The invention concerns a method and a production line for producing metal strip from copper or copper alloys by casting and rolling.
Until now, metal strip of this type made of soft metals, such as copper or copper alloys, has been produced by casting in slabs (DE 692 22 504 T2). After it has been cooled, the slab must be reheated and rolled out to the required thickness in a hot rolling process. The hot rolling is followed by milling of the upper and lower surfaces, inspection, and coiling into a coil. The metal strip is unwound from the coil and passed through a reversing mill. After a cold rolling operation, it is coiled into a coil and in this form is annealed in a box annealing installation for microstructural refinement or is continuously annealed in uncoiled form. It is then pickled, washed, dried, and temper rolled, and the surface is reinspected before the strip is coiled.
The operating costs to be expended for this and the investment costs for new construction and plant design with available useful floor space are basically very high. Metal strip made of copper or copper alloys are cast and rolled in horizontal casting processes at, for example, 15-20,000 t/year and with significantly lower investment costs.
Increased capacity, which is presently demanded by the market (30,000 to 70,000 t/year), can no longer be economically achieved with the present cost structure.
The objective of the invention is nevertheless to realize the increased capacity that is being demanded in combination with lower operating costs and reduced plant investment costs.
In accordance with the invention, the stated objective is achieved by casting the melt into copper strip in a vertical and/or horizontal continuous strip casting process, cleaning the copper strip by milling its upper side and underside, subjecting it to a cold rolling process, and preparing it for shipment, or first annealing, pickling, washing and drying it, and possibly subjecting it to a temper rolling step, and then inspecting it and preparing it for shipment. The advantages are that a slab casting installation, heating of the slab to rolling temperature, and hot rolling are completely eliminated. Furthermore, it is advantageous that the cold rolling process can be flexibly adapted to the planned production amounts, for example, by virtue of the fact that the cold rolling can be operated at optimum strip temperature on the delivery side.
In one embodiment, stacks of sheets can be produced from inspected coils by cutting the copper strip to length.
In another embodiment, coilable narrow copper strips can be produced from inspected coils by slitting the copper strip.
It is advantageous to effect temperature control during cold rolling by lubricating the copper strip with oil on the run-in side and cooling it with cold or cryogenic inert gases on the runout side. Various media can be used for cooling.
In this regard, it is advantageous if the set-point assignment for the rolling parameters is set to a maximum strip temperature of 120° C. In this way, the parameters (actual values) for casting and milling can be connected to the rolling process.
The method can be still further improved if the coils of copper strip that have been cold rolled under temperature control to final strip thickness are further refined in their microstructure either in a box annealing installation in the form of a coil or in a continuous annealing operation and then pickled, washed and dried, subjected to a surface inspection, and then further processed in coil form.
The production line for producing metal strip from copper or copper alloy with at least a melting installation, a casting installation, and a rolling installation is preferably designed for cold forming from 23 mm to 0.2 mm copper strip thickness.
To achieve the stated objective with respect to the equipment, it is proposed that the melting installation be followed in succession in the direction of production by at least one vertical continuous strip casting installation and/or one horizontal continuous strip casting installation, a milling installation immediately downstream, a strip uncoiler, a cold rolling installation, a strip coiler, and an annealing installation. A casting installation for slabs, which cool and then must be reheated to rolling temperature in a furnace, and a hot rolling mill itself are completely eliminated. This means not only lower capital expenditure for the construction of the production line but also lower operating expenses (lower repair costs and shorter repair times) and at the same time greater productivity of the plant.
Additional advantages are realized in the further course of the production line:
The cold rolling installation consists of a reversing mill.
The milling installation is located immediately downstream of the vertical continuous strip casting installation. It is advantageous that the copper strip runs directly into the next installation.
The vertical continuous strip casting installation, the milling installation, and the reversing mill follow one another in immediate succession. The copper strip runs into the following installation without interruption.
The cold rolling installation consists of a tandem mill.
The vertical continuous strip casting installation, the milling installation, and the tandem mill follow one another in immediate succession. The copper strip runs from installation to installation without interruption.
To realize higher rolling capacities, it is advantageous for two parallel upstream vertical continuous strip casting installations and milling installations to be assigned to the tandem mill.
To realize a higher casting capacity relative to the rolling installation, one vertical and one horizontal continuous strip casting installation, each with a milling installation installed immediately downstream of it, are installed upstream of the tandem mill.
When there are two casting installations, the production line is designed in such a way that with two parallel-casting vertical continuous strip casting installations, a reversing mill follows each milling installation.
In another combination for casting/milling and rolling, parallel-producing vertical and horizontal continuous strip casting installations are each followed by a reversing mill.
For all combinations of the production line, it is provided that the annealing installation consists either of a box annealing installation for coils or of a continuous annealing installation in the form of a strip floating furnace.
The various features of novelty which characterize the invention are pointed out with particularity in the claims annexed to and forming a part of the disclosure. For a better understanding of the invention, its operating advantages, specific objects attained by its use, reference should be had to descriptive matter in which there are described preferred embodiments of the invention.
In the drawing:
To produce a metal strip 1 from a soft material (
A coil 13 can also be returned to the cold rolling process 6 for further reduction of the thickness 18 of the copper strip. The microstructure, which is thus very strongly compressed, is coiled into an inspected coil in a treatment by annealing 7, pickling 8, washing 9, drying 10 and possibly a temper rolling step 11, followed by an inspection 12.
Stacked sheets 14 are then produced from the coils 13, whose surfaces have been inspected, by cutting the copper strip 4 to length. The sheets are then sent for shipment. Alternatively, coilable narrow copper strips 17 are produced from the inspected coils 13 by slitting 16 the copper strip and are then sent for shipment (in the arrow direction).
To produce a desired microstructure and analogous properties for the protection of the work rolls, the cold rolling process 6 can be carried out in such a way that the copper strip 4 is lubricated with oil on the run-in side (
The final strip thickness 18 is obtained under temperature control on the basis of an advantageous process of this type, and the coils 13 of copper strip are treated either in a box annealing installation 31 with the strip in coil form 13 (upper part of
A melting installation 20 (e.g., an electric furnace) supplies melt to a casting installation 21, which consists of a vertical continuous strip casting installation 24a or may also consist of a horizontal continuous strip casting installation 24b in special cases or in cases in which such an installation is already present.
Cold deformation from 23 mm to 0.2 mm copper strip thickness 18 preferably takes place in a rolling installation 22 immediately downstream of the casting installation 21 and the milling 5.
The melting installation 20 is followed in succession in the direction of production 23 by at least the vertical continuous strip casting installation 24a or in exceptional cases an existing horizontal continuous strip casting installation 24b, an immediately downstream milling installation 25, a strip uncoiler 26, the cold rolling installation 22, a strip coiler 27, and an annealing installation 28, all of which are arranged in succession in the direction of production 23.
In the embodiment illustrated in
In the production line according to
In
In accordance with
In
According to
In
The annealing installation 28 consists either of a box annealing installation 31 for coils 13 or a continuous annealing installation 32 in the form of a strip floating furnace 32a.
While specific embodiments of the invention have been shown and described in detail to illustrate the inventive principles, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2005 031 805.3 | Jul 2005 | DE | national |
The present application is a Divisional Application of U.S. patent application Ser. No. 11/988,328, filed Jul. 18, 2008, which is a 371 of International application PCT/EP2006/006590, filed Jul. 6, 2006, which claims priority of DE 10 2005 031 805.3, filed Jul. 7, 2005, the priority of these applications is hereby claimed and these applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11988328 | Jul 2008 | US |
Child | 13107757 | US |