The present invention relates generally to reagents used in biosensors or test strips and more particularly to the production of narrow, homogenous reagent stripes on flat surfaces of test strips.
Of the numerous methods for applying reagents to test strips, in the past electrochemical biosensors have mainly been produced by using printing techniques such as screen printing processes or dispensing techniques for liquid reagent application and subsequent drying, (see. e.g., U.S. Pat. No. 5,437,999 and WO 97/02487). In connection with so-called “capillary fill” test strips, these dispensing methods have successfully been employed, as in the production of Roche Diagnostics AccuChek® Advantage test strips. While these techniques allow for the production of reliable electrochemical biosensors, they are not well suited for high throughput production lines. In addition, these dispensing techniques suffer from the disadvantage of inhomogeneous drying of the reagent, which leads to non-uniform reagent thickness over the covered electrode area. Also, the above mentioned techniques are not suited for the reliable and reproducible production of extremely thin reagent layers (10 μm or less). Therefore, there exists a need for improved reagent application methods.
Blade coating of reagent compositions onto flat substrates has been suggested and successfully been employed in the production of reagent films coated for example on transparent polymeric substrates (e.g., U.S. Pat. Nos. 5,437,999 and 6,036,919). Usually, films of a width of several centimeters to several meters can be produced by this method. For the production of test strips, the so created reagent layers are cut into small stripes and then applied to the test strip substrate. Blade coating of reagent masses has the disadvantage that—although the center portion of the film is homogenous in thickness—at the edge of the coated area inhomogeneities are found which are believed to be due to drying effects and edge effects. While these inhomogeneities are acceptable if broad bands of reagents are coated onto substrates since the inhomogeneous edge portions of the coating can be discarded by edge trim, these inhomogeneities become more and more unacceptable as the reagent stripe to be coated becomes smaller/narrower.
WO 02/057781 discloses a method for manufacturing reagent strips from web material. Among other things, it discloses that the reagent material may be applied to the strip support material by laying down a narrow stripe of reagent material, which may or may not be supported by a support carrier.
U.S. Patent Application Publication 2003/0097981, U.S. Patent Publication Number 2003/0099773, U.S. Pat. Nos. 6,676,995 and 6,689,411 and EP 1 316 367) disclose a solution stripping system for laying down stripes of reagent solutions on a substrate. The system allows slot-die-coating of reagent solutions to web material, e.g., for electrochemical glucose sensors, which solutions have a low viscosity, from about 0.5 to 25 centipoises (cP=mPa-s).
U.S. Pat. Nos. 3,032,008; 3,886,898; and 4,106,437 teach coating apparatuses useful for coating liquid material onto solid supports.
U.S. Pat. No. 6,036,919 discloses reagent films for optical blood glucose test strips. The reagent composition comprises, among other things, a Xanthan gum.
U.S. Patent Application Publication Number 2003/0146113 discloses reagent films for electrochemical coagulation sensors. The reagent composition comprises, among other things, carboxylated microcrystalline cellulose (Avicel® R591) as a film former.
None of the above-mentioned references satisfies the need for a reliable method for forming narrow (for example, less than 1 cm), thin (for example, less than 10 μm) and homogeneous reagent stripes on solid support material for producing test strips, in particular electrochemical test strips.
It is therefore an object of the invention to provide a method and a corresponding reagent composition with which extremely thin, narrow and homogeneous reagent lines or stripes can be deposited onto flat surfaces, for example, of web material and in particular onto the electrode areas of electrochemical biosensor test strips.
This object is reached by the present invention concerning a reagent for a slot-die-coating process for narrow and homogenous reagent stripes.
In a first aspect, the present invention concerns a reagent composition showing shear thinning, slightly thixotropic or thixotropic behavior.
In a second aspect, the present invention concerns a method of coating the shear thinning, slightly thixotropic or thixotropic reagent composition onto web material using a slot-die-coating process.
In a further aspect, the present invention concerns analytical test elements comprising the shear thinning, slightly thixotropic or thixotropic reagent.
In still another aspect, the present invention concerns reagent compositions that are shear thinning and at least slightly thixotropic. It also concerns analytic test elements and methods for making analytic test elements that include using shear thinning and at least slightly thixotropic reagent compositions.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the specific embodiments illustrated herein and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described processes or devices and any further applications of the principles of the invention as described herein, are contemplated as would normally occur to one skilled in the art to which the invention relates. Preferred embodiments of the invention are subject of the dependent claims.
The reagent composition of the present invention is shear thinning, slightly thixotropic or thixotropic. Thixotropic reagent compositions are reagent compositions that show rheologic behavior depending on whether or not external shear force is applied to the reagent composition. Shear thinning reagent compositions are reagent compositions that become thinner, i.e., less viscous, when a shear force is applied to them. In general, before applying a shear force to the reagent composition of the present invention, the composition has a certain viscosity. When a shear force is applied to the composition, its viscosity is reduced. If viscosity increases again—with a certain time-dependency—after the shear force is stopped, the reagent composition shall be regarded as being “shear thinning.” If viscosity increases only with a certain delay after the shear force is stopped the reagent composition shall be regarded as being “thixotropic.”
Thixotropy is a special case of pseudoplasticity. The thixotropic fluid undergoes “shear thinning.” But as shear forces are reduced, viscosity rebuilds and increases at a slower rate, thus producing a hysteresis loop. Slightly thixotropic fluids have a less pronounced hysteresis. In addition, the thixotropic behavior is influenced considerably by the shear history of the material under investigation. In comparative measurements, care should be taken to ensure that an identical or at least very similar history of the samples to be compared is given.
The reagent compositions of the present invention are useful in slot-die-coating processes. During slot-die-coating, the fluid reagent composition is applied to a solid substrate, preferably a substrate in the form of a web material, by forcing the reagent liquid or slurry through the slot of a slot-die-coating head. Usually, the web material passes the slot at a certain distance with certain speed. However, it is also possible that the slot-die-coating head moves across the web material, or that the slot-die head and web both move.
To achieve the objects of the present inventions, it is advantageous that the rheologic properties of the reagent composition used as a coating mass are within certain preferred ranges: The viscosity preferably is between about 70 and about 130 mPa-s, most preferably in the range between 95 and 115 mPa-s. The surface tension ranges advantageously between 30 and 50 mN/m and preferably is about 40±2 mN/m. It is also important that the coating mass shows shear thinning, slightly thixotropic or thixotropic behavior.
One aspect of the present invention is the inclusion of Xanthan gum into the reagent coating mass. One brand of Xanthan gum that can be used is Keltrol®. This component shows an influence on the thixotropy of the reagent mass. Reagent coating masses containing Xanthan gum, for example, Keltrol®, allow the production of extremely thin reagent layers. Preferably, the reagent layer dried films have a thickness less than 10 μm, particularly preferred are dried reagent layers in the range of 1.5 to 5 μm thick.
It has turned out that the incorporation of silica into the reagent compositions of the present invention has an advantageous effect for the viscosity and thixotropy behavior of the reagent. Both properties are enhanced by the addition of silica. Preferably, untreated, hydrophilic silica is used. The particle size of a preferred form of silica ranges from about 1 to 7 μm. It has turned out that silica unexpectedly enhances the thixotropic behavior of other components of the coating mass, in particular of carboxymethyl cellulose and Keltrol®. Also, silica particles in the dry film prevent backside transfer between the coated stripe and the backside of the web, allowing storage of the coated web material as rolls of material. In addition, silica particles in the dry film increase the specific surface of the reagent coating, enabling, for example, rapid dissolving of the reagent in a sample liquid. In capillary fill biosensors comprising reagent stripes including the reagent composition of the present invention, silica also improves capillary fill times and migration of components in the reagent stripe.
Yet another additive for the enhancement of viscosity and thixotropy of the reagent is carboxymethyl cellulose (CMC). Especially preferred embodiments of the inventive reagent composition therefore comprise Xanthan gum, for example, Keltrol®, silica and CMC.
The reagent compositions of the present invention allow the formation of thin reagent layers, for example, the production of electrochemical biosensors. Thin reagent layers have several advantages:
Sample components are in excess compared to the reagent components, therefore not limiting in the determination reactions.
Thin reagent layers can be made homogenous in thickness.
Thin reagent layers contain only small amounts of reagent, which in turn lead to fast reaction times.
The reactions only have short diffusion times.
The thin reagent layers are quickly soluble and therefore lead to quick reagent availability and a rapid equilibration of the matrix after sample rehydration of the reagent stripe, which in turn leads to fast measurements.
The inventive reagent layers can not only be made very thin but also show a high homogeneity down web and across web in the reaction area. The reagent layer in the test area is flat and uniform in thickness. Thickness variations in the coated stripe occur preferably only on the outer 0.2 cm (or less) edges of the stripe. In preferred embodiments, these areas advantageously can either be covered during sensor assembly by spacer layers or can be trimmed from the completed sensor in the final assembly process.
Apart from the above-mentioned components, which influence the rheologic properties of the reagent composition of the present invention, the reagent may further comprise one or more substances (ingredients) of the following substance classes. Substances, additives and ingredients that may be added to the reagent includes, but are not limited to, the following:
buffers, for example, phosphate buffers;
enzymes, such as, glucose dehydrogenase, glucose dye oxidoreductase, glucose oxidase and other oxidases or dehydrogenases such as for lactate or cholesterol determination, esterases etc.;
mediators such as nitrosoanilines, ferricyanide, ruthenium hexamine, osmium complexes;
stabilizers, such as trehalose, sodium succinate;
thickeners, such as Keltrol®, CMC
proteins, such as enzymes, bovine serum albumin
indicators;
dyes;
surfactants, such as Mega 8®, Geropon®; Triton®, Tween®, Mega 9®, DONS;
film formers, such as Keltrol®, Propiofan®, polyvinyl pyrrolidone, polyvinyl alcohol, Klucel®;
co-factors for enzymes, such as NAD, NADH, PQQ; and
silica, for example, DS 300, DS 320, milled silica of DS 300, milled silica of DS 320.
Non-limiting examples of enzymes and mediators that may be used in measuring particular analytes are listed below in Table 1.
In some of the examples shown in Table 1, at least one additional enzyme is used as a reaction catalyst. Also, some of the examples shown in Table 1 may utilize an additional mediator, which facilitates electron transfer to the oxidised form of the mediator. The additional mediator may be provided to the reagent in lesser amount than the oxidized form of the mediator. While the above assays are described, it is contemplated that current, charge, impedance, conductance, potential, or other electrochemically indicated property of the sample might be accurately correlated to the concentration of the analyte in the sample with an electrochemical biosensor in accordance with this disclosure.
Examples of reagent compositions are given as Examples 1, 2, 3 and 4 for electrochemical blood glucose and coagulation sensors, respectively.
In a preferred embodiment, the above reagent compositions are applied to substrates which already contain the electrode traces or circuits of an electrochemical sensor by means of a slot-die-coating process. An example of this process is given in Example 5.
The preferred fabrication technique for these electrode circuits uses a laser ablation process. For a further discussion of laser ablation, please see WO 01/25775, which is hereby incorporated by reference in its entirety. Most preferably, the technique uses a reel-to-reel laser ablation process. This process can be used in reel-to-reel fashion to form extremely thin metal structures on polymeric substrates, which metal structures can be used as electrode traces in electrochemical sensors. The reagent can be applied to these structures using the above process.
Surprisingly, it has been found that the capillary channel and spacer structure of the sensor can be formed by using a double sided adhesive tape with a respective cutout as a spacer structure and covering parts of the reagent layer on the electrode substrate. Unexpectedly, no leakage of sample liquid can be observed at the positions where the double-sided adhesive tape covers the reagent film. Therefore, it is possible to first make structured electrode traces by a laser ablation process on a web material, then slot-die-coat the reagent material and subsequently define the active reagent area which comes into contact with the blood sample by using a respectively formed double sided adhesive spacer. This process can advantageously be used to eliminate tolerances in the production line. Especially, masking the reagent coating with the spacer can be used to precisely define the actual reaction area.
In the second aspect of the present invention, the invention concerns a method or process for producing a reagent layer on a solid support material using the shear thinning, slightly thixotropic or thixotropic reagent composition of the invention. The process includes providing a solid support material such as a web of plastics material like Melinex® 329 of DuPont. During the process of the present invention, the solid support material is moved relative to a slot-die-coating head. Usually, the solid support web material is transported in a reel-to-reel process across the slot of the die-coating head. However, it is also possible, to move the die-coating head and keep the web material stationary. During the movement of the web material relative to the die-coating head, a defined distance between the web and the die-coating head is maintained. Preferably, the coating gap is in the range of between 30 and 90 μm, typically between 68 and 83 μm, most preferred between 72 and 76 μm. By forcing the reagent composition through the slot of the slot-die-coating head, the reagent is deposited onto the solid support material, forming a continuous stripe of reagent on the solid support material. As mentioned above, the web material may comprise electrode traces and the reagent stripe may partly cover these traces. Preferably, in the dried state the reagent stripe has a width of less than 1 cm and a height of less than 10 μm.
Preferably, the solid support material is moved relative to the slot-die-coating head at a speed of between 20 and 80 m/min, most preferably at a speed of between 30 and 40 m/min.
Preferably, the reagent composition is delivered to the solid support material at a coating flux of 5.5 to 30 g/min, most preferably at a flux of 13 to 15 g/min.
Subsequently, the deposited reagent stripe is dried either under ambient conditions or in a heated airflow.
In a further aspect, the invention concerns analytical test elements that comprise the above reagent composition. Preferably, the analytical test elements of the present invention are manufactured according to the process as described above.
The invention has the following advantages:
1. Sensors requiring small sample volumes (typically 100 to 1000 nl) can easily be constructed using the slot die coated dry film and spacer/capillary channel lamination processes. The dry film stripe is of uniform thickness and is homogeneous over the electrochemical reaction area. The required capillary dimensions/imprecision of the sensor is dependent on the variation in spacer thickness and the construction of the capillary channel.
2. The slot-die-coating technology can be paired with a sophisticated layout of the electrodes design, thus enabling the capability of miniaturizing and creating multiple applications in the sensor capillary, (for example, staggering two or more lines/stripes of different reagents within an adequately designed layout of electrodes). Two staggered slot dies or a special slot die assembly designed for two or more fluids can be used to achieve this goal. The coating fluids preferably will have properly matching rheologic properties. The best technological case is achieved if the coating windows of the different fluids have a consistent overlapping region.
3. The slot-die-coating film application technology paired and combined with the rheologic properties of the reagent enables homogeneous coatings using a reel to reel coating process for rapid production of diagnostic sensors.
4. Thixotropy or shear thinning behavior is the main rheologic feature of the fluid to be coated in respect to the mass distribution and its profile across the coated layer, impacting on the flatness, repeatability and homogeneity of the wet and dried layer. This feature is reached by using Xanthan gum, for example, Keltrol®, CMC and Silica in a concentration and combination to match the desired shear thinning, slightly thixotropic or thixotropic behavior of the coating fluid.
Surprisingly, it has been found that the role of silica, in particular the preferred untreated, hydrophilic silica, preferably with a particle size D50 (i.e., 50% of the particles have a size of the given size or below) of 1 to 7 μm, in the “wet” status (in the coating fluid) is that in combination with the film thickeners (Keltrol® and CMC, either one or both of them) silica increases the viscosity and enhances the shear thinning, slightly thixotropic or thixotropic behavior of the coating fluid.
Silica acts in the dried state to, among other things:
a) prevent back transfer of the dried film on the un-coated side of the foil/carrier if the web material is wound to rolls after the coating and drying processes, and
b) enlarge the specific surface of the dried coating layer as compared to a smooth coating layer. Without wishing to be tied to any specific theory, this is likely due to the particle-size distribution of silica particles. Since the speed of fluid transport is increased by the ratio between the surface area and the fluid volume, this enlarged specific surface is speeding up the wetting process of the dried film and in consequence leads to a shorter capillary fill time.
The present invention is further elucidated by the following Examples and Figures. With respect to the Figures whenever possible like numbers, letters and symbols refer to like structures, features and elements. For example, unless otherwise stated in the application the following key applies:
Parts A and B of
Preferably, the metal layer (2) subsequently is structured by for example a laser ablation process. This process removes parts of the metal layer (2) and discrete structures of metal which can act as electrodes (3, 4) remain on the surface of the polymer web (1). It should be understood, however, that conventional printing techniques or lithographic processes can also be used to create electrodes (3, 4) on the polymer web (1).
After the laser ablation step in
In the next step (shown in part D of
In part E of
Spacer (6) preferably covers a narrow part (less than 2 mm) of the reagent (5 in
After laminating the spacer (6) to the electrode and reagent web, in a preferred embodiment, part of the web material is cut off to trim the reagent stripe (5).
In part F of
As is clear for those skilled in the art, the surfaces of either the polymer web (1) or the top foil (7) that face the capillary space can be rendered hydrophilic by a respective hydrophilic treatment, for example, by coating with a surfactant or plasma treatment.
The following Examples provided by way of illustration and not by way of limitation, will disclose more details of the invention:
An aqueous mixture of the following components was prepared:
The reagent matrix was custom modified to meet the demands of the slot-die-coating process. Silica, Keltrol® (Xanthan Gum), carboxymethyl cellulose (CMC) and surfactants were added to the coating matrix to modify the rheology of the reagent mass. Surfactant concentrations were adjusted to obtain surface tensions (measured with a Tensiometer K10T (Kruess)) in the most preferred range of 33 to 42 mN/m. Surface tension in this range promotes better adhesion and controlled spreading of the coated stripe on the web. The most preferred viscosity range measured using a Rheomat 115 (Contraves) for the coating mass is 95 to 115 mPa-s. The polymers and the silica also impart thixotropic behavior to the coating. Coatings shear thin as they are dispensed through the slot die head onto the web. This reduces the apparent viscosity of the coating.
Stripes of reagent coating mass with these lower viscosities show a migration of the stripe edges and reagent components toward the center of the stripe during the drying process. This migration leads to an irregular and irreproducible surface profile in the middle of the dried stripe. Dispense of coatings having shear thinning, slightly thixotropic or thixotropic properties show the same shear thinning effects. However, the viscosity of the coated stripe returns to near the apparent viscosity shortly after being dispensed and before entering the drying region. The migration of the stripe edges towards the center during drying is retarded. As illustrated in
An aqueous mixture of the following components was prepared:
An aqueous mixture of the following components was prepared:
An aqueous mixture of the following components was prepared:
The polymer web (Melinex® 329, DuPont) is moved into the coating area, containing a slot die head and a back up roller. The slot die head (TSE, Switzerland) is zeroed to the web surface and adjusted to a slot to web gap of 74 μm. Web speed is ramped up from 0 to 38 m/min for deposition of coating on the web. The reagent matrix can be delivered to the slot die head using a variety of means including gear pumps, pistons, syringes, bladder systems. The reagent delivery system is adjusted to a water flow of 13.58 ml/min to deliver a coat weight of 53 g/m2 through the coating head. The width of the resulting coated stripe is 7.0±0.3 mm. The coating is dried in the heated drying zone (length 15 m, temperature 110° C., at a speed of 38 m/min) and rewound on spools at the rewind station.
In
The profile of the reagent coating as depicted in
Comparison of
In stark contrast to the smooth and uniform reagent layer shown in
In the reagent composition of Example 1 the contents of the ingredients CMC, Keltrol®, Propiofan® and PVP were varied in accordance with the following Table. Ingredient contents are given in % w/w and viscosity is given in mPa-s.
All publications, patents and patent applications cited in this specification are herein incorporated by reference, as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference and set forth in its entirety herein.
While preferred embodiments incorporating the principles of the present invention have been disclosed hereinabove, the present invention is not limited to the disclosed embodiments. Instead, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
This application is a divisional of application Ser. No. 10/871,966, filed Jun. 18, 2004, now U.S. Pat. No. 7,749,437 which claims the benefit of U.S. Provisional Application No. 60/480,397, filed Jun. 20, 2003, which are hereby incorporated by reference. This application is related to commonly assigned U.S. application Ser. No. 10/871,673 entitled “Reagent Stripe for Test Strip” (hereinafter “Reagent Stripe application”), filed on Jun. 18, 2004, which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3715192 | Wenz et al. | Feb 1973 | A |
3980437 | Kishimoto et al. | Sep 1976 | A |
4065263 | Woodbridge, III | Dec 1977 | A |
4225410 | Pace | Sep 1980 | A |
4420564 | Tsuji et al. | Dec 1983 | A |
4476149 | Poppe et al. | Oct 1984 | A |
4510383 | Ruppender | Apr 1985 | A |
4545382 | Higgins et al. | Oct 1985 | A |
4571292 | Liu et al. | Feb 1986 | A |
4578716 | Van Rijckevorsel et al. | Mar 1986 | A |
4592893 | Poppe et al. | Jun 1986 | A |
4671288 | Gough | Jun 1987 | A |
4679562 | Luksha | Jul 1987 | A |
4714874 | Morris et al. | Dec 1987 | A |
4789804 | Karube et al. | Dec 1988 | A |
4797256 | Watlington, IV | Jan 1989 | A |
4805624 | Yao et al. | Feb 1989 | A |
4877580 | Aronowitz et al. | Oct 1989 | A |
4897173 | Nankai et al. | Jan 1990 | A |
4927516 | Yamaguchi et al. | May 1990 | A |
4935105 | Churchouse | Jun 1990 | A |
4938860 | Wogoman | Jul 1990 | A |
4970145 | Bennetto et al. | Nov 1990 | A |
5049487 | Phillips et al. | Sep 1991 | A |
5059394 | Phillips et al. | Oct 1991 | A |
5066372 | Wetall | Nov 1991 | A |
5120420 | Nankai et al. | Jun 1992 | A |
5122244 | Hoenes et al. | Jun 1992 | A |
5141850 | Cole et al. | Aug 1992 | A |
5141868 | Shanks et al. | Aug 1992 | A |
5143694 | Schafer et al. | Sep 1992 | A |
5179005 | Phillips et al. | Jan 1993 | A |
5187100 | Matzinger et al. | Feb 1993 | A |
5192415 | Yoshioka et al. | Mar 1993 | A |
5243516 | White | Sep 1993 | A |
5250439 | Musho et al. | Oct 1993 | A |
5264103 | Yoshioka et al. | Nov 1993 | A |
5266179 | Nankai et al. | Nov 1993 | A |
5281395 | Markart et al. | Jan 1994 | A |
5286362 | Hoenes et al. | Feb 1994 | A |
5288636 | Pollmann et al. | Feb 1994 | A |
5296192 | Carroll et al. | Mar 1994 | A |
5304468 | Phillips et al. | Apr 1994 | A |
5306623 | Kiser et al. | Apr 1994 | A |
5344754 | Zweig | Sep 1994 | A |
5366609 | White et al. | Nov 1994 | A |
5379214 | Arbuckle et al. | Jan 1995 | A |
5384028 | Ito | Jan 1995 | A |
5385846 | Kuhn et al. | Jan 1995 | A |
5389215 | Horiuchi et al. | Feb 1995 | A |
5395504 | Saurer et al. | Mar 1995 | A |
5413690 | Kost et al. | May 1995 | A |
5413764 | Haar | May 1995 | A |
5418142 | Kiser et al. | May 1995 | A |
5421189 | Dussault | Jun 1995 | A |
5424035 | Hones et al. | Jun 1995 | A |
5426032 | Phillips et al. | Jun 1995 | A |
5437999 | Diebold et al. | Aug 1995 | A |
5438271 | White et al. | Aug 1995 | A |
5439826 | Kontorovich | Aug 1995 | A |
5469846 | Khan | Nov 1995 | A |
5470533 | Shindo et al. | Nov 1995 | A |
5494638 | Gullick | Feb 1996 | A |
5508171 | Walling et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5515170 | Matzinger et al. | May 1996 | A |
5526120 | Jina et al. | Jun 1996 | A |
5547702 | Gleisner | Aug 1996 | A |
5552116 | Yokota et al. | Sep 1996 | A |
5554531 | Zweig | Sep 1996 | A |
5563042 | Phillips et al. | Oct 1996 | A |
5569608 | Sommer | Oct 1996 | A |
5575895 | Ikeda et al. | Nov 1996 | A |
5575930 | Tetje-Girault et al. | Nov 1996 | A |
5580794 | Allen | Dec 1996 | A |
5582697 | Ikeda et al. | Dec 1996 | A |
5597532 | Connolly | Jan 1997 | A |
5605837 | Karimi et al. | Feb 1997 | A |
5620579 | Genshaw et al. | Apr 1997 | A |
5620863 | Tomasco et al. | Apr 1997 | A |
5627075 | Bateson | May 1997 | A |
5628890 | Carter et al. | May 1997 | A |
5645798 | Schreiber et al. | Jul 1997 | A |
5650062 | Ikeda et al. | Jul 1997 | A |
5653863 | Genshaw et al. | Aug 1997 | A |
5656502 | MacKay et al. | Aug 1997 | A |
5658443 | Yamamoto et al. | Aug 1997 | A |
5665215 | Bussmann et al. | Sep 1997 | A |
5670031 | Hintsche et al. | Sep 1997 | A |
5677546 | Yu | Oct 1997 | A |
5682884 | Hill et al. | Nov 1997 | A |
5691486 | Behringer et al. | Nov 1997 | A |
5695623 | Michel et al. | Dec 1997 | A |
5698083 | Glass | Dec 1997 | A |
5708247 | McAleer et al. | Jan 1998 | A |
5720862 | Hamamoto et al. | Feb 1998 | A |
5723284 | Ye | Mar 1998 | A |
5727548 | Hill et al. | Mar 1998 | A |
5757666 | Schreiber et al. | May 1998 | A |
5762770 | Pritchard et al. | Jun 1998 | A |
5766789 | James et al. | Jun 1998 | A |
5780304 | Matzinger et al. | Jul 1998 | A |
5788833 | Lewis et al. | Aug 1998 | A |
5789255 | Yu | Aug 1998 | A |
5798031 | Charlton et al. | Aug 1998 | A |
5830341 | Gilmartin | Nov 1998 | A |
5843691 | Douglas et al. | Dec 1998 | A |
5846744 | Athey et al. | Dec 1998 | A |
5849174 | Sanghera et al. | Dec 1998 | A |
5856195 | Charlton et al. | Jan 1999 | A |
5869972 | Birch et al. | Feb 1999 | A |
5890489 | Elden | Apr 1999 | A |
5897522 | Nitzan | Apr 1999 | A |
5904898 | Markart | May 1999 | A |
5911872 | Lewis et al. | Jun 1999 | A |
5916156 | Hildenbrand et al. | Jun 1999 | A |
5921925 | Cartmell et al. | Jul 1999 | A |
5945341 | Howard, III | Aug 1999 | A |
5951836 | McAleer et al. | Sep 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5968760 | Phillips et al. | Oct 1999 | A |
5989917 | McAleer et al. | Nov 1999 | A |
5997817 | Crismore et al. | Dec 1999 | A |
6004441 | Fujiwara et al. | Dec 1999 | A |
6036919 | Thym et al. | Mar 2000 | A |
6044285 | Chaiken et al. | Mar 2000 | A |
6071391 | Gotoh et al. | Jun 2000 | A |
6087182 | Jeng et al. | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6102872 | Doneen et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6121050 | Han | Sep 2000 | A |
6129823 | Hughes et al. | Oct 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6144869 | Berner et al. | Nov 2000 | A |
6150124 | Riedel | Nov 2000 | A |
6153069 | Pottgen et al. | Nov 2000 | A |
RE36991 | Yamamoto et al. | Dec 2000 | E |
6156173 | Gotah et al. | Dec 2000 | A |
6159745 | Roberts et al. | Dec 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6162639 | Douglas | Dec 2000 | A |
6168957 | Matzinger et al. | Jan 2001 | B1 |
6170318 | Lewis | Jan 2001 | B1 |
6174420 | Hodges et al. | Jan 2001 | B1 |
6175752 | Say et al. | Jan 2001 | B1 |
6176988 | Kessler | Jan 2001 | B1 |
6179979 | Hodges et al. | Jan 2001 | B1 |
6180062 | Naka et al. | Jan 2001 | B1 |
6193873 | Ohara et al. | Feb 2001 | B1 |
6200773 | Ouyang et al. | Mar 2001 | B1 |
6225078 | Ikeda et al. | May 2001 | B1 |
6241862 | McAleer et al. | Jun 2001 | B1 |
6251260 | Heller et al. | Jun 2001 | B1 |
6258229 | Winarta et al. | Jul 2001 | B1 |
6258254 | Miyamoto et al. | Jul 2001 | B1 |
6259937 | Schulman et al. | Jul 2001 | B1 |
6268162 | Phillips et al. | Jul 2001 | B1 |
6270637 | Crismore et al. | Aug 2001 | B1 |
6271044 | Ballerstadt et al. | Aug 2001 | B1 |
6277641 | Yager | Aug 2001 | B1 |
6281006 | Heller et al. | Aug 2001 | B1 |
6284125 | Hodges et al. | Sep 2001 | B1 |
6284550 | Carroll et al. | Sep 2001 | B1 |
6287451 | Winarta et al. | Sep 2001 | B1 |
6287595 | Loewy et al. | Sep 2001 | B1 |
6295506 | Heinonen et al. | Sep 2001 | B1 |
6299757 | Feldman et al. | Oct 2001 | B1 |
6300123 | Vadgama et al. | Oct 2001 | B1 |
6300142 | Andrewes et al. | Oct 2001 | B1 |
6309526 | Fujiwara et al. | Oct 2001 | B1 |
6315951 | Markart | Nov 2001 | B1 |
6316264 | Corey et al. | Nov 2001 | B1 |
6325917 | Maxwell et al. | Dec 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6335203 | Patel et al. | Jan 2002 | B1 |
6338790 | Feldman et al. | Jan 2002 | B1 |
6340428 | Ikeda et al. | Jan 2002 | B1 |
6349230 | Kawanaka | Feb 2002 | B1 |
6377894 | Deweese et al. | Apr 2002 | B1 |
6377896 | Sato et al. | Apr 2002 | B1 |
6379513 | Chambers et al. | Apr 2002 | B1 |
6395227 | Kiser et al. | May 2002 | B1 |
6413395 | Bhullar et al. | Jul 2002 | B1 |
6413410 | Hodges et al. | Jul 2002 | B1 |
6420128 | Ouyang et al. | Jul 2002 | B1 |
6444115 | Hodges et al. | Sep 2002 | B1 |
6447657 | Bhullar et al. | Sep 2002 | B1 |
6454921 | Hodges et al. | Sep 2002 | B1 |
6458258 | Taniike et al. | Oct 2002 | B2 |
6461496 | Feldman et al. | Oct 2002 | B1 |
6475360 | Hodges et al. | Nov 2002 | B1 |
6475372 | Ohara et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6485923 | Yani et al. | Nov 2002 | B1 |
6488827 | Shartle | Dec 2002 | B1 |
6489133 | Phillips et al. | Dec 2002 | B2 |
6491803 | Shen et al. | Dec 2002 | B1 |
6491870 | Patel et al. | Dec 2002 | B2 |
6501976 | Sohrab | Dec 2002 | B1 |
6503381 | Gotoh et al. | Jan 2003 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6514769 | Lee | Feb 2003 | B2 |
6521110 | Hodges et al. | Feb 2003 | B1 |
6521182 | Shartle et al. | Feb 2003 | B1 |
6525330 | Paolini et al. | Feb 2003 | B2 |
6525549 | Poellmann | Feb 2003 | B1 |
6526298 | Khalil et al. | Feb 2003 | B1 |
6531040 | Musho et al. | Mar 2003 | B2 |
6531322 | Jurik et al. | Mar 2003 | B1 |
6540890 | Bhullar et al. | Apr 2003 | B1 |
6540891 | Stewart et al. | Apr 2003 | B1 |
6541266 | Modzelewski et al. | Apr 2003 | B2 |
6544474 | Douglas | Apr 2003 | B2 |
6549796 | Schrab | Apr 2003 | B2 |
6551494 | Heller et al. | Apr 2003 | B1 |
6555061 | Leong et al. | Apr 2003 | B1 |
6558528 | Matzinger | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561989 | Whitson | May 2003 | B2 |
6565509 | Say et al. | May 2003 | B1 |
6565738 | Henning et al. | May 2003 | B1 |
6571651 | Hodges | Jun 2003 | B1 |
6572822 | Jurik et al. | Jun 2003 | B2 |
6576101 | Heller et al. | Jun 2003 | B1 |
6576117 | Iketaki et al. | Jun 2003 | B1 |
6576416 | Haviland et al. | Jun 2003 | B2 |
6576461 | Heller et al. | Jun 2003 | B2 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6591125 | Buse et al. | Jul 2003 | B1 |
6592745 | Feldman et al. | Jul 2003 | B1 |
6594514 | Berner et al. | Jul 2003 | B2 |
6599406 | Kawanaka et al. | Jul 2003 | B1 |
6599407 | Taniike et al. | Jul 2003 | B2 |
6600997 | Deweese et al. | Jul 2003 | B2 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607658 | Heller et al. | Aug 2003 | B1 |
6616819 | Liamos et al. | Sep 2003 | B1 |
6618603 | Yaralli et al. | Sep 2003 | B2 |
6618934 | Feldman et al. | Sep 2003 | B1 |
6627057 | Bhullar et al. | Sep 2003 | B1 |
6632349 | Hodges et al. | Oct 2003 | B1 |
6638415 | Hodges et al. | Oct 2003 | B1 |
6638716 | Heller et al. | Oct 2003 | B2 |
6645359 | Bhullar et al. | Nov 2003 | B1 |
6654625 | Say et al. | Nov 2003 | B1 |
6656702 | Yugawa et al. | Dec 2003 | B1 |
6676995 | Dick et al. | Jan 2004 | B2 |
6689411 | Dick et al. | Feb 2004 | B2 |
6716620 | Bashir et al. | Apr 2004 | B2 |
6719887 | Hasegawa et al. | Apr 2004 | B2 |
6723371 | Chih-Lui | Apr 2004 | B2 |
6743635 | Neel et al. | Jun 2004 | B2 |
6746582 | Heller et al. | Jun 2004 | B2 |
6749740 | Liamos et al. | Jun 2004 | B2 |
6764581 | Forrow et al. | Jul 2004 | B1 |
6776888 | Yamamoto et al. | Aug 2004 | B2 |
6777243 | Fukuoka et al. | Aug 2004 | B2 |
6787013 | Chang et al. | Sep 2004 | B2 |
6800488 | Khan et al. | Oct 2004 | B2 |
6814844 | Bhullar et al. | Nov 2004 | B2 |
6818180 | Douglas | Nov 2004 | B2 |
6821483 | Phillips et al. | Nov 2004 | B2 |
6827829 | Kawanaka et al. | Dec 2004 | B2 |
6830669 | Miyazaki et al. | Dec 2004 | B2 |
6833110 | Black | Dec 2004 | B2 |
6841389 | Novikov et al. | Jan 2005 | B2 |
6856125 | Kermani | Feb 2005 | B2 |
6860978 | Yamanishi et al. | Mar 2005 | B2 |
6863800 | Karinka | Mar 2005 | B2 |
6881322 | Tokunaga et al. | Apr 2005 | B2 |
6881550 | Phillips et al. | Apr 2005 | B2 |
6881551 | Heller | Apr 2005 | B2 |
7022218 | Taniike et al. | Apr 2006 | B2 |
7041206 | Gephart et al. | May 2006 | B2 |
20010042683 | Musho et al. | Nov 2001 | A1 |
20010052470 | Hodges et al. | Dec 2001 | A1 |
20010053535 | Bashir et al. | Dec 2001 | A1 |
20010054319 | Heller et al. | Dec 2001 | A1 |
20010055784 | Noda et al. | Dec 2001 | A1 |
20020004196 | Whitson | Jan 2002 | A1 |
20020019707 | Cohen et al. | Feb 2002 | A1 |
20020043471 | Ikeda et al. | Apr 2002 | A1 |
20020044890 | Black | Apr 2002 | A1 |
20020053523 | Liamos et al. | May 2002 | A1 |
20020081588 | De Lumley-woodyear et al. | Jun 2002 | A1 |
20020082797 | Deweese et al. | Jun 2002 | A1 |
20020084196 | Liamos et al. | Jul 2002 | A1 |
20020092612 | Davies et al. | Jul 2002 | A1 |
20020100685 | Huang et al. | Aug 2002 | A1 |
20020102739 | Nomura et al. | Aug 2002 | A1 |
20020112969 | Hodges et al. | Aug 2002 | A1 |
20020125145 | Ohara et al. | Sep 2002 | A1 |
20020133064 | Ueno et al. | Sep 2002 | A1 |
20020137200 | Takahashi et al. | Sep 2002 | A1 |
20020137230 | Nadaoka et al. | Sep 2002 | A1 |
20020139692 | Tokunaga et al. | Oct 2002 | A1 |
20020148739 | Liamos et al. | Oct 2002 | A2 |
20020157948 | Liamos et al. | Oct 2002 | A2 |
20020164822 | Takahashi et al. | Nov 2002 | A1 |
20020168290 | Yuzhakov et al. | Nov 2002 | A1 |
20020170823 | Housefield et al. | Nov 2002 | A1 |
20020175087 | Hodges et al. | Nov 2002 | A1 |
20020177788 | Hodges et al. | Nov 2002 | A1 |
20020179440 | Tokunaga et al. | Dec 2002 | A1 |
20020179442 | Miyazaki et al. | Dec 2002 | A1 |
20020185385 | Charlton | Dec 2002 | A1 |
20020189941 | Katsuki | Dec 2002 | A1 |
20030000834 | Yoshioka et al. | Jan 2003 | A1 |
20030004403 | Drinan et al. | Jan 2003 | A1 |
20030024811 | Davies et al. | Feb 2003 | A1 |
20030032875 | Taniike et al. | Feb 2003 | A1 |
20030042137 | Mao et al. | Mar 2003 | A1 |
20030042150 | Ryu et al. | Mar 2003 | A1 |
20030046811 | Chang et al. | Mar 2003 | A1 |
20030073152 | Phillips et al. | Apr 2003 | A1 |
20030073153 | Phillips et al. | Apr 2003 | A1 |
20030088166 | Say et al. | May 2003 | A1 |
20030094383 | Kermani | May 2003 | A1 |
20030097981 | Dick et al. | May 2003 | A1 |
20030098233 | Kermani et al. | May 2003 | A1 |
20030099773 | Dick et al. | May 2003 | A1 |
20030100030 | Nadaoka et al. | May 2003 | A1 |
20030102213 | Gotoh et al. | Jun 2003 | A1 |
20030106809 | Kermani et al. | Jun 2003 | A1 |
20030109798 | Kermani | Jun 2003 | A1 |
20030132110 | Hasegawa et al. | Jul 2003 | A1 |
20030143113 | Yuzhakov et al. | Jul 2003 | A2 |
20030146110 | Karinka et al. | Aug 2003 | A1 |
20030146436 | Parker et al. | Aug 2003 | A1 |
20030150724 | Kawanaka et al. | Aug 2003 | A1 |
20030155237 | Surridge et al. | Aug 2003 | A1 |
20030159944 | Pottgen et al. | Aug 2003 | A1 |
20030159945 | Miyazaki et al. | Aug 2003 | A1 |
20030164293 | Hodges et al. | Sep 2003 | A1 |
20030175841 | Watanabe et al. | Sep 2003 | A1 |
20030175946 | Tokunaga et al. | Sep 2003 | A1 |
20030176183 | Drucker et al. | Sep 2003 | A1 |
20030180183 | Fukuoka et al. | Sep 2003 | A1 |
20030185705 | Otake | Oct 2003 | A1 |
20030187338 | Say et al. | Oct 2003 | A1 |
20030188427 | Say et al. | Oct 2003 | A1 |
20030199744 | Buse et al. | Oct 2003 | A1 |
20030199893 | Boecker et al. | Oct 2003 | A1 |
20030201194 | Heller et al. | Oct 2003 | A1 |
20030203498 | Neel et al. | Oct 2003 | A1 |
20030203503 | Fukuoka et al. | Oct 2003 | A1 |
20030217918 | Davies et al. | Nov 2003 | A1 |
20040005721 | Tanike et al. | Jan 2004 | A1 |
20040016642 | Miyazaki et al. | Jan 2004 | A1 |
20040020777 | Miyamoto et al. | Feb 2004 | A1 |
20040067166 | Karinka et al. | Apr 2004 | A1 |
20040094432 | Neel et al. | May 2004 | A1 |
20040094433 | Neel et al. | May 2004 | A1 |
20040096928 | Hasegawa et al. | May 2004 | A1 |
20040099540 | Neel et al. | May 2004 | A1 |
20040104131 | Neel et al. | Jun 2004 | A1 |
20040106941 | Roe et al. | Jun 2004 | A1 |
20040127818 | Roe et al. | Jul 2004 | A1 |
20040127819 | Roe et al. | Jul 2004 | A1 |
20040182703 | Bell et al. | Sep 2004 | A1 |
20040206625 | Bhullar et al. | Oct 2004 | A1 |
20040251131 | Ueno et al. | Dec 2004 | A1 |
20050013731 | Burke et al. | Jan 2005 | A1 |
20050016844 | Burke et al. | Jan 2005 | A1 |
20050019212 | Bhullar et al. | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
1 467 496 | May 2003 | CN |
102 22 428 | Dec 2002 | DE |
0 057 110 | Aug 1982 | EP |
0 127 958 | Dec 1984 | EP |
0 034 049 | Jan 1985 | EP |
0 164 180 | Dec 1985 | EP |
0 170 375 | Feb 1986 | EP |
0 171 148 | Feb 1986 | EP |
0 186 286 | Jul 1986 | EP |
0 230 472 | Aug 1987 | EP |
0 255 291 | Feb 1988 | EP |
0 267 724 | May 1988 | EP |
0 287 883 | Oct 1988 | EP |
0 359 831 | Mar 1990 | EP |
0 383 322 | Aug 1990 | EP |
0 471 986 | Feb 1992 | EP |
0 537 761 | Apr 1993 | EP |
0 546 536 | Jun 1993 | EP |
0 732 406 | Sep 1996 | EP |
0 736 607 | Oct 1996 | EP |
0 740 786 | Nov 1996 | EP |
0 837 320 | Apr 1998 | EP |
0 840 122 | May 1998 | EP |
0 851 224 | Jul 1998 | EP |
0 873 514 | Oct 1998 | EP |
0 876 506 | Nov 1998 | EP |
0 882 226 | Dec 1998 | EP |
0 887 421 | Dec 1998 | EP |
0 958 495 | Nov 1999 | EP |
0 964 059 | Dec 1999 | EP |
0 967 480 | Dec 1999 | EP |
0 987 544 | Mar 2000 | EP |
1 009 850 | Jun 2000 | EP |
1 024 358 | Aug 2000 | EP |
1 074 832 | Feb 2001 | EP |
1 102 991 | May 2001 | EP |
1 119 637 | Aug 2001 | EP |
1 129 211 | Sep 2001 | EP |
1 130 390 | Sep 2001 | EP |
1 152 239 | Nov 2001 | EP |
1 156 324 | Nov 2001 | EP |
1 225 448 | Jul 2002 | EP |
1 235 069 | Aug 2002 | EP |
1 236 995 | Sep 2002 | EP |
1 256 798 | Nov 2002 | EP |
1 260 589 | Nov 2002 | EP |
1 275 732 | Jan 2003 | EP |
1 281 955 | Feb 2003 | EP |
1 288 654 | Mar 2003 | EP |
1 308 720 | May 2003 | EP |
1 312 919 | May 2003 | EP |
1 316 367 | Jun 2003 | EP |
1 318 396 | Jun 2003 | EP |
1 324 025 | Jul 2003 | EP |
1 327 881 | Jul 2003 | EP |
1 352 611 | Oct 2003 | EP |
1 352 969 | Oct 2003 | EP |
1 369 684 | Dec 2003 | EP |
1 369 687 | Dec 2003 | EP |
1 391 716 | Feb 2004 | EP |
1 394 535 | Mar 2004 | EP |
1 431 758 | Jun 2004 | EP |
2365123 | Feb 2002 | GB |
63128252 | May 1988 | JP |
1291153 | Nov 1989 | JP |
05-312761 | Nov 1993 | JP |
09-189675 | Jul 1997 | JP |
10 307119 | Nov 1998 | JP |
11 337514 | Dec 1999 | JP |
2004-20465 | Jan 2004 | JP |
WO 8607632 | Dec 1986 | WO |
WO 8909397 | Oct 1989 | WO |
WO 9222669 | Dec 1992 | WO |
WO 9416095 | Jul 1994 | WO |
WO 9428414 | Dec 1994 | WO |
WO 9429705 | Dec 1994 | WO |
WO 9522597 | Aug 1995 | WO |
WO 9607908 | Mar 1996 | WO |
WO 9615454 | May 1996 | WO |
WO 9633403 | Oct 1996 | WO |
WO 9702487 | Jan 1997 | WO |
WO 9729847 | Aug 1997 | WO |
WO 9730344 | Aug 1997 | WO |
WO 9734140 | Sep 1997 | WO |
WO 9739343 | Oct 1997 | WO |
WO 9745719 | Dec 1997 | WO |
WO 9830904 | Jul 1998 | WO |
WO 9835225 | Aug 1998 | WO |
WO 9855853 | Dec 1998 | WO |
WO 9905516 | Feb 1999 | WO |
WO 9913099 | Mar 1999 | WO |
WO 9913100 | Mar 1999 | WO |
WO 9930152 | Jun 1999 | WO |
WO 9932881 | Jul 1999 | WO |
WO 9939627 | Aug 1999 | WO |
WO 9945387 | Sep 1999 | WO |
WO 9951974 | Oct 1999 | WO |
WO 9958709 | Nov 1999 | WO |
WO 9964620 | Dec 1999 | WO |
WO 0010007 | Feb 2000 | WO |
WO 0018294 | Apr 2000 | WO |
WO 0020626 | Apr 2000 | WO |
WO 0026638 | May 2000 | WO |
WO 0028068 | May 2000 | WO |
WO 0033063 | Jun 2000 | WO |
WO 0033072 | Jun 2000 | WO |
WO 0033074 | Jun 2000 | WO |
WO 0042422 | Jul 2000 | WO |
WO 0060340 | Oct 2000 | WO |
WO 0062047 | Oct 2000 | WO |
WO 0073778 | Dec 2000 | WO |
WO 0073785 | Dec 2000 | WO |
WO 0078992 | Dec 2000 | WO |
WO 0125775 | Apr 2001 | WO |
WO 0125776 | Apr 2001 | WO |
WO 0133216 | May 2001 | WO |
WO 0136953 | May 2001 | WO |
WO 0140788 | Jun 2001 | WO |
WO 0146457 | Jun 2001 | WO |
WO 0157238 | Aug 2001 | WO |
WO 0157239 | Aug 2001 | WO |
WO 0157510 | Aug 2001 | WO |
WO 0167099 | Sep 2001 | WO |
WO 0171328 | Sep 2001 | WO |
WO 0171329 | Sep 2001 | WO |
WO 0172220 | Oct 2001 | WO |
WO 0173109 | Oct 2001 | WO |
WO 0173114 | Oct 2001 | WO |
WO 0173124 | Oct 2001 | WO |
WO 0173419 | Oct 2001 | WO |
WO 0173420 | Oct 2001 | WO |
WO 0175438 | Oct 2001 | WO |
WO 0184133 | Nov 2001 | WO |
WO 0200112 | Jan 2002 | WO |
WO 0208750 | Jan 2002 | WO |
WO 0208753 | Jan 2002 | WO |
WO 0210728 | Feb 2002 | WO |
WO 0214535 | Feb 2002 | WO |
WO 0222855 | Mar 2002 | WO |
WO 0232559 | Apr 2002 | WO |
WO 0249507 | Jun 2002 | WO |
WO 0250609 | Jun 2002 | WO |
WO 02054055 | Jul 2002 | WO |
WO 02057767 | Jul 2002 | WO |
WO 02057768 | Jul 2002 | WO |
WO 02057781 | Jul 2002 | WO |
WO 02058537 | Aug 2002 | WO |
WO 02067768 | Aug 2002 | WO |
WO 02070734 | Sep 2002 | WO |
WO 02071044 | Sep 2002 | WO |
WO 02078512 | Oct 2002 | WO |
WO 02078533 | Oct 2002 | WO |
WO 02086483 | Oct 2002 | WO |
WO 02097418 | Dec 2002 | WO |
WO 02103343 | Dec 2002 | WO |
WO 03005015 | Jan 2003 | WO |
WO 03012422 | Feb 2003 | WO |
WO 03014740 | Feb 2003 | WO |
WO 03014741 | Feb 2003 | WO |
WO 03029804 | Apr 2003 | WO |
WO 03032411 | Apr 2003 | WO |
WO 03042679 | May 2003 | WO |
WO 03042680 | May 2003 | WO |
WO 03043945 | May 2003 | WO |
WO 03044511 | May 2003 | WO |
WO 03048756 | Jun 2003 | WO |
WO 03056345 | Jul 2003 | WO |
WO 03060154 | Jul 2003 | WO |
WO 03067252 | Aug 2003 | WO |
WO 03069304 | Aug 2003 | WO |
WO 03083469 | Oct 2003 | WO |
WO 03085372 | Oct 2003 | WO |
WO 03091717 | Nov 2003 | WO |
WO 2004005908 | Jan 2004 | WO |
WO 2004034053 | Apr 2004 | WO |
WO 2004113901 | Dec 2004 | WO |
WO 2004113902 | Dec 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20090162532 A1 | Jun 2009 | US |
Number | Date | Country | |
---|---|---|---|
60480397 | Jun 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10871966 | Jun 2004 | US |
Child | 12361830 | US |