first codebook, wherein the first matrix has at least two column vectors. The wireless communication device sends a second representation of a second matrix chosen from a second codebook, wherein the first representation and the second representation together convey a precoder matrix of one or more vectors associated with one or more spatial layers. The precoder matrix comprises a first sub-precoder matrix including a first set of weights on a first subsets of transmit antennas of the base station and a second sub-precoder matrix including a second set of weights on a second subset of transmit antennas of the base station. The first sub-precoder matrix is one or more column vectors of the first matrix corresponding to the first representation, multiplied by one or more entries of the second matrix corresponding to the second representation, and the second sub-precoder matrix is one ore more column vectors of the first matrix corresponding to the first representation, multiplied by one or more entries of the second matrix corresponding to the second representation.


The two-component feedback conveys the information of a precoder matrix recommended by the user to the base station. The actual precoder used by the base station may be different from the suggested precoder, but the actual precoder is derived from the recommended feedback.


We can use the embodiment above to describe a particular example here. A user feeds back a representation of a first chosen matrix that has a set of vectors v11, v12, v21, v22, wherein the representation can be just the index of the chosen matrix within a codebook. Then, the user feeds back a representation of a second matrix of the form of







[



ρ




1
-

ρ
2










1
-

ρ
2








1






ρⅇ

j






θ
2






]

,





also as index within a codebook format. The precoder information conveyed by these two representations corresponds to a final precoder matrix defined by






W
=


[





v
11


ρ





v
12




1
-

ρ
2










v
21




1
-

ρ
2







j






θ
1








v
22



ρⅇ

j






θ
2







]

.





In one embodiment, the vector vij could be selected from a constant modulus codebook. One embodiment is a codebook of DFT vectors described below. Alternatively, one could consider a codebook expanded to include some non-DFT vectors.


A DFT codebook can be described as








v
ij



{



[



1






2

πj





n


N
1









2

π





j

.2

n


N
1












2


πj
.
L






n


N
1






]

T

,

n
=
0

,
1
,









N
1


=


2

B
1


-
1



}


,





which requires B1 bits for representation. L could be Nt/2 for the cross-pole configuration described.


Further, each column of the second matrix can be considered as a co-phasing vector that aligns the phase of the transmission using the first sub-precoder and the second sub-precoder. In the case of ρ2=0.5 which results in the same amplitude of the entries of the second matrix, we can define another codebook from which the co-phasing vectors are allowed to choose, and an example of the co-phasing codebook is








[

1








j






θ
i




]



{



[

1









2

π





j





n


N
2




]

T

,

n
=
0

,
1
,









N
2


=


2

B
2


-
1



}


,





with B2 bits of representation.


More importantly, the above structure can also take advantage of wideband properties. For example, one can observe that vij are constrained in vector space to a set of entries in the codebook that are highly related to the Eigen space of the ULA component (more specifically the covariance matrix RULA among the correlated antennas). Similarly the amplitude factor ρ is also related to the Eigen Spread λ12. The co-phasing is expected to change more on a subband basis as it relates to the phase alignment between cross-pol groups of antennas.


A preferred embodiment of implementation of two-component feedback is described by adapting v11, v12, v21, v22. The general adaptation can take the following steps of i) Feedback of a set of vectors {v11wb, v12wb, v21wb, v22} in the form of codebook entries on a wideband basis, and ii) Feed back a representation of a rotation matrix ωij to rotate the wideband vector to arrive at the subband vector (i.e., sub-precoder vector that is suitable for the particular sub-band of interest). The rotation matrix is also in the form of a codebook and is typically smaller in size. The co-phasing and the amplitude scalar ρ are feedback on a subband basis.


An exemplary embodiment is further described below, where a DFT codebook is used for the wideband vectors and an oversampled DFT based codebook is used for the rotation codebook. As a special case, K can be set to one.







v
ij

wb








{



[



1






2

πj





n


N
1









2

π





j

.2

n


N
1












2


πj
.
L






n


N
1






]

T

,

n
=
0

,
1
,









N
1


=


2

B
1


-
1



}













v
ij
nb

=


ω
ij



v
ij
wb
















ω
ij



CB
ij


=

{


diag
(


[



1






2

π





j





n



N
1


K









2

π





j

.2





n



N
1


K












2


πj
.
L






n



N
1


K






]

T

)

,









n
=


-

2


B
2

-
1



=


-

N
2


/
2



,

-

(



N
2

/
2

-
1

)


,







0







,



N
2

/
2

-
1


}






Another alternate representation of the above is







v
ij

wb








{



[



1






2

πj





n


N
1









2

π





j

.2

n


N
1












2


πj
.
L






n


N
1






]

T

,

n
=
0

,
1
,









N
1


=


2

B
1


-
1



}













v
ij
nb

=

diag






(

v
ij
wb

)



ω
ij
















ω
ij



CB
ij


=

{


(


[



1






2

π





j





n



N
1


K









2

π





j

.2





n



N
1


K












2


πj
.
L






n



N
1


K






]

T

)

,









n
=


-

2


B
2

-
1



=


-

N
2


/
2



,

-

(



N
2

/
2

-
1

)


,







0







,



N
2

/
2

-
1


}






In a variation of the above embodiment, the codebook for the wideband vectors and/or rotation matrix may include some non-DFT vectors in addition to DFT vectors.


In a more general embodiment, the rotation codebook may also be further defined dependent on the original codebook entry or a combination of dependent and independent entries. Note that above embodiment uses an independent and fixed codebook.


The main objective of the above representation is to use more feedback bits to capture the wideband information and used fewer bits to capture subband information. An exemplary embodiment is to use a 2 bit codebook for subband vectors and a 4 or 6 bit codebook to represent the wideband entries. In general, the selection of (B1, B2) may depend on the feedback mode. More specifically, it could depend on the number of sub-bands the feedback is requested on.


As a further refinement of the above embodiments, we can further reduce the number of wideband vectors to two from 4, which are then represented as (v1wb, v2wb) for rank-2. Reducing the wideband basis vectors from 4 in the most generic case to 2 is based on the observation that the spatial correlation of the ULA sub-array can be approximated well by the first two dominant eigenvectors in general and is sufficient for rank 2.


We describe another preferred representation of precoder based on above simplifications, which is based on the steps 1) a user feeds back a representation of a first chosen matrix (v1wb, v2wb) which could be seen as representing the wideband property of the ULA sub-array; and 2) the user may optionally adapt (v1wb, v2wb) on a subband basis with a rotation codebook CBi, as vnbi=f(vwbi,CBi); 3) the user feeds back a representation of a second matrix of the form of







[



ρ




1
-

ρ
2










1
-

ρ
2








1






ρⅇ

j






θ
2






]

,





also as index within a codebook format. The precoder information conveyed by these two representations corresponds to a final precoder matrix defined by one of the three structures below (the user is allowed to select which structure to use)








[





v
nb
1


ρ





v
nb
1




1
-

ρ
2










v
nb
1




1
-

ρ
2







j






θ
1








v
nb
1


ρ








j






θ
2







]





[





v
nb
1


ρ





v
nb
2




1
-

ρ
2










v
nb
1




1
-

ρ
2







j






θ
1








v
nb
2


ρ








j






θ
2







]





[





v
nb
1


ρ





v
nb
2




1
-

ρ
2










v
nb
2




1
-

ρ
2







j






θ
1








v
nb
1


ρ








j






θ
2







]




The above three structures capture three different cases of interaction between ULA spatial components and cross-pol components. Mainly, they correspond approximately to the following three cases i) ULA is strictly rank 1 and cross-pole is used to achieve the rank-2 spatial separation, ii) ULA is highly rank 2 and can be used mainly for spatial separation, and iii) all other cases, where ULA and cross-pole both show rank 2 behavior.


In the first structure, the wireless communication device selecting one column vector of the first matrix. The first sub-precoder matrix associated with two spatial layers is obtained then by multiplying the selected column vector with first and second elements in a first row of the second matrix, and the second sub-precoder matrix associated with two spatial layers is obtained by multiplying the selected column vector with first and second elements in a second row of the second matrix.


In the second structure, the wireless communication device selecting first and second column vectors of the first matrix. The first sub-precoder matrix associated with two spatial layers is obtained by multiplying the first column vector with a first element in a first row of the second matrix and multiplying the second column vector with a second element in a first row of the second matrix, and the second sub-precoder matrix associated with two spatial layers is obtained by multiplying the first column vector with a first element in a first second row of the second matrix and multiplying the second column vector with a second element in a second row of the second matrix.


In the third structure, the wireless communication device selecting first and second column vectors of the first matrix. The first sub-precoder matrix associated with two spatial layers is obtained by multiplying the first column vector with a first element in a first row of the second matrix and multiplying the a second column vector with a second element in a first row of the second matrix, and the second sub-precoder matrix associated with two spatial layers is obtained by multiplying the second column vector with a first element in a first second row of the second matrix and multiplying a the first column vector with a second element in a second row of the second matrix.


The illustration above is based on rank 2 or 2-layer precoding. For rank 1 or one-layer precoding, a similar generalized construction of the final precoder could be







[





v
1



γ
1








v
2



γ
2





j






θ
1







]

.





A simplified structure that is found to be sufficient for 8 Tx cross-pol antenna configuration rank-1 transmission is








[




v
1
nb







v
1
nb





j






θ
1







]






where vnb1=f(vwb1,CBi). Similar generalization/construction can be applied to higher ranks using a combination of co-phasing vectors, additional wideband precoder components and additional amplitude scalars.


In other embodiments, we provide further description of the component codebooks, and will use rank 2 for illustration, as similar approach applies to other ranks.


In a preferred embodiment, a product matrix based method of precoder matrix representation can be used to describe the two-component feedback.


First component which describes a wideband codebook is expressed as







W
1

=

[



1


1








2

π





j






n
1



N
1









2

π





j






n
2



N
1



















2

π





j





L






n
1



N
1









2

π





j





L






n
2



N
1






]








n
1

,


n
2



{

0
,
1
,
2
,









N
1


=


2

B
1


-
1



}







which is essentially to capture [v1wb v2wb]. A different size may be chosen for n1 and n2 and further only particular pairs may be allowed to reduce codebook size. In addition, some non-DFT codebook entries may be added to represent each column.


The second codebook may be represented as one of the three forms:








W
2

=

{


[



1






2

πj






k
1


4




1



-




2

πj






k
2


4







0


0


0


0



]

,





or




[



ρ





1
-

ρ
2








2

πj






k
1


4





0


0




0


0




1
-

ρ
2






ρⅇ


2

πj






k
2


4





]

,





or




[



ρ


0


0



ρⅇ


2

πj






k
2


4






0





1
-

ρ
2








2

πj






k
1


4







1
-

ρ
2





0



]


}


,




where








ρ
2



{

0.5
,
0.75
,
0.9
,
1

}


,





k
1

,


k
2



{

0
,
1
,
2
,
3

}






The final precoder is obtained as

W=reshape(W1W2)

where a “reshaping” operation is to re-arrange the columns of the product matrix to form the precoder matrix. For example, for 8 Tx with a 4-by-2 W and a 2-by-4 W2 and 4-by-4 product matrix can be column-wise reshaped to 8×2 precoder W as follows.







reshape


(

X
=

[


X
1



X
2



X
3



X
4


]


)


=

[




X
1




X
3






X
2




X
4




]





A more general “reshaping” operation on a matrix represented as a row of vectors can be defined as follows for higher ranks and arbitrary number of antennas.







reshape


(


[


X
1



X
2



X
3



X
4













X

N
×
M



]

,
N
,
M

)


=

[




X
1




X

N
+
1








X


(

N
-
1

)

+
1







X
2





































X
N




X

2

N










X
NM




]





In another embodiment, additional joint coding of parameters ρ, k1, k2 may be performed to restrict the size of the subband codebook by selecting a subset of combinations enumerated above. Further different entries may also be chosen for the codebook than shown in the embodiment. The three rows in the codebook are chosen to correspond to the three structures for the final precoder matrix. In the first row, the amplitude scalar is set to 1 and co-phasing is reduced to 4 instead of 16, to ensure orthogonality. Similar joint coding can be performed to reduce the entries in other rows corresponding to structures 2 and 3, which may be based on further optimization.


In another embodiment, the subband codebook may be expanded allowing the incorporation of a rotation codebook, in which case the wideband and subband codebook could be represented mathematically as












W
1

=



[


diag


(

[



1






2

πj






n
1



N
1












2

πj





L






n
1



N
1






]

)


,

diag


(

[



1






2

πj






n
2



N
1












2

πj





L






n
2



N
1






]

)



]







=



[



1


0





0


1


0





0




0






2

π





j






n
1



N
1








0


0






2

πj






n
2



N
1








0




0


0





0


0


0





0




0


0









2

πj





L






n
1



N
1





0


0









2

πj





L






n
2



N
1






]











n
1

,


n
2



{

0
,
1
,









N
1


=


2

B
1


-
1



}



















W
2

=

{


[




u
1




1





2

πj






k
1


4






u
1





-
1






2

πj






k
2


4







0


0


0


0



]

,









or








[




ρ






u
1







1
-

ρ
2








2

πj






k
1


4




u
1




0


0




0


0





1
-

ρ
2





u
2






ρⅇ


2

πj






k
2


4




u
2





]

,









or








[




ρ






u
1




0


0




ρⅇ


2

πj






k
2


4




u
1






0





1
-

ρ
2








2

πj






k
1


4




u
2







1
-

ρ
2





u
2




0



]


}


,








where













ρ
2



{

0.5
,
0.75
,
0.9
,
1

}


,









k
1

,



k
2



{

0
,
1
,
2
,
3

}


;









n
=


-

2


B
2

-
1



=


-

N
2


/
2



,

-

(



N
2

/
2

-
1

)


,







0







,



N
2

/
2

-
1



}





where 0, 1 represent Lx1 vectors of zeros and ones respectively.


The construction above presents a product design followed by reshaping to provide improved flexibility in the two component feedback. However, further overhead reduction can be configured by eNB, by enabling codebook subset restrictions at wideband and subband level. A codebook subset restriction is essentially where eNB signals the UE to only use a subset of codebook entries for the feedback. Subset restriction can be applied to either the first codebook, or the second codebook, or both.


Codebook subset restriction can be used for both wideband and subband components in a pre-configured and compatible manner, which we will further describe with some exemplary methods.


In one embodiment, a subset restriction can be imposed at wideband level to only transmit information regarding v1, by defining wideband codebook as follows







W
1

=

[


diag


(

[



1






2

πj






n
1



N
1












2

π





j





L






n
1



N
1






]

)








diag


(

[



1


1





1



]

)



]






With this restriction, only B1 bits of information need to be sent, and may be beneficial when ULA is highly rank 1 as in certain LOS cases, and only structure one may be used for all sub-bands included in the feedback. This would also implicitly result in following restriction for the subband codebook,







W
2

=

{


[




u
1







2

π





j






k
1


4





u
1




-




2

πj






k
2


4







0


0


0


0



]

,





k
1

,



k
2



{

0
,
1
,
2
,
3

}


;





u
1


,



u
2



CB
ij


=

{



[



1






2

πj





n



N
1


K









2

πj

.2

n



N
1


K












2

π






j
.




L






n



N
1


K






]

T

,





n
=


-

2


B
2

-
1



=


-

N
2


/
2



,

-

(



N
2

/
2

-
1

)


,







0







,



N
2

/
2

-
1


}








In another embodiment, at subband level, a subset restriction can be imposed to limit to one or more structures.


In another embodiment, a subset restriction can be used to signal wideband value of a parameter. For example, p may be signaled commonly on a wideband basis or as a fixed value common to all codebook entries corresponding to each structure. Similarly, co-phasing may be fixed if structure one is used, so that k1=k2=0.


In another embodiment, subset restriction can enable/disable further refinement using rotation i.e., u1 and u2 can be set to [1 1 . . . 1]T, which corresponds to no rotation of wideband vector.


Additionally, codebook subset restrictions may be imposed in an inter-dependent manner over wideband and subband codebooks. In other words, an UE may receive an UE-specific or cell-specific higher layer subset-restriction parameter which can take a set of multiple values each of which maps to a ‘codebook subset’ pair for W and W2. The mapping can be pre-defined and known to both the eNB and the UE. The construction of final precoder is simply based on

W=reshape(W1W2)  (0.12)

once the component precoders are chosen from the restricted codebooks.


In general, the subset restriction may be useful under certain persistent long-term conditions like whether link is line of sight (LOS) or non line of sight (NLOS), the eNB antenna configuration if a general codebook is used for all configurations (say ULA/XPOL), UE geometry which could limit the uplink feedback link capacity and iv) additional feedback required for other transmission modes like multiuser MIMO which may provision fewer bits to higher-ranked SU transmission.


The two component feedback scheme described above is applicable to multiple feedback modes as further described below.


One embodiment is illustrated in FIG. 6. The first component could correspond to a wideband matrix W1WB corresponding to the whole bandwidth 610, which is composed of one or more sub-bands 620. Each subband 620 is composed of a set of contiguous subcarriers 630 or in LTE, a set of RBs, which is the minimum scheduling/feedback granularity. A second matrix W2b corresponds to a to a band V. The precoder for a band represented as Wb is obtained as a function of W1WB and W2b. A preferred example of the function as described above is reshape (W1×W2). A UE is required to feedback the wideband precoder/matrix for the whole band and the subband precoder/matrix for each subband.


In one embodiment, the feedback could be defined along with an associated CQI feedback. The CQI feedback could correspond to a modulation and coding scheme (MCS) recommendation and/or a rank indication. The CQI could further consist of multiple CQI, one per each subband. In this case, the UE must select the components W1WB and W2b such that the subband precoders can support the CQI reported corresponding to the subband on the hypothesis UE is allocated that subband, while satisfying an error rate target. In another embodiment, a single CQI may be reported for the whole band, in which case the reported CQI must meet the error rate target, on the hypothesis that the UE is allocated the whole band, and the reported pre-coders are applied on each subband.


In another embodiment, the reported sub-bands may be a subset of the sub-bands that constitute the bandwidth and may or may not be equal in size as defined by number of subcarriers in each subband.


In another embodiment, the sub-bands to be reported may be signaled by the eNB explicitly from a set of predefined patterns.


In another embodiment, the sub-bands 620 may also be selected by the UE. The selection could be based on the best N (N<wholebandwidth) bands with ranking defined based on a performance criterion like sum rate supported or similar.


In another embodiment, the first matrix may be further feedback at different time instances and/or periodicities compared to the second matrix. This can, for example, be useful to alleviate the feedback load on the uplink in a single reporting instance like a subframe. Further, they may also be transmitted on different uplink physical channels like PUSCH and PUCCH defined in the current LTE Release-8.


In the above description, we have extensively used DFT based codebooks as preferred examples. If the antennas at the eNB are not calibrated, it is likely that the phase progression as in a DFT vector assumed for a ULA antenna sub-array may not hold. In the worst case scenario of un-calibrated antennas, the relative phase error between antennas may be random. However, it is also expected they are stable and slowly varying compared to time between feedback intervals. Other errors like relative timing errors between antennas may also introduce a relative phase shift that may not correspond to a ULA array. In such cases, one solution is for the UE to feedback a phase error correction vector relatively infrequently, which can be used to rotate the reported precoder at the eNB.


Further, another approach is to include some non-DFT but constant modulus vectors in the wideband codebook, which can compensate for the relative phase error. Note that the subband codebook may not be changed, since it is a relative rotation with respect to the wideband vector.


While the present disclosure and the best modes thereof have been described in a manner establishing possession and enabling those of ordinary skill to make and use the same, it will be understood and appreciated that there are equivalents to the exemplary embodiments disclosed herein and that modifications and variations may be made thereto without departing from the scope and spirit of the inventions, which are to be limited not by the exemplary embodiments but by the appended claims.

Claims
  • 1. A wireless communication device configured for sending precoder matrix information to a base station, the device comprising: a transmitter configured for sending the precoder matrix information to the base station, the precoder matrix information comprising: a first representation of a first matrix chosen from a first codebook and a second representation of a second matrix chosen from a second codebook, the first matrix having at least two column vectors, the first representation and the second representation together conveying a precoder matrix of one or more vectors associated with one or more spatial layers; andthe precoder matrix comprising a first sub-precoder matrix including a first set of weights on a first subset of transmit antennas of the base station and a second sub-precoder matrix including a second set of weights on a second subset of transmit antennas of the base station, the first and the second subsets of transmit antennas of the base station being non-overlapping, the first sub-precoder matrix and the second sub-precoder matrix comprising one or more column vectors of the first matrix corresponding to the first representation multiplied by one or more entries of the second matrix corresponding to the second representation.
  • 2. The wireless communication device of claim 1, wherein the at least two column vectors are different.
  • 3. The wireless communication device of claim 1, wherein the first representation is an index of the first chosen matrix from the first codebook.
  • 4. The wireless communication device of claim 1, wherein the second representation is an index of the second chosen matrix from the second codebook.
  • 5. The wireless communication device of claim 1, wherein the first codebook includes a set of matrices whose column vectors are Discrete Fourier Transform (DFT) vectors.
  • 6. The wireless communication device of claim 1, wherein the second matrix has at least two entries that have different and non-zero amplitude.
  • 7. The wireless communication device of claim 1, wherein the second matrix has a same vector norm for each row of the second matrix.
  • 8. The wireless communication device of claim 1, wherein the second matrix has a same vector norm for each column of the second matrix.
  • 9. The wireless communication device of claim 1, wherein the second matrix comprises entries that are co-phasing factors associated with the first sub-precoder matrix and the second sub-precoder matrix.
  • 10. The wireless communication device of claim 9, wherein the co-phasing factors are based on a Discrete Fourier Transform (DFT) codebook.
  • 11. The wireless communication device of claim 1, wherein the wireless communication device is further configured for selecting one column vector of the first matrix, wherein the first sub-precoder matrix is associated with one spatial layer and the first sub-precoder matrix is obtained by multiplying the selected column vector with a first element in a first row of the second matrix, and wherein the second sub-precoder matrix is associated with one spatial layer and the second sub-precoder matrix is obtained by multiplying the selected column vector with a first element in a second row of the second matrix.
  • 12. The wireless communication device of claim 1, wherein the wireless communication device is further configured for selecting one column vector of the first matrix, wherein the first sub-precoder matrix is associated with two spatial layers and the first sub-precoder matrix is obtained by multiplying the selected column vector with first and second elements in a first row of the second matrix, and wherein the second sub-precoder matrix is associated with two spatial layers and the second sub-precoder matrix is obtained by multiplying the selected column vector with first and second elements in a second row of the second matrix.
  • 13. The wireless communication device of claim 1, wherein the wireless communication device is further configured for selecting first and second column vectors of the first matrix, wherein the first sub-precoder matrix is associated with two spatial layers and the first sub-precoder matrix is obtained by multiplying the first column vector with a first element in a first row of the second matrix and multiplying the second column vector with a second element in a first row of the second matrix, and wherein the second sub-precoder matrix is associated with two spatial layers and the second sub-precoder matrix is obtained by multiplying the first column vector with a first element in a second row of the second matrix and multiplying the second column vector with a second element in a second row of the second matrix.
  • 14. The wireless communication device of claim 1, wherein the wireless communication device is further configured for selecting first and second column vectors of the first matrix, wherein the first sub-precoder matrix is associated with two spatial layers and the first sub-precoder matrix is obtained by multiplying the first column vector with a first element in a first row of the second matrix and multiplying the second column vector with a second element in a first row of the second matrix, and wherein the second sub-precoder matrix is associated with two spatial layers and the second sub-precoder matrix is obtained by multiplying the second column vector with a first element in a second row of the second matrix and multiplying the first column vector with a second element in a second row of the second matrix.
  • 15. The wireless communication device of claim 1, wherein the wireless communication device is further configured for: forming an alternative form of the second matrix from entries of the second matrix;obtaining a product matrix from multiplication of the first matrix and the alternative form of the second matrix; andobtaining the precoder matrix performed by mapping columns of the product matrix to the first and second sub-precoder matrix.
  • 16. The wireless communication device of claim 15, wherein the alternative form of the second matrix is obtained by mapping entries of the second matrix such that one entry is present in each column of the alternative form of the second matrix with remaining entries of each column being zero.
  • 17. The wireless communication device of claim 1, wherein the wireless communication device is further configured for rotating at least one vector of the first matrix according to a rotation matrix selected from a rotation codebook.
  • 18. The wireless communication device of claim 17, wherein the rotation codebook is a Discrete Fourier Transform (DFT) codebook.
  • 19. The wireless communication device of claim 17, wherein the wireless communication device is further configured for rotating at least one column vector of the first matrix according to a rotation matrix chosen from a rotation codebook, wherein the rotation matrix corresponds to a sub-band.
  • 20. The wireless communication device of claim 1, wherein the first matrix is chosen from a subset of the first codebook.
  • 21. The wireless communication device of claim 1, wherein the second matrix is chosen from a subset of the second codebook.
  • 22. The wireless communication device of claim 1, wherein the wireless communication device is further configured for determining a number of column vectors in the precoder matrix, the number of column vectors corresponding to a number of the one or more spatial layers.
  • 23. The wireless communication device of claim 1, wherein the first matrix corresponds to a frequency band, the second matrix corresponds to a frequency sub-band within the frequency band, the first representation and the second representation together convey the precoder matrix of one or more vectors associated with the one or more spatial layers, and the precoder matrix corresponds to the frequency sub-band.
  • 24. A method of precoding at a base station based on feedback from a wireless communication device, the method comprising: receiving feedback conveying a recommended precoder from the wireless communication device, the feedback comprising a first representation of a first matrix chosen from a first codebook and a second representation of a second matrix chosen from a second codebook, the first matrix having at least two column vectors, the first representation and the second representation together conveying a precoder matrix of one or more vectors associated with one or more spatial layers;constructing a final precoder as a function of the received feedback;precoding at least one data stream using the final precoder; andtransmitting the at least one data stream from the base station to the mobile communication device.
  • 25. The method of claim 24, wherein the at least two column vectors are different.
  • 26. The method of claim 24, wherein the first representation is an index of the chosen matrix in the first codebook.
  • 27. The method of claim 24, wherein the second representation is an index of the chosen matrix in the second codebook.
  • 28. The method of claim 24, wherein the first codebook includes a set of matrices whose column vectors are Discrete Fourier Transform (DFT) vectors.
  • 29. The method of claim 24, wherein the second matrix has at least two entries that have different and non-zero amplitude.
  • 30. The method of claim 24, wherein the precoder matrix comprises a first sub-precoder matrix including a first set of weights on a first subset of transmit antennas of the base station and a second sub-precoder matrix including a second set of weights on a second subset of transmit antennas of the base station, the first and the second subsets of transmit antennas of the base station being non-overlapping, the first sub-precoder matrix and the second sub-precoder matrix comprising one or more column vectors of the first matrix corresponding to the first representation multiplied by one or more entries of the second matrix corresponding to the second representation.
  • 31. The method of claim 30, wherein the second matrix comprises entries that are co-phasing factors associated with the first sub-precoder matrix and the second sub-precoder matrix.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. patent application Ser. No. 13/924,838 filed on 24 Jun. 2013, that is a continuation of U.S. patent application Ser. No. 13/088,237 filed on 15 Apr. 2011, that claims priority to U.S. Provisional Patent Application No. 61/331,818 filed on 5 May 2010, the contents of all of which are incorporated herein by reference and from which benefits are claimed under 35 U.S.C. 119/120.

US Referenced Citations (403)
Number Name Date Kind
4612669 Nossen Sep 1986 A
4631543 Brodeur Dec 1986 A
4754285 Robitaille Jun 1988 A
4881123 Chapple Nov 1989 A
4884252 Teodoridis et al. Nov 1989 A
5267234 Harrison Nov 1993 A
5459440 Claridge et al. Oct 1995 A
5564086 Cygan et al. Oct 1996 A
5634200 Kitakubo et al. May 1997 A
5649307 Patino Jul 1997 A
5699319 Skrivervik Dec 1997 A
5757326 Koyama et al. May 1998 A
5804944 Alberkrack et al. Sep 1998 A
5862458 Ishii Jan 1999 A
6144186 Thandiwe et al. Nov 2000 A
6339758 Kanazawa et al. Jan 2002 B1
6362690 Tichauer Mar 2002 B1
6373439 Zurcher et al. Apr 2002 B1
6400702 Meier Jun 2002 B1
6560444 Imberg May 2003 B1
6594508 Ketonen Jul 2003 B1
6674291 Barber et al. Jan 2004 B1
6879942 Nagase et al. Apr 2005 B1
6927555 Johnson Aug 2005 B2
6937980 Krasny et al. Aug 2005 B2
7019702 Henriet et al. Mar 2006 B2
7142884 Hagn Nov 2006 B2
7199754 Krumm et al. Apr 2007 B2
7202815 Swope et al. Apr 2007 B2
7224992 Patino et al. May 2007 B2
7254420 Klein Aug 2007 B1
7260366 Lee et al. Aug 2007 B2
7359504 Reuss et al. Apr 2008 B1
7400907 Jin et al. Jul 2008 B2
7433661 Kogiantis et al. Oct 2008 B2
7436896 Hottinen et al. Oct 2008 B2
7440731 Staudinger et al. Oct 2008 B2
7471963 Kim et al. Dec 2008 B2
7486931 Cho et al. Feb 2009 B2
7504833 Sequine Mar 2009 B1
7599420 Forenza et al. Oct 2009 B2
7620432 Willins et al. Nov 2009 B2
D606958 Knoppert et al. Dec 2009 S
7639660 Kim et al. Dec 2009 B2
7643642 Patino et al. Jan 2010 B2
7649831 Van Rensburg et al. Jan 2010 B2
7664200 Ariyavisitakul et al. Feb 2010 B2
7746943 Yamaura Jun 2010 B2
7760681 Chhabra Jul 2010 B1
7773535 Vook et al. Aug 2010 B2
7773685 Tirkkonen et al. Aug 2010 B2
7813696 Kim Oct 2010 B2
7822140 Catreux et al. Oct 2010 B2
7835711 McFarland Nov 2010 B2
7839201 Jacobson Nov 2010 B2
7885211 Shen et al. Feb 2011 B2
7936237 Park et al. May 2011 B2
7940740 Krishnamurthy et al. May 2011 B2
7942936 Golden May 2011 B2
7945229 Wilson et al. May 2011 B2
7983722 Lowles et al. Jul 2011 B2
8014455 Kim et al. Sep 2011 B2
8072285 Spears et al. Dec 2011 B2
8094011 Faris et al. Jan 2012 B2
8095081 Vance Jan 2012 B2
8098120 Steeneken et al. Jan 2012 B2
8155683 Buckley et al. Apr 2012 B2
8204446 Scheer et al. Jun 2012 B2
8219336 Hoebel et al. Jul 2012 B2
8219337 Hoebel et al. Jul 2012 B2
8232685 Perper et al. Jul 2012 B2
8233851 Jeon et al. Jul 2012 B2
8244317 Knoppert et al. Aug 2012 B2
8259431 Katta Sep 2012 B2
8275327 Yi et al. Sep 2012 B2
8280038 Johnson et al. Oct 2012 B2
8280323 Thompson Oct 2012 B2
8284849 Lee et al. Oct 2012 B2
8302183 Sood Oct 2012 B2
8319393 DeReus Nov 2012 B2
8373596 Kimball et al. Feb 2013 B1
8374633 Frank et al. Feb 2013 B2
8384695 Lee et al. Feb 2013 B2
8428022 Frank et al. Apr 2013 B2
8460961 Guo et al. Jun 2013 B2
8483707 Krishnamurthy et al. Jul 2013 B2
8509338 Sayana et al. Aug 2013 B2
8542776 Kim et al. Sep 2013 B2
8588426 Xin et al. Nov 2013 B2
8594584 Greene et al. Nov 2013 B2
8606200 Ripley et al. Dec 2013 B2
8611829 Alberth et al. Dec 2013 B2
8620348 Shrivastava et al. Dec 2013 B2
8626083 Greene et al. Jan 2014 B2
8712340 Hoirup et al. Apr 2014 B2
8712355 Black et al. Apr 2014 B2
8731496 Drogi et al. May 2014 B2
8761296 Zhang et al. Jun 2014 B2
8767722 Kamble et al. Jul 2014 B2
8909173 Harmke Dec 2014 B2
8989747 Padden et al. Mar 2015 B2
9002354 Krishnamurthy et al. Apr 2015 B2
9031523 Anderson May 2015 B2
9197255 Pourkhaatoun et al. Nov 2015 B2
9203489 Sayana et al. Dec 2015 B2
9215659 Asrani et al. Dec 2015 B2
9241050 Asrani et al. Jan 2016 B1
9298303 Wagner et al. Mar 2016 B2
9301177 Ballantyne et al. Mar 2016 B2
9326320 Hong et al. Apr 2016 B2
9344837 Russel et al. May 2016 B2
20010034238 Voyer Oct 2001 A1
20020037742 Enderlein et al. Mar 2002 A1
20020057751 Jagger et al. May 2002 A1
20020090974 Hagn Jul 2002 A1
20020138254 Isaka et al. Sep 2002 A1
20020149351 Kanekawa et al. Oct 2002 A1
20020193130 Yang et al. Dec 2002 A1
20030143961 Humphreys et al. Jul 2003 A1
20030161485 Smith Aug 2003 A1
20030222819 Karr et al. Dec 2003 A1
20040051583 Hellberg Mar 2004 A1
20040052314 Copeland Mar 2004 A1
20040052317 Love et al. Mar 2004 A1
20040057530 Tarokh et al. Mar 2004 A1
20040063439 Glazko et al. Apr 2004 A1
20040082356 Walton et al. Apr 2004 A1
20040106428 Shoji Jun 2004 A1
20040148333 Manion et al. Jul 2004 A1
20040176125 Lee Sep 2004 A1
20040178912 Smith et al. Sep 2004 A1
20040192398 Zhu Sep 2004 A1
20040198392 Harvey et al. Oct 2004 A1
20040235433 Hugl et al. Nov 2004 A1
20040246048 Leyonhjelm et al. Dec 2004 A1
20050037733 Coleman et al. Feb 2005 A1
20050041018 Philipp Feb 2005 A1
20050075123 Jin et al. Apr 2005 A1
20050124393 Nuovo et al. Jun 2005 A1
20050134456 Niu et al. Jun 2005 A1
20050135324 Kim et al. Jun 2005 A1
20050136845 Masuoka et al. Jun 2005 A1
20050208952 Dietrich et al. Sep 2005 A1
20050227640 Haque et al. Oct 2005 A1
20050250532 Hwang et al. Nov 2005 A1
20060019677 Teague et al. Jan 2006 A1
20060052131 Ichihara Mar 2006 A1
20060067277 Thomas et al. Mar 2006 A1
20060077952 Kubsch et al. Apr 2006 A1
20060099940 Pfleging et al. May 2006 A1
20060103635 Park May 2006 A1
20060181453 King et al. Aug 2006 A1
20060194593 Drabeck et al. Aug 2006 A1
20060207806 Philipp Sep 2006 A1
20060209754 Ji et al. Sep 2006 A1
20060215618 Soliman et al. Sep 2006 A1
20060240827 Dunn Oct 2006 A1
20060245601 Michaud et al. Nov 2006 A1
20060256887 Kwon et al. Nov 2006 A1
20060280261 Prikhodko et al. Dec 2006 A1
20060291393 Teague et al. Dec 2006 A1
20060292990 Karabinis et al. Dec 2006 A1
20070004344 DeGroot et al. Jan 2007 A1
20070008108 Schurig et al. Jan 2007 A1
20070026838 Staudinger et al. Feb 2007 A1
20070042714 Ayed Feb 2007 A1
20070049280 Sambhwani et al. Mar 2007 A1
20070069735 Graf et al. Mar 2007 A1
20070091004 Puuri Apr 2007 A1
20070093281 Park et al. Apr 2007 A1
20070133462 Guey Jun 2007 A1
20070153743 Mukkavilli et al. Jul 2007 A1
20070197180 McKinzie et al. Aug 2007 A1
20070200766 McKinzie et al. Aug 2007 A1
20070211657 McBeath et al. Sep 2007 A1
20070211813 Talwar et al. Sep 2007 A1
20070222629 Yoneyama Sep 2007 A1
20070223422 Kim et al. Sep 2007 A1
20070232370 Kim Oct 2007 A1
20070238425 McFarland Oct 2007 A1
20070238496 Chung et al. Oct 2007 A1
20070243894 Das et al. Oct 2007 A1
20070255558 Yasunaga et al. Nov 2007 A1
20070280160 Kim et al. Dec 2007 A1
20070285326 McKinzie Dec 2007 A1
20080001915 Pihlaja et al. Jan 2008 A1
20080002735 Poirier et al. Jan 2008 A1
20080014960 Chou Jan 2008 A1
20080026710 Buckley Jan 2008 A1
20080080449 Huang et al. Apr 2008 A1
20080089312 Malladi Apr 2008 A1
20080095109 Malladi et al. Apr 2008 A1
20080108310 Tong May 2008 A1
20080111714 Kremin May 2008 A1
20080117886 Kim May 2008 A1
20080130626 Ventola et al. Jun 2008 A1
20080132247 Anderson Jun 2008 A1
20080133462 Aylward et al. Jun 2008 A1
20080157893 Krah Jul 2008 A1
20080159239 Odlyzko et al. Jul 2008 A1
20080165876 Suh et al. Jul 2008 A1
20080167040 Khandekar et al. Jul 2008 A1
20080167073 Hobson et al. Jul 2008 A1
20080170602 Guey Jul 2008 A1
20080170608 Guey Jul 2008 A1
20080186105 Scuderi et al. Aug 2008 A1
20080192683 Han et al. Aug 2008 A1
20080212520 Chen et al. Sep 2008 A1
20080225693 Zhang et al. Sep 2008 A1
20080227414 Karmi et al. Sep 2008 A1
20080227481 Naguib et al. Sep 2008 A1
20080232395 Buckley et al. Sep 2008 A1
20080267310 Khan et al. Oct 2008 A1
20080274753 Attar et al. Nov 2008 A1
20080298482 Rensburg et al. Dec 2008 A1
20080307427 Pi et al. Dec 2008 A1
20080309633 Hotelling et al. Dec 2008 A1
20080313146 Wong et al. Dec 2008 A1
20080317259 Zhang et al. Dec 2008 A1
20090041151 Khan et al. Feb 2009 A1
20090055170 Nagahama Feb 2009 A1
20090061790 Rofougaran Mar 2009 A1
20090061887 Hart et al. Mar 2009 A1
20090067382 Li et al. Mar 2009 A1
20090091551 Hotelling et al. Apr 2009 A1
20090102294 Hodges et al. Apr 2009 A1
20090121963 Greene May 2009 A1
20090122758 Smith et al. May 2009 A1
20090122884 Vook et al. May 2009 A1
20090228598 Stamoulis et al. Sep 2009 A1
20090238131 Montojo et al. Sep 2009 A1
20090243631 Kuang Oct 2009 A1
20090252077 Khandekar et al. Oct 2009 A1
20090256644 Knudsen Oct 2009 A1
20090258614 Walker Oct 2009 A1
20090262699 Wdngerter et al. Oct 2009 A1
20090264078 Yun et al. Oct 2009 A1
20090268675 Choi Oct 2009 A1
20090270103 Pani et al. Oct 2009 A1
20090285321 Schulz et al. Nov 2009 A1
20090290544 Yano et al. Nov 2009 A1
20090295226 Hodges et al. Dec 2009 A1
20090298433 Sorrells et al. Dec 2009 A1
20090307511 Fiennes et al. Dec 2009 A1
20090323608 Adachi et al. Dec 2009 A1
20100002657 Teo et al. Jan 2010 A1
20100023898 Nomura et al. Jan 2010 A1
20100034312 Muharemovic et al. Feb 2010 A1
20100035627 Hou et al. Feb 2010 A1
20100046460 Kwak et al. Feb 2010 A1
20100046650 Jongren et al. Feb 2010 A1
20100056166 Tenny Mar 2010 A1
20100085010 Suzuki et al. Apr 2010 A1
20100103949 Jung et al. Apr 2010 A1
20100106459 Bakalov Apr 2010 A1
20100109796 Park et al. May 2010 A1
20100118706 Parkvall et al. May 2010 A1
20100118839 Malladi et al. May 2010 A1
20100156728 Alvey et al. Jun 2010 A1
20100157858 Lee et al. Jun 2010 A1
20100157924 Prasad et al. Jun 2010 A1
20100159833 Lewis et al. Jun 2010 A1
20100161658 Hamynen et al. Jun 2010 A1
20100165882 Palanki et al. Jul 2010 A1
20100167743 Palanki et al. Jul 2010 A1
20100172310 Cheng et al. Jul 2010 A1
20100172311 Agrawal et al. Jul 2010 A1
20100182903 Palanki et al. Jul 2010 A1
20100189191 Taoka et al. Jul 2010 A1
20100195566 Krishnamurthy et al. Aug 2010 A1
20100208838 Lee et al. Aug 2010 A1
20100217590 Nemer et al. Aug 2010 A1
20100220801 Lee et al. Sep 2010 A1
20100260154 Frank et al. Oct 2010 A1
20100271330 Philipp Oct 2010 A1
20100272094 Byard et al. Oct 2010 A1
20100311437 Palanki et al. Dec 2010 A1
20100317343 Krishnamurthy Dec 2010 A1
20100322176 Chen et al. Dec 2010 A1
20100323718 Jen Dec 2010 A1
20110039583 Frank et al. Feb 2011 A1
20110051834 Lee et al. Mar 2011 A1
20110080969 Jongren et al. Apr 2011 A1
20110083066 Chung et al. Apr 2011 A1
20110085588 Zhuang et al. Apr 2011 A1
20110085610 Zhuang et al. Apr 2011 A1
20110096739 Heidari et al. Apr 2011 A1
20110103498 Chen et al. May 2011 A1
20110105023 Scheer May 2011 A1
20110116423 Rousu et al. May 2011 A1
20110116436 Bachu et al. May 2011 A1
20110117925 Sampath et al. May 2011 A1
20110119005 Majima et al. May 2011 A1
20110121836 Kim et al. May 2011 A1
20110143770 Charbit et al. Jun 2011 A1
20110143773 Kangas et al. Jun 2011 A1
20110148625 Velusamy Jun 2011 A1
20110148700 Lasagabaster et al. Jun 2011 A1
20110149868 Krishnamurthy et al. Jun 2011 A1
20110149903 Krishnamurthy et al. Jun 2011 A1
20110157067 Wagner et al. Jun 2011 A1
20110158200 Bachu et al. Jun 2011 A1
20110176252 DeReus Jul 2011 A1
20110189964 Jeon et al. Aug 2011 A1
20110190016 Hamabe et al. Aug 2011 A1
20110216840 Lee et al. Sep 2011 A1
20110244884 Kangas et al. Oct 2011 A1
20110249637 Hammarwall Oct 2011 A1
20110250852 Greene Oct 2011 A1
20110263303 Lowles et al. Oct 2011 A1
20110268101 Wang Nov 2011 A1
20110274188 Sayana et al. Nov 2011 A1
20110281532 Shin et al. Nov 2011 A1
20110285603 Skarp Nov 2011 A1
20110286349 Tee et al. Nov 2011 A1
20110292844 Kwun et al. Dec 2011 A1
20110319027 Sayana Dec 2011 A1
20120002609 Larsson et al. Jan 2012 A1
20120008510 Cai et al. Jan 2012 A1
20120021769 Lindoff et al. Jan 2012 A1
20120032646 Lee Feb 2012 A1
20120039251 Sayana Feb 2012 A1
20120050122 Wu et al. Mar 2012 A1
20120052903 Han et al. Mar 2012 A1
20120071195 Chakraborty et al. Mar 2012 A1
20120076043 Nishio et al. Mar 2012 A1
20120077538 Yun Mar 2012 A1
20120106475 Jung May 2012 A1
20120112851 Manssen et al. May 2012 A1
20120120772 Fujisawa May 2012 A1
20120120934 Cho May 2012 A1
20120122478 Siomina et al. May 2012 A1
20120158839 Hassan et al. Jun 2012 A1
20120161927 Pierfelice et al. Jun 2012 A1
20120162129 Krah et al. Jun 2012 A1
20120170541 Love et al. Jul 2012 A1
20120177089 Pelletier et al. Jul 2012 A1
20120178370 George Jul 2012 A1
20120182144 Richardson et al. Jul 2012 A1
20120206556 Yu et al. Aug 2012 A1
20120214412 Schlub et al. Aug 2012 A1
20120214421 Hoirup et al. Aug 2012 A1
20120214549 Philbin Aug 2012 A1
20120220243 Mendolia Aug 2012 A1
20120295554 Greene et al. Nov 2012 A1
20120295555 Greene et al. Nov 2012 A1
20120302188 Sahota et al. Nov 2012 A1
20120306716 Satake et al. Dec 2012 A1
20120309388 Moosavi et al. Dec 2012 A1
20120309413 Grosman et al. Dec 2012 A1
20120316967 Mgrdechian et al. Dec 2012 A1
20130030803 Liao Jan 2013 A1
20130034241 Pandey et al. Feb 2013 A1
20130039284 Marinier et al. Feb 2013 A1
20130040578 Khoshnevis et al. Feb 2013 A1
20130059600 Elsom-Cook et al. Mar 2013 A1
20130078980 Saito Mar 2013 A1
20130094484 Kneckt et al. Apr 2013 A1
20130109314 Kneckt et al. May 2013 A1
20130109334 Kwon et al. May 2013 A1
20130142113 Fong et al. Jun 2013 A1
20130150092 Frank et al. Jun 2013 A1
20130178175 Kato Jul 2013 A1
20130194154 Baliarda et al. Aug 2013 A1
20130195283 Larson et al. Aug 2013 A1
20130195296 Merks Aug 2013 A1
20130231151 Kneckt et al. Sep 2013 A1
20130286937 Liu et al. Oct 2013 A1
20130307735 Contreras et al. Nov 2013 A1
20130310102 Chao et al. Nov 2013 A1
20130316687 Subbaramoo et al. Nov 2013 A1
20130322375 Chang et al. Dec 2013 A1
20130322562 Zhang et al. Dec 2013 A1
20130325149 Manssen et al. Dec 2013 A1
20140024321 Zhu et al. Jan 2014 A1
20140044126 Sabhanatarajan et al. Feb 2014 A1
20140068288 Robinson et al. Mar 2014 A1
20140092830 Chen et al. Apr 2014 A1
20140093091 Dusan et al. Apr 2014 A1
20140185498 Schwent et al. Jul 2014 A1
20140227981 Pecen et al. Aug 2014 A1
20140273882 Asrani et al. Sep 2014 A1
20140273886 Black et al. Sep 2014 A1
20140313088 Rozenblit et al. Oct 2014 A1
20140349593 Danak et al. Nov 2014 A1
20140376652 Sayana et al. Dec 2014 A1
20140379332 Rodriguez et al. Dec 2014 A1
20150017978 Hong et al. Jan 2015 A1
20150024786 Asrani et al. Jan 2015 A1
20150031420 Higaki et al. Jan 2015 A1
20150072632 Pourkhaatoun et al. Mar 2015 A1
20150080047 Russell et al. Mar 2015 A1
20150092954 Coker et al. Apr 2015 A1
20150171919 Ballantyne et al. Jun 2015 A1
20150181388 Smith Jun 2015 A1
20150236828 Park et al. Aug 2015 A1
20150245323 You et al. Aug 2015 A1
20150280876 You et al. Oct 2015 A1
20150312058 Black et al. Oct 2015 A1
20150349410 Russell et al. Dec 2015 A1
20150365065 Higaki et al. Dec 2015 A1
20160014727 Nimbalker Jan 2016 A1
20160036482 Black et al. Feb 2016 A1
Foreign Referenced Citations (57)
Number Date Country
1762137 Apr 2006 CN
1859656 Nov 2006 CN
1984476 Jun 2007 CN
101035379 Sep 2007 CN
10053205 May 2002 DE
10118189 Nov 2002 DE
0695059 Jan 1996 EP
1158686 Nov 2001 EP
1298809 Apr 2003 EP
1357543 Oct 2003 EP
1511010 Mar 2005 EP
1753152 Feb 2007 EP
1443791 Feb 2009 EP
2487967 Aug 2012 EP
2255443 Nov 2012 EP
2557433 Feb 2013 EP
2568531 Mar 2013 EP
2590258 May 2013 EP
H09247852 Sep 1997 JP
2000286924 Oct 2000 JP
20050058333 Jun 2005 KR
2005113251 Jan 2006 RU
WO-9306682 Apr 1993 WO
WO-9416517 Jul 1994 WO
WO-9600401 Jan 1996 WO
WO-9921389 Apr 1999 WO
WO-9950968 Oct 1999 WO
WO-0111721 Feb 2001 WO
WO-03007508 Jan 2003 WO
WO-03107327 Dec 2003 WO
WO-2004021634 Mar 2004 WO
WO-20040040800 May 2004 WO
WO-2004084427 Sep 2004 WO
WO-2004084447 Sep 2004 WO
WO-2006039434 Apr 2006 WO
WO-2006046192 May 2006 WO
WO-2006130278 Dec 2006 WO
WO 2007052115 May 2007 WO
WO-2007080727 Jul 2007 WO
WO-2008027705 Mar 2008 WO
WO-2008033117 Mar 2008 WO
WO-2008085107 Jul 2008 WO
WO-2008085416 Jul 2008 WO
WO-2008085720 Jul 2008 WO
WO-2008112849 Sep 2008 WO
WO-2008113210 Sep 2008 WO
WO-2008137354 Nov 2008 WO
WO-2008137607 Nov 2008 WO
WO-2008156081 Dec 2008 WO
WO-2009107090 Sep 2009 WO
WO-2010080845 Jul 2010 WO
WO-2010124244 Oct 2010 WO
WO-2010138039 Dec 2010 WO
WO-2012115649 Aug 2012 WO
WO-2012149968 Nov 2012 WO
WO-2012177939 Dec 2012 WO
WO-2013131268 Sep 2013 WO
Non-Patent Literature Citations (201)
Entry
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network”, 3GPP TR 36.814 V9.0.0 (Mar. 2010), Further Advancements for E-UTRA Physical Layer Aspects (Release 9), Mar. 2010, 104 pages.
“A feedback framework based on W2W1 for Rei. 10”, 3GPP TSG RAN WG1 #61bis, R1-103664,, Jun. 2010, 19 pages.
“Addition of PRS Muting Configuration Information to LPPa”, 3GPP TSG RAN3 #68, Montreal, Canada; Ericsson, R3-101526, May 2010, 7 pages.
“Best Companion' reporting for improved single-cell MU-MIMO pairing”, 3GPP TSG RAN WG1 #56; Athens, Greece; Alcatei-Lucent, R1-090926, Feb. 2009, 5 pages.
“Change Request—Clarification of the CP length of empty OFDM symbols in PRS subframes”, 3GPP TSG RAN WG1 #59bis, Jeju, Vaiencia, Spain, ST-Ericsson, Motorola, Qualcomm Inc, R1-100311;, Jan. 2009, 2 pages.
“Change Request 36.211—Introduction of L TE Positioning”, 3GPP TSG RAN WG1 #59, Jeju, South Korea; Ericsson, R1-095027, May 2010, 6 pages.
“Change Request 36.213 Clarification of POSCH and PRS in combination for L TE positioning”, 3GPP TSG RAN WG1 #58bis, Miyazaki, Japan; Ericsson, et al., R1-094262;, Oct. 2009, 4 pages.
“Change Request 36.214—Introduction of LTE Positioning”, 3GPP TSG RAN WG1 #59, Jeju, South Korea, Ericsson, et al., R1-094430, Nov. 2009, 4 pages.
“Companion Subset Based PMI/CQI Feedback for LTE-A MU-MIMO”, 3GPP TSG RAN WG1 #60; San Francisco, USA, RIM; R1-101104, Feb. 2010, 8 pages.
“Comparison of PMI-based and SCF-based MU-MIMO”, 3GPP TSG RAN1 #58; Shenzhen, China; R1-093421 Aug. 2009, 5 pages.
“Development of two-stage feedback framework for Rel-10”, 3GPP TSG RAN WG1 #60bis Meeting, R1-101859, Alcatel-Lucent Shanghai Bell, Alcatel-Lucent, Apr. 2010, 5 pages.
“Digital cellular telecommunications system (Phase 2+)”, Location Services (LCS); Broadcast Network Assistance for Enhanced Observed Time Difference (E-OTD) and Global Positioning System (GPS) Positioning Methods (3GPP TS 04.35 version 8.3.0 Release 1999), 2001, 37 pages.
“Discussions on UE positioning issues”, 3GPP TSG-RAN WG1 #57 R1-091911, San Francisco, USA,, May 2009, 12 pages.
“DL Codebook design for 8Tx preceding”, 3GPP TSG RAN WG1 #60bis, R1-102380, LG Electronics, Beijing, China, Apr. 2010, 4 pages.
“Double codebook design principles”, 3GPP TSG RAN WG1 #61bis, R1-103804, Nokia, Nokia Siemens Networks, Dresden, Germany, Jun. 2010, 9 pages.
“Evaluation of protocol architecture alternatives for positioning”, 3GPP TSG-RAN WG2 #66bis R2-093855, Los Angeles, CA, USA, Jun. 2009, 4 pages.
“Ex Parte Quayle Action”, U.S. Appl. No. 13/088,237, filed Dec. 19, 2012, 5 pages.
“Extended European Search Report”, EP Application No. 12196319.3, Feb. 27, 2014, 7 pages.
“Extended European Search Report”, EP Application No. 12196328.4, Feb. 26, 2014, 7 pages.
“Extensions to Rel-8 type CQI/PMI/RI feedback using double codebook structure”, 3GPP TSG RAN WG1#59bis, R1-100251, Valencia, Spain,, Jan. 2010, 4 pages.
“Feedback Codebook Design and Performance Evaluation”, 3GPP TSG RAN WG1 #61bis, R1-103970, LG Electronics, Jun. 2010, 6 pages.
“Feedback considerations for DL MIMO and CoMP”, 3GPP TSG RAN WG1 #57bis; Los Angeles, USA; Qualcomm Europe; R1-092695, Jun. 2009, 6 pages.
“Final Office Action”, U.S. Appl. No. 12/573,456, Mar. 21, 2012, 12 pages.
“Final Office Action”, U.S. Appl. No. 12/756,777, Nov. 1, 2013, 12 pages.
“Final Office Action”, U.S. Appl. No. 12/899,211, Oct. 24, 2013, 17 pages.
“Final Rejection”, U.S. Appl. No. 12/407,783, Feb. 15, 2012, 18 pages.
“Foreign Office Action”, CN Application No. 201080025882.7, Feb. 8, 2014, 19 pages.
“Further details on DL OTDOA”, 3GPP TSG RAN WG1 #56bis, Seoul, South Korea—Ericsson, R1-091312,, Mar. 2009, 6 pages.
“Further Refinements of Feedback Framework”, 3GPP TSG-RAN WG1 #60bis R1-101742; Ericsson, ST-Ericsson, Apr. 2010, 8 pages.
“IEEE 802.16m System Description Document [Draft]”, IEEE 802.16 Broadband Wireless Access Working Group, Nokia, Feb. 7, 2009, 171 pages.
“Implicit feedback in support of downlink MU-MIMO Texas Instruments”, 3GPP TSG RAN WG1 #58; Shenzhen, China, R1-093176, Aug. 2009, 4 pages.
“Improving the hearability of LTE Positioning Service”, 3GPP TSG RAN WG1 #55bis; Alcatei-Lucent, R1-090053 Jan. 2009, 5 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2010/026579, Feb. 4, 2011, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2011/034959, Aug. 16, 2011, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2011/045209, Oct. 28, 2011, 14 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2011/039214, Sep. 14, 2011, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2010/038257, Oct. 1, 2010, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2010/034023, Dec. 1, 2010, 9 pages.
“International Search Report”, Application No. PCT/US2010/030516, Oct. 8, 2010, 5 pages.
“International Search Report”, Application No. PCT/US2010/036982, Nov. 22, 2010, 4 pages.
“International Search Report”, Application No. PCT/US2010/041451, Oct. 25, 2010, 3 pages.
“International Search Report”, Application No. PCT/US2011/044103, Oct. 24, 2011, 3 pages.
“Introduction of L TE Positioning”, 3GPP TSG RAN WG1 #58, Shenzhen, China, R1-093604; Draft CR 36.213, Aug. 2009, 3 pages.
“Introduction of L TE Positioning”, 3GPP TSG RAN WG1 #59, Jeju, South Korea, Ericsson et al.; R1-094429,, Nov. 2009, 5 pages.
“Introduction of LTE Positioning”, 3GPP TSG RAN WG1 #58, Shenzhen, China; Draft CR 36.214; R1-093605;, Aug. 2009, 6 pages.
“Introduction of LTE Positioning”, 3GPP TSG-RAN WG1 Meeting #58, R1-093603, Shenzhen, China,, Aug. 2009, 5 pages.
“LS on 12 5. Assistance Information for OTDOA Positioning Support for L TE Rel-9”, 3GPP TSG RAN WG1 Meeting #58; Shenzhen, China; R1-093729, Aug. 2009, 3 pages.
“LS on LTE measurement supporting Mobility”, 3GPP TSG WG1 #48, Tdoc R1-071250; StLouis, USA, Feb. 2007, 2 pages.
“LTE Positioning Protocol (LPP)”, 3GPP TS 36.355 V9.0.0 (Dec. 2009); 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Release 9, Dec. 2009, 102 pages.
“Method for Channel Quality Feedback in Wireless Communication Systems”, U.S. Appl. No. 12/823,178, filed Jun. 25, 2010, 34 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/407,783, Sep. 9, 2013, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/407,783, Oct. 5, 2011, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/480,289, Jun. 9, 2011, 20 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/492,339, Aug. 19, 2011, 13 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/542,374, Feb. 24, 2014, 25 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/542,374, Aug. 7, 2013, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/542,374, Aug. 31, 2012, 27 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/542,374, Dec. 23, 2011, 22 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/573,456, Nov. 18, 2011, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/577,553, Feb. 4, 2014, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/577,553, Aug. 12, 2013, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/577,553, Dec. 28, 2011, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/756,777, Apr. 19, 2013, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/813,221, Oct. 8, 2013, 10 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/823,178, Aug. 23, 2012, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/899,211, Apr. 10, 2014, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/899,211, May 22, 2013, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/973,467, Mar. 28, 2013, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/759,089, Apr. 18, 2013, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/924,838, Nov. 28, 2014, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 12/365,166, Apr. 16, 2010, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 12/365,166, Aug. 25, 2010, 4 pages.
“Notice of Allowance”, U.S. Appl. No. 13/040,090, Mar. 8, 2012, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 13/088,237, Jun. 17, 2013, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/088,237, Jul. 11, 2013, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/188,419, May 22, 2013, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/924,838, Mar. 12, 2015, 7 pages.
“Notice of Allowance”, U.S. Appl. No. 13/924,838, Jul. 8, 2015, 7 pages.
“On Extensions to Rel-8 PMI Feedback”, 3GPP TSG RAN WG1 #60, R1-101129, Motorola, San Francisco, USA,, Feb. 2010, 4 pages.
“On OTDOA in LTE”, 3GPP TSG RAN WG1 #55bis, Ljubljana, Slovenia; R1-090353, Jan. 2009, 8 pages.
“On OTDOA method for L TE Positioning”, 3GPP TSG RAN WG1 #56, Ericsson, R1-090918, Athens, Greece, Feb. 2009, 6 pages.
“On Serving Cell Muting for OTDOA Measurements”, 3GPP TSG RAN1 #57, R1-092628—Los Angeles, CA, USA, Jun. 2009, 7 pages.
“Performance evaluation of adaptive codebook as enhancement of 4 Tx feedback”, 3GPP TSG RAN WG1#61bis, R1-103447, Jul. 2010, 6 pages.
“PHY Layer 1 1 4. Specification Impact of Positioning Improvements”, 3GPP TSG RAN WG1 #56bis, Athens, Greece; Qualcomm Europe, R1-090852,, Feb. 2009, 3 pages.
“Physical Channels and Modulation (Release 8)”, 3GPP TS 36.211 V8.6.0 (Mar. 2009) 3rd Generation Partnership Project; Technical Specification Group Radio Access 28 Network; Evolved Universal Terrestrial Radio Access (E-UTRA);, Mar. 2009, 83 pages.
“Physical Channels and Modulation (Release 9)”, 3GPP TS 36.211 V9.0.0 (Dec. 2009); 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Release 9, Dec. 2009, 85 pages.
“Physical layer procedures”, 3GPP TS 36.213 V9.0.1 (Dec. 2009); 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Release 9, Dec. 2009, 79 pages.
“Positioning Subframe Muting for OTDOA Measurements”, 3GPP TSG RAN1 #58 R1-093406, Shenzhen, P. R. China, Aug. 2009, 9 pages.
“Positioning Support for L TE”, 3GPP TSG RAN WG1 #42, Athens, Greece, RP-080995, Dec. 2008, 5 pages.
“Rationale for mandating simulation of 4Tx Widely-Spaced Cross-Polarized Antenna Configuration for LTE-Advanced MU-MIMO”, 3GPP TSG-RAN WG1 Meeting #61bis, R1-104184, Dresden, Germany, Jun. 2010, 5 pages.
“Reference Signals for Low Interference Subframes in Downlink;”, 3GPP TSG RAN WG1 Meeting #56bis; Seoul, South Korea; Ericsson; R1-091314, Mar. 2009, 8 pages.
“Signalling Support for PRS Muting in”, 3GPP TSG RAN2 #70, Montreal, Canada; Ericsson, ST-Ericsson; R2-103102, May 2010, 2 pages.
“Some Results on DL-MIMO Enhancements for LTE-A”, 3GPP TSG WG1 #55bis, R1-090328, Motorola; Ljubjana, Slovenia, Jan. 2009, 5 pages.
“Sounding RS Control Signaling for Closed Loop Antenna Selection”, 3GPP TSG RAN #51, R1-080017—Mitsubishi Electric, Jan. 2008, 8 pages.
“Study on hearability of reference signals in LTE positioning support”, 3GPP TSG RAN1 #56bisa—R1-091336, Seoul, South Korea, Mar. 2009, 8 pages.
“System Simulation Results for OTDOA”, 3GPP TSG RAN WG4 #53, Jeju, South Korea, Ericsson, R4-094532;, Nov. 2009, 3 pages.
“Technical 1 34. Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);”, 3GPP TS 36.211 v8.4.0 (Sep. 2008); 3rd Generation Partnership Project; Physical Channels and Modulation (Release 8), 2008, 78 pages.
“Technical Specification Group Radio Access Network”, 3GPP TS 25.305 V8.1.0 (Dec. 2008) 3rd Generation Partnership Project; Stage 2 functional specification of User Equipment (UE) positioning in UTRAN (Release 8), 2008, 79 pages.
“Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA)”, 3GPP TS 36.305 V0.2.0 (May 2009) 3rd generation Partnership Project; Stage 2 functional specification of User Equipment, (UE) positioning in E-UTRAN (Release 9);, 2010, 52 pages.
“Text 1 3 0. proposal on Orthonogonal PRS transmissions in mixed CP deployments using MBSFN subframes”, 3GPP TSG RAN WG1 #59, Jeju, South Korea, Motorola, R1-095003;, Nov. 2009, 4 pages.
“Text proposal on measurements”, 3GPP TSG RAN2 #60bis, Tdoc R2-080420; Motorola, Sevilla, Spain, Jan. 2008, 9 pages.
“Two Component Feedback Design and Codebooks”, 3GPP TSG RAN1 #61, R1-103328, Motorola, Montreal, Canada, May 2010, 7 pages.
“Two-Level Codebook design for MU MIMO enhancement”, 3GPP TSG RAN WG1 #60, R1-102904, Montreal, Canada, May 2010, 8 pages.
“UTRAN SFN-SFN observed lime 11 difference measurement & 3GPP TS 25.311 IE 10.3.7.106 “UE positioning OTDOA neighbour cell info' assistance data D fields””, 3GPP TSG RAN WG4 (Radio) #20, New Jersey, USA; Tdoc R4-011408,, Nov. 2001, 4 pages.
“View on the feedback framework for Rei. 1 0”, 3GPP TSG RAN WG1 #61, R1-103026, Samsung, Montreal, Canada, May 2010, 15 pages.
“Views on Codebook Design for Downlink 8Tx MIMO”, 3GPP TSG RAN WG1 #60. R1-101219, San Francisco, USA, Feb. 2010, 9 pages.
Colin,“Restrictions on Autonomous Muting to Enable 1 58. Time Difference of Arrival Measurements”, U.S. Appl. No. 61/295,678, filed Jan. 15, 2010, 26 pages.
Costas,“A Study of a Class of Detection Waveforms Having Nearly Ideal Range-Doppler Ambiguity Properties”, Fellow, IEEE; Proceedings of the IEEE, vol. 72, No. 8, Aug. 1984, 14 pages.
Guey,“Synchronization Signal Design for OFDM Based on Time-Frequency Hopping Patterns”, Ericsson Research; North Carolina, USA;, 2007, 6 pages.
Jafar,“On Optimality of Beamforming for Multiple Antenna Systems with Imperfect Feedback”, Department of Electrical Engineering, Stanford University, CA, USA, 2004, 7 pages.
Knoppert,“Communication Device”, U.S. Appl. No. 29/329,028, filed Dec. 8, 2008, 10 pages.
Knoppert,“Indicator Shelf for Portable Electronic Device”, U.S. Appl. No. 12/480,289, filed Jun. 8, 2009, 15 pages.
Krishnamurthy,“Interference Control, SINR Optimization and Signaling Enhancements to Improve the Performance of OTDOA Measurements”, U.S. Appl. No. 12/813,221, filed Jun. 10, 2010, 20 pages.
Krishnamurthy,“Threshold Determination in TDOA-Based Positioning System”, U.S. Appl. No. 12/712,191, filed Feb. 24, 2010, 19 pages.
Sayana,“Method of Codebook Design and Precoder Feedback in Wireless Communication Systems”, U.S. Appl. No. 61/374,241, filed Aug. 16, 2010, 40 pages.
Sayana,“Method of Precoder Information Feedback in Multi-Antenna Wireless Communication Systems”, U.S. Appl. No. 61/331,818, filed May 5, 2010, 43 pages.
Visotsky,“Space—Time Transmit PrecodingWith Imperfect Feedback”, IEEE Transactions on Information Theory, vol. 47, No. 6, Sep. 2001, pp. 2632-2639.
Zhuang,“Method for Precoding Based on Antenna Grouping”, U.S. Appl. No. 12/899,211, filed Oct. 6, 2010, 26 pages.
“Advisory Action”, U.S. Appl. No. 12/650,699, Jan. 30, 2013, 3 pages.
“Advisory Action”, U.S. Appl. No. 12/650,699, Sep. 25, 2014, 3 pages.
“An-1432 the LM4935 Headset and Push-Button Detection Guide”, Texas Instruments Incorporated—http://www.ti.com/lit/an/snaa024a.snaa024a.pdf, May 2013, 8 pages.
“Earbud with Push-to-Talk Microphone”, Motorola, Inc., model 53727, iDEN 2.5 mm 4-pole mono PTT headset NNTNN5006BP, 2013, 10 pages.
“Final Improvement Proposal for PTT Support in HFP”, Bluetooth SIG, Inc., revision V10r00 (PTTinHFP—FIPD), Jul. 20, 2010, 50 pages.
“Final Office Action”, U.S. Appl. No. 12/650,699, Jul. 16, 2014, 20 pages.
“Final Office Action”, U.S. Appl. No. 12/650,699, Jul. 29, 2015, 26 pages.
“Final Office Action”, U.S. Appl. No. 12/650,699, Nov. 13, 2012, 17 pages.
“Final Office Action”, U.S. Appl. No. 13/477,609, Jul. 31, 2015, 11 pages.
“Final Office Action”, U.S. Appl. No. 13/721,771, Oct. 29, 2015, 8 pages.
“Final Office Action”, U.S. Appl. No. 13/733,297, Jul. 22, 2015, 20 pages.
“Final Office Action”, U.S. Appl. No. 13/873,557, Jul. 17, 2015, 13 pages.
“Final Office Action”, U.S. Appl. No. 14/012,050, Jul. 6, 2015, 23 pages.
“Final Office Action”, U.S. Appl. No. 14/052,903, Oct. 1, 2015, 10 pages.
“Final Office Action”, U.S. Appl. No. 14/280,775, Dec. 9, 2015, 13 pages.
“Innovator in Electronics, Technical Update, Filters & Modules PRM Alignment”, Module Business Unit, Apr. 2011, 95 pages.
“International Preliminary Report on Patentability”, Application No. PCT/US2013/042042, Mar. 10, 2015, 8 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/060440, Feb. 5, 2015, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/031328, Aug. 12, 2015, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/045755, Oct. 23, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/045956, Oct. 31, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/056642, Dec. 9, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/071615, Mar. 5, 2014, 13 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/040242, Oct. 4, 2013, 14 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/047233, Jan. 22, 2015, 8 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/077919, Apr. 24, 2014, 8 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/070925, May 11, 2015, 9 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2014/018564, Jun. 18, 2014, 11 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2013/072718, Jun. 18, 2014, 12 pages.
“International Search Report and Written Opinion”, Application No. PCT/US2015/027872, Jul. 15, 2015, 12 pages.
“International Search Report”, Application No. PCT/US20013/071616, Mar. 5, 2014, 2 pages.
“International Search Report”, Application No. PCT/US2014/014375, Apr. 7, 2014, 4 pages.
“Market & Motivation (MRD Section3) for Interoperability Testing of Neighbor Awareness Networking”, WiFi Alliance Neighbor Awareness Networking Marketing Task Group, Version 0.14, 2011, 18 pages.
“Marketing Statement of Work Neighbor Awareness Networking”, Version 1.17, Neighbor Awareness Networking Task Group, May 2012, 18 pages.
“Motorola SJYN0505A Stereo Push to Talk Headset for Nextel”, Motorola Inc., iDEN 5-pole 2.5 mm Stereo Headset SJYN05058A, 2010, 2 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/650,699, Mar. 30, 2015, 28 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/650,699, Apr. 23, 2013, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/650,699, Jul. 19, 2012, 12 pages.
“Non-Final Office Action”, U.S. Appl. No. 12/650,699, Dec. 16, 2013, 26 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/477,609, Dec. 3, 2014, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/477,609, Dec. 14, 2015, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/692,520, Sep. 5, 2014, 15 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/692,520, Oct. 5, 2015, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/721,771, May 20, 2015, 6 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/733,297, Feb. 2, 2016, 17 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/733,297, Mar. 13, 2015, 23 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/873,557, Mar. 11, 2015, 19 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/945,968, Apr. 28, 2015, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 13/955,723, Dec. 17, 2015, 21 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/012,050, Feb. 10, 2015, 18 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/031,739, Aug. 18, 2015, 16 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/052,903, Mar. 11, 2015, 7 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/068,309, Oct. 2, 2015, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/150,047, Jun. 29, 2015, 11 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/226,041, Jun. 5, 2015, 8 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/280,775, 07/16/215, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/330,317, Feb. 25, 2016, 14 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/339,476, Jan. 20, 2016, 9 pages.
“Non-Final Office Action”, U.S. Appl. No. 14/445,715, Jan. 15, 2016, 26 pages.
“Notice of Allowance”, U.S. Appl. No. 12/650,699, Jan. 14, 2016, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 13/873,557, Dec. 23, 2015, 10 pages.
“Notice of Allowance”, U.S. Appl. No. 13/945,968, Sep. 16, 2015, 6 pages.
“Notice of Allowance”, U.S. Appl. No. 14/012,050, Dec. 14, 2015, 12 pages.
“Notice of Allowance”, U.S. Appl. No. 14/052,903, Feb. 1, 2016, 8 pages.
“Notice of Allowance”, U.S. Appl. No. 14/226,041, Dec. 31, 2015, 5 pages.
“Notice of Allowance”, U.S. Appl. No. 14/488,709, Sep. 23, 2015, 10 pages.
“Pre-Brief Appeal Conference Decision”, U.S. Appl. No. 12/650,699, Apr. 9, 2013, 2 pages.
“Restriction Requirement”, U.S. Appl. No. 13/721,771, Mar. 16, 2015, 5 pages.
“Restriction Requirement”, U.S. Appl. No. 14/031,739, Apr. 28, 2015, 7 pages.
“Supplemental Notice of Allowance”, U.S. Appl. No. 14/488,709, Oct. 7, 2015, 8 pages.
Guo,“A Series-Shunt Symmetric Switch Makes Transmit-Receive Antennas Reconfigurable in Multipath Channels”, IEEE 3d Int'l Conf. on Digital Object Identifier, May 29, 2011, pp. 468-471.
Li,“A Subband Feedback Controlled Generalized Sidelobe Canceller in Frequency Domain with Multi-Channel Postfilter”, 2nd International Workshop on Intelligent Systems and Applications (ISA), IEEE, May 22, 2010, 4 pages.
MACCM“GaAs SP6T 2.5V High Power Switch Dual-/Tri-/Quad-Band GSM Applications”, Rev. V1 data sheet, www.macomtech.com, Mar. 22, 2003, 5 pages.
Renesas,“uPG2417T6M GaAs Integrated Circuit SP6T Switch for NFC Application (R09DS0010EJ0100)”, Rev. 1.00 data sheet, Dec. 24, 2010, 12 pages.
Tesoriero,“Improving Location Awareness in Indoor Spaces Using RFID Technology”, Science Direct, Expert Systems with Applications, 2010, 894-898.
Valkonen,“Impedance Matching and Tuning of Non-Resonant Mobile Terminal Antennas”, Aalto University Doctoral Dissertations, Mar. 15, 2013, 94 pages.
Vodafone“PDCCH Structure for MTC Enhanced Coverage”, 3GPP TSG RAN WG1 #76, R1-141030, Prague, Czech Republic, Feb. 2014, 2 pages.
Yun,“Distributed Self-Pruning(DSP) Algorithm for Bridges in Clustered Ad Hoc Networks”, Embedded Software and Systems; Lecture Notes in Computer Science, Springer, May 14, 2007, pp. 699-707.
Final Office Action, U.S. Appl. No. 14/150,047, Mar. 4, 2016, 14 pages.
Non-Final Office Action, U.S. Appl. No. 14/280,775, Mar. 23, 2016, 11 pages.
Notice of Allowance, U.S. Appl. No. 13/873,557, Apr. 11, 2016, 5 pages.
Notice of Allowance, U.S. Appl. No. 14/031,739, Mar. 1, 2016, 7 pages.
Supplemental Notice of Allowance, U.S. Appl. No. 14/031,739, Apr. 21, 2016, 2 pages.
Related Publications (1)
Number Date Country
20160080053 A1 Mar 2016 US
Provisional Applications (1)
Number Date Country
61331818 May 2010 US
Continuations (2)
Number Date Country
Parent 13924838 Jun 2013 US
Child 14952738 US
Parent 13088237 Apr 2011 US
Child 13924838 US