Information
-
Patent Application
-
20030087847
-
Publication Number
20030087847
-
Date Filed
February 02, 200124 years ago
-
Date Published
May 08, 200321 years ago
-
Inventors
-
Original Assignees
-
CPC
-
US Classifications
-
International Classifications
- A61K048/00
- C07H021/02
- C12Q001/68
Abstract
The present invention relates to nucleic acid molecules, including antisense and enzymatic nucleic acid molecules, such as hammerhead ribozymes, DNAzymes, and antisense, which modulate the expression of the Chk-1 gene.
Description
BACKGROUND OF THE INVENTION
[0001] This patent application claims priority from Jarvis et al., USSN (60/179,983), filed Feb. 3, 2000, entitled “METHOD AND REAGENT FOR THE INHIBITION OF CHECKPOINT KINASE-1 (CHK1) ENZYME”. This application is hereby incorporated by reference herein in its entirety including the drawings.
[0002] The present invention concerns compounds, compositions, and methods for the study, diagnosis, and treatment of conditions and diseases related to the expression of kinases which phosphorylate Cdc25 S216, such as Chk1 (checkpoint kinase 1) enzyme.
[0003] The following is a brief description of the current understanding of Chk1. The discussion is not meant to be complete and is provided only for understanding the invention that follows. The summary is not an admission that any of the work described below is prior art to the claimed invention.
[0004] Mammalian cells treated with agents that inhibit DNA replication or cause DNA damage undergo cell cycle arrest due to the presence of multiple checkpoint response mechanisms. Cancer cells frequently lack the p53-induced G1 DNA damage checkpoint response and instead arrest in G2 due to a checkpoint pathway directed towards preventing Cdc2 kinase activation. Inhibition of Cdc2 kinase activity is mediated by Wee1-like kinases, which phosphorylate key residues within the ATP-binding pocket of Cdc2 (accession No. X05360). Maintenance of this arrest also involves repressing Cdc25 function, the phosphatase that removes the Cdc2 inhibitory phosphorylations, by a mechanism involving the binding of 14-3-3 proteins to a phosphorylated serine residue (S216) in Cdc25. Multiple kinases, including Chk1 (accession No. AF016582), Chk2 (Cds1) (accession No. NM—007194), and C-TAK1 (accession No. AL050393), can phosphorylate Cdc25 S216 (accession No. M34065) in-vitro. These kinases may function in the DNA replication and/or DNA damage checkpoint response in vivo.
[0005] Hoekstra et al, International PCT publication No. WO/9955844, describe, in general terms, a method for promoting differentiation of a differentiation-inhibited cell by introducing into a cell a first polynucleotide encoding an antisense polynucleotide that hybridizes to a second polynucleotide encoding a cell cycle checkpoint protein.
SUMMARY OF THE INVENTION
[0006] The invention features novel nucleic acid-based techniques [e.g., enzymatic nucleic acid molecules (ribozymes), antisense nucleic acids, 2-5A antisense chimeras, triplex DNA, antisense nucleic acids containing RNA cleaving chemical groups] and methods for their use to modulate the expression of kinases which phosphorylate Cdc25 S216, such as Chk1 (checkpoint kinase 1) enzyme, Chk2 (Cds1) and C-TAK1.
[0007] The description below of the various aspects and embodiments is provided with reference to the exemplary gene Chk1. However, the various aspects and embodiments are also directed to each of the other genes which phosphorylate Cdc25S216. Those additional genes can be analyzed for target sites as described for Chk1. Further, the nucleic acid-based techniques, molecules, and compositions targeted to those genes can be performed as for Chk1. Thus, the inhibition and the effects of such inhibition of the other genes can be performed as described herein.
[0008] In a preferred embodiment, the invention features the use of one or more of the nucleic acid-based techniques independently or in combination to inhibit the expression of the genes encoding Chk1. Specifically, the invention features the use of nucleic acid-based techniques to specifically inhibit the expression of Chk1 gene.
[0009] In another preferred embodiment, the invention features the use of an enzymatic nucleic acid molecule, preferably in the hammerhead, NCH, G-cleaver, amberzyme, zinzyme and/or DNAzyme motif, to inhibit the expression of Chk1 gene.
[0010] By “inhibit” it is meant that the activity of Chk1 or level of RNAs or equivalent RNAs encoding one or more protein subunits of Chk1 is reduced below that observed in the absence of the nucleic acid molecules of the invention. In one embodiment, inhibition with enzymatic nucleic acid molecule preferably is below that level observed in the presence of an enzymatically inactive or attenuated molecule that is able to bind to the same site on the target RNA, but is unable to cleave that RNA. In another embodiment, inhibition with antisense oligonucleotides is preferably below that level observed in the presence of, for example, an oligonucleotide with scrambled sequence or with mismatches. In another embodiment, inhibition of Chk1 genes with the nucleic acid molecule of the instant invention is greater than in the presence of the nucleic acid molecule than in its absence.
[0011] By “enzymatic nucleic acid molecule” it is meant a nucleic acid molecule which has complementarity in a substrate-binding region to a specified gene target, and also has an enzymatic activity which is active to specifically cleave target RNA. That is, the enzymatic nucleic acid molecule is able to intermolecularly cleave RNA and thereby inactivate a target RNA molecule. These complementary regions allow sufficient hybridization of the enzymatic nucleic acid molecule to the target RNA and thus permit cleavage. One hundred percent complementarity is preferred, but complementarity as low as 50-75% may also be useful in this invention (see for example Werner and Uhlenbeck, 1995, Nucleic Acids Research, 23, 2092-2096; Hammann et al., 1999, Antisense and Nucleic Acid Drug Dev., 9, 25-31). The nucleic acids may be modified at the base, sugar, and/or phosphate groups. The term enzymatic nucleic acid is used interchangeably with phrases such as ribozymes, catalytic RNA, enzymatic RNA, catalytic DNA, aptazyme or aptamer-binding ribozyme, regulatable ribozyme, catalytic oligonucleotides, nucleozyme, DNAzyme, RNA enzyme, endoribonuclease, endonuclease, minizyme, leadzyme, oligozyme or DNA enzyme. All of these terminologies describe nucleic acid molecules with enzymatic activity. The specific enzymatic nucleic acid molecules described in the instant application are not limiting in the invention and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target nucleic acid regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart a nucleic acid cleaving and/or ligation activity to the molecule (Cech et al., U.S. Pat. No. 4,987,071; Cech et al., 1988, 260 JAMA 3030).
[0012] By “nucleic acid molecule” as used herein is meant a molecule having nucleotides. The nucleic acid can be single, double, or multiple stranded and may comprise modified or unmodified nucleotides or non-nucleotides or various mixtures and combinations thereof.
[0013] By “enzymatic portion” or “catalytic domain” is meant that portion/region of the enzymatic nucleic acid molecule essential for cleavage of a nucleic acid substrate (for example, see FIGS. 1-5).
[0014] By “substrate binding arm” or “substrate binding domain” is meant that portion/region of a enzymatic nucleic acid which is able to interact, for example via complementarity (i.e., able to base-pair with), with a portion of its substrate. Preferably, such complementarity is 100%, but can be less if desired. For example, as few as 10 bases out of 14 can be base-paired (see for example Werner and Uhlenbeck, 1995, Nucleic Acids Research, 23, 2092-2096; Hammann et al., 1999, Antisense and Nucleic Acid Drug Dev., 9, 25-31). Examples of such arms are shown generally in FIGS. 1-5. That is, these arms contain sequences within a enzymatic nucleic acid which are intended to bring enzymatic nucleic acid and target RNA together through complementary base-pairing interactions. The enzymatic nucleic acid of the invention may have binding arms that are contiguous or non-contiguous and may be of varying lengths. The length of the binding arm(s) are preferably greater than or equal to four nucleotides and of sufficient length to stably interact with the target RNA; preferably 12-100 nucleotides; more preferably 14-24 nucleotides long (see for example Werner and Uhlenbeck, supra; Hamman et al., supra; Hampel et al., EP0360257; Berzal-Herrance et al., 1993, EMBO J., 12, 2567-73). If two binding arms are chosen, the design is such that the length of the binding arms are symmetrical (i.e., each of the binding arms is of the same length; e.g., five and five nucleotides, or six and six nucleotides, or seven and seven nucleotides long) or asymmetrical (i.e., the binding arms are of different length; e.g., six and three nucleotides; three and six nucleotides long; four and five nucleotides long; four and six nucleotides long; four and seven nucleotides long; and the like).
[0015] By “Inozyme” or “NCH” motif is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described as NCH Rz in FIG. 2. Inozymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet NCH/, where N is a nucleotide, C is cytidine and H is adenosine, uridine or cytidine, and/represents the cleavage site. H is used interchangeably with X. Inozymes can also possess endonuclease activity to cleave RNA substrates having a cleavage triplet NCN/, where N is a nucleotide, C is cytidine, and/represents the cleavage site. “I” in FIG. 2 represents an Inosine nucleotide, preferably a ribo-Inosine or xylo-Inosine nucleoside.
[0016] By “G-cleaver” motif is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described as G-cleaver in FIG. 2. G-cleavers possess endonuclease activity to cleave RNA substrates having a cleavage triplet NYN/, where N is a nucleotide, Y is uridine or cytidine and/represents the cleavage site. G-cleavers may be chemically modified as is generally shown in FIG. 2.
[0017] By “amberzyme” motif is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described in FIG. 3. Amberzymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet NG/N, where N is a nucleotide, G is guanosine, and/represents the cleavage site. Amberzymes may be chemically modified to increase nuclease stability through substitutions as are generally shown in FIG. 3. In addition, differing nucleoside and/or non-nucleoside linkers can be used to substitute the 5′-gaaa-3′ loops shown in the figure. Amberzymes represent a non-limiting example of an enzymatic nucleic acid molecule that does not require a ribonucleotide (2′-OH) group within its own nucleic acid sequence for activity.
[0018] By “zinzyme” motif is meant, an enzymatic nucleic acid molecule comprising a motif as is generally described in FIG. 4. Zinzymes possess endonuclease activity to cleave RNA substrates having a cleavage triplet including but not limited to YG/Y, where Y is uridine or cytidine, and G is guanosine and/represents the cleavage site. Zinzymes may be chemically modified to increase nuclease stability through substitutions as are generally shown in FIG. 4, including substituting 2′-O-methyl guanosine nucleotides for guanosine nucleotides. In addition, differing nucleotide and/or non-nucleotide linkers can be used to substitute the 5′-gaaa-2′ loop shown in the figure. Zinzymes represent a non-limiting example of an enzymatic nucleic acid molecule that does not require a ribonucleotide (2′-OH) group within its own nucleic acid sequence for activity.
[0019] By ‘DNAzyme’ is meant, an enzymatic nucleic acid molecule that does not require the presence of a 2′-OH group for its activity. In particular embodiments the enzymatic nucleic acid molecule may have an attached linker(s) or other attached or associated groups, moieties, or chains containing one or more nucleotides with 2′-OH groups. DNAzymes can be synthesized chemically or expressed endogenously in vivo, by means of a single stranded DNA vector or equivalent thereof. An example of a DNAzyme is shown in FIG. 5 and is generally reviewed in Usman et al., International PCT Publication No. WO 95/11304; Chartrand et al., 1995, NAR 23, 4092; Breaker et al., 1995, Chem. Bio. 2, 655; Santoro et al., 1997, PNAS 94, 4262; Breaker, 1999, Nature Biotechnology, 17, 422-423; and Santoro et. al., 2000, J. Am. Chem. Soc., 122, 2433-39. Additional DNAzyme motifs can be selected for using techniques similar to those described in these references, and hence, are within the scope of the present invention.
[0020] By “sufficient length” is meant an oligonucleotide of greater than or equal to 3 nucleotides that is of a length great enough to provide the intended function under the expected condition. For example, for binding arms of enzymatic nucleic acid “sufficient length” means that the binding arm sequence is long enough to provide stable binding to a target site under the expected binding conditions. Preferably, the binding arms are not so long as to prevent useful turnover.
[0021] By “stably interact” is meant interaction of the oligonucleotides with target nucleic acid (e.g., by forming hydrogen bonds with complementary nucleotides in the target under physiological conditions) that is sufficient to the intended purpose (e.g., cleavage of target RNA by an enzyme).
[0022] By “equivalent” RNA to Chk1 is meant to include those naturally occurring RNA molecules having homology (partial or complete) to Chk1 proteins or encoding for proteins with similar function as Chk1 in various organisms, including human, rodent, primate, rabbit, pig, protozoans, fungi, plants, and other microorganisms and parasites. The equivalent RNA sequence also includes in addition to the coding region, regions such as 5′-untranslated region, 3′-untranslated region, introns, intron-exon junction and the like.
[0023] By “homology” is meant the nucleotide sequence of two or more nucleic acid molecules is partially or completely identical.
[0024] By “antisense nucleic acid”, it is meant a non-enzymatic nucleic acid molecule that binds to target RNA by means of RNA-RNA or RNA-DNA or RNA-PNA (protein nucleic acid; Egholm et al., 1993 Nature 365, 566) interactions and alters the activity of the target RNA (for a review, see Stein and Cheng, 1993 Science 261, 1004 and Woolf et al., U.S. Pat. No. 5,849,902). Typically, antisense molecules are complementary to a target sequence along a single contiguous sequence of the antisense molecule. However, in certain embodiments, an antisense molecule may bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule may bind such that the antisense molecule forms a loop. Thus, the antisense molecule may be complementary to two (or even more) non-contiguous substrate sequences or two (or even more) non-contiguous sequence portions of an antisense molecule may be complementary to a target sequence or both. For a review of current antisense strategies, see Schmajuk et al., 1999, J. Biol. Chem., 274, 21783-21789, Delihas et al., 1997, Nature, 15, 751-753, Stein et al., 1997, Antisense N. A. Drug Dev., 7, 151, Crooke, 2000, Methods Enzymol., 313, 3-45; Crooke, 1998, Biotech. Genet. Eng. Rev., 15, 121-157, Crooke, 1997, Ad. Pharmacol, 40, 1-49. In addition, antisense DNA can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex. The antisense oligonucleotides can comprise one or more RNAse H activating region, which is capable of activating RNAse H cleavage of a target RNA. Antisense DNA can be synthesized chemically or expressed via the use of a single stranded DNA expression vector or equivalent thereof.
[0025] By “RNase H activating region” is meant a region (generally greater than or equal to 4-25 nucleotides in length, preferably from 5-11 nucleotides in length) of a nucleic acid molecule capable of binding to a target RNA to form a non-covalent complex that is recognized by cellular RNase H enzyme (see for example Arrow et al., U.S. Pat. No. 5,849,902; Arrow et al., U.S. Pat. No. 5,989,912). The RNase H enzyme binds to the nucleic acid molecule-target RNA complex and cleaves the target RNA sequence. The RNase H activating region comprises, for example, phosphodiester, phosphorothioate (preferably at least four of the nucleotides are phosphorothiote substitutions; more specifically, 4-11 of the nucleotides are phosphorothiote substitutions); phosphorodithioate, 5′-thiophosphate, or methylphosphonate backbone chemistry or a combination thereof. In addition to one or more backbone chemistries described above, the RNase H activating region can also comprise a variety of sugar chemistries. For example, the RNase H activating region can comprise deoxyribose, arabino, fluoroarabino or a combination thereof, nucleotide sugar chemistry. Those skilled in the art will recognize that the foregoing are non-limiting examples and that any combination of phosphate, sugar and base chemistry of a nucleic acid that supports the activity of RNase H enzyme is within the scope of the definition of the RNase H activating region and the instant invention.
[0026] By “2-5A antisense chimera” is meant an antisense oligonucleotide containing a 5′-phosphorylated 2′-5′-linked adenylate residue. These chimeras bind to target RNA in a sequence-specific manner and activate a cellular 2-5A-dependent ribonuclease which, in turn, cleaves the target RNA (Torrence et al., 1993 Proc. Natl. Acad. Sci. USA 90, 1300; Silverman et al., 2000, Methods Enzymol., 313, 522-533; Player and Torrence, 1998, Pharmacol. Ther., 78, 55-113).
[0027] By “triplex forming oligonucleotides” is meant an oligonucleotide that can bind to a double-stranded DNA in a sequence-specific manner to form a triple-strand helix. Formation of such triple helix structure has been shown to inhibit transcription of the targeted gene (Duval-Valentin et al., 1992 Proc. Natl. Acad. Sci. USA 89, 504; Fox, 2000, Curr. Med. Chem., 7, 17-37; Praseuth et. al., 2000, Biochim. Biophys. Acta, 1489, 181-206).
[0028] By “gene” it is meant a nucleic acid that encodes an RNA, for example, nucleic acid sequences including but not limited to structural genes encoding a polypeptide.
[0029] “Complementarity” refers to the ability of a nucleic acid to form hydrogen bond(s) with another RNA sequence by either traditional Watson-Crick or other non-traditional types. In reference to the nucleic molecules of the present invention, the binding free energy for a nucleic acid molecule with its target or complementary sequence is sufficient to allow the relevant function of the nucleic acid to proceed, e.g., enzymatic nucleic acid cleavage, antisense or triple helix inhibition. Determination of binding free energies for nucleic acid molecules is well known in the art (see, e.g., Turner et al., 1987, CSH Symp. Quant. Biol. LII pp.123-133; Frier et al., 1986, Proc. Nat. Acad. Sci. USA 83:9373-9377; Turner et al., 1987, J. Am. Chem. Soc. 109:3783-3785). A percent complementarity indicates the percentage of contiguous residues in a nucleic acid molecule which can form hydrogen bonds (e.g., Watson-Crick base pairing) with a second nucleic acid sequence (e.g., 5, 6, 7, 8, 9, 10 out of 10 being 50%, 60%, 70%, 80%, 90%, and 100% complementary). “Perfectly complementary” means that all the contiguous residues of a nucleic acid sequence will hydrogen bond with the same number of contiguous residues in a second nucleic acid sequence.
[0030] By “RNA” is meant a molecule comprising at least one ribonucleotide residue. By “ribonucleotide” or “2′-OH” is meant a nucleotide with a hydroxyl group at the 2′ position of a β-D-ribo-furanose moiety.
[0031] By “decoy RNA” is meant a RNA molecule that mimics the natural binding domain for a ligand. The decoy RNA therefore competes with natural binding target for the binding of a specific ligand. For example, it has been shown that over-expression of HIV trans-activation response (TAR) RNA can act as a “decoy” and efficiently binds HIV tat protein, thereby preventing it from binding to TAR sequences encoded in the HIV RNA (Sullenger et al., 1990, Cell, 63, 601-608). This is but a specific example and those in the art will recognize that other embodiments can be readily generated using techniques generally known in the art.
[0032] Several varieties of naturally occurring enzymatic RNAs are known presently. Each can catalyze the hydrolysis of RNA phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions. Table I summarizes some of the characteristics of these ribozymes. In general, enzymatic nucleic acids act by first binding to a target RNA. Such binding occurs through the target binding portion of a enzymatic nucleic acid which is held in close proximity to an enzymatic portion of the molecule that acts to cleave the target RNA. Thus, the enzymatic nucleic acid first recognizes and then binds a target RNA through complementary base-pairing, and once bound to the correct site, acts enzymatically to cut the target RNA. Strategic cleavage of such a target RNA will destroy its ability to direct synthesis of an encoded protein. After an enzymatic nucleic acid has bound and cleaved its RNA target, it is released from that RNA to search for another target and can repeatedly bind and cleave new targets. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor of gene expression, with the specificity of inhibition depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can completely eliminate catalytic activity of a ribozyme.
[0033] The enzymatic nucleic acid molecule that cleave the specified sites in Chk1 -specific RNAs represent a novel therapeutic approach to treat a variety of pathologic indications, including cancer.
[0034] In one of the preferred embodiments of the inventions described herein, the enzymatic nucleic acid molecule is formed in a hammerhead or hairpin motif, but may also be formed in the motif of a hepatitis delta virus, group I intron, group II intron or RNase P RNA (in association with an RNA guide sequence), Neurospora VS RNA, DNAzymes, NCH cleaving motifs, or G-cleavers. Examples of such hammerhead motifs are described by Dreyfuis, supra, Rossi et al., 1992, AIDS Research and Human Retroviruses 8, 183. Examples of hairpin motifs are described by Hampel et al., EP0360257, Hampel and Tritz, 1989 Biochemistry 28, 4929, Feldstein et al., 1989, Gene 82, 53, Haseloff and Gerlach, 1989, Gene, 82, 43, Hampel et al., 1990 Nucleic Acids Res. 18, 299; and Chowrira & McSwiggen, U.S. Pat. No. 5,631,359. The hepatitis delta virus motif is described by Perrotta and Been, 1992 Biochemistry 31, 16. The RNase P motif is described by Guerrier-Takada et al., 1983 Cell 35, 849; Forster and Altman, 1990, Science 249, 783; and Li and Altman, 1996, Nucleic Acids Res. 24, 835. The Neurospora VS RNA ribozyme motif is described by Collins (Saville and Collins, 1990 Cell 61, 685-696; Saville and Collins, 1991 Proc. Natl. Acad. Sci. USA 88, 8826-8830; Collins and Olive, 1993 Biochemistry 32, 2795-2799; and Guo and Collins, 1995, EMBO. J. 14, 363). Group II introns are described by Griffin et al., 1995, Chem. Biol. 2, 761; Michels and Pyle, 1995, Biochemistry 34, 2965; and Pyle et al., International PCT Publication No. WO 96/22689. The Group I intron is described by Cech et al., U.S. Pat. No. 4,987,071. DNAzymes are described by Usman et al., International PCT Publication No. WO 95/11304; Chartrand et al., 1995, NAR 23, 4092; Breaker et al., 1995, Chem. Bio. 2, 655; and Santoro et al., 1997, PNAS 94, 4262. NCH cleaving motifs are described in Ludwig & Sproat, International PCT Publication No. WO 98/58058; and G-cleavers are described in Kore et al., 1998, Nucleic Acids Research 26, 4116-4120 and Eckstein et al., International PCT Publication No. WO 99/16871. Additional motifs include the Aptazyme (Breaker et al., WO 98/43993), Amberzyme (Class I motif; FIG. 3; Beigelman et al., International PCT publication No. WO 99/55857) and Zinzyme (Beigelman et al., International PCT publication No. WO 99/55857), all these references are incorporated by reference herein in their totalities, including drawings and can also be used in the present invention. These specific motifs are not limiting in the invention. and those skilled in the art will recognize that all that is important in an enzymatic nucleic acid molecule of this invention is that it has a specific substrate binding site which is complementary to one or more of the target gene RNA regions, and that it have nucleotide sequences within or surrounding that substrate binding site which impart an RNA cleaving activity to the molecule (Cech et al., U.S. Pat. No. 4,987,071).
[0035] In preferred embodiments of the present invention, a nucleic acid molecule of the instant invention can be between 13 and 100 nucleotides in length. Exemplary enzymatic nucleic acid molecules of the invention are shown in Tables III-XIII. For example, enzymatic nucleic acid molecules of the invention are preferably between 15 and 50 nucleotides in length, more preferably between 25 and 40 nucleotides in length, e.g., 34, 36, or 38 nucleotides in length (for example see Jarvis et al., 1996, J. Biol. Chem., 271, 29107-29112). Exemplary DNAzymes of the invention are preferably between 15 and 40 nucleotides in length, more preferably between 25 and 35 nucleotides in length, e.g., 29, 30, 31, or 32 nucleotides in length (see for example Santoro et al., 1998, Biochemistry, 37, 13330-13342; Chartrand et al., 1995, Nucleic Acids Research, 23, 4092-4096). Exemplary antisense molecules of the invention are preferably between 15 and 75 nucleotides in length, more preferably between 20 and 35 nucleotides in length, e.g., 25, 26, 27, or 28 nucleotides in length (see for example Woolf et al., 1992, PNAS., 89, 7305-7309; Milner et al., 1997, Nature Biotechnology, 15, 537-541). Exemplary triplex forming oligonucleotide molecules of the invention are preferably between 10 and 40 nucleotides in length, more preferably between 12 and 25 nucleotides in length, e.g., 18, 19, 20, or 21 nucleotides in length (see for example Maher et al., 1990, Biochemistiy, 29, 8820-8826; Strobel and Dervan, 1990, Science, 249, 73-75). Those skilled in the art will recognize that all that is required is for the nucleic acid molecule are of length and conformation sufficient and suitable for the nucleic acid molecule to catalyze a reaction contemplated herein. The length of the nucleic acid molecules of the instant invention are not limiting within the general limits stated.
[0036] Preferably, a nucleic acid molecule that down regulates the replication of Chk1 comprises between 12 and 100 bases complementary to a RNA molecule of Chk1. Even more preferably, a nucleic acid molecule that down regulates the replication of Chk1 comprises between 14 and 24 bases complementary to a RNA molecule of Chk1.
[0037] In a preferred embodiment, the invention provides a method for producing a class of nucleic acid-based gene inhibiting agents which exhibit a high degree of specificity for the RNA of a desired target. For example, the enzymatic nucleic acid molecule is preferably targeted to a highly conserved sequence region of target RNAs encoding kinases which phosphorylate Cdc25 S216, such as Chk1 proteins (specifically Chk1 gene) such that specific treatment of a disease or condition can be provided with either one or several nucleic acid molecules of the invention. Such nucleic acid molecules can be delivered exogenously to specific tissue or cellular targets as required. Alternatively, the nucleic acid molecules (e.g., ribozymes and antisense) can be expressed from DNA and/or RNA vectors that are delivered to specific cells.
[0038] In a preferred embodiment, the invention features the use of nucleic acid-based inhibitors of the invention to specifically target genes that share homology with the Chk1 gene.
[0039] As used in herein “cell” is used in its usual biological sense, and does not refer to an entire multicellular organism, e.g., specifically does not refer to a human. The cell may be present in an organism which may be a human but is preferably a non-human multicellular organism, e.g., birds, plants and mammals such as cows, sheep, apes, monkeys, swine, dogs, and cats. The cell may be prokaryotic (e.g., bacterial cell) or eukaryotic (e.g., mammalian or plant cell).
[0040] By “Chk1 proteins” is meant, a protein or a mutant protein derivative thereof, comprising phosphorylation activity, preferably to serine residue (S216), or its equivalent, in Cdc25 phosphatase.
[0041] By “highly conserved sequence region” is meant, a nucleotide sequence of one or more regions in a target gene does not vary significantly from one generation to the other or from one biological system to the other.
[0042] The nucleic acid-based inhibitors of Chk1 expression are useful for the prevention and/or treatment of diseases and conditions such as cancer, including cancer of the colon, rectum, lung, breast, prostate and any other diseases or conditions that are related to or will respond to the levels of Chk1 in a cell or tissue, alone or in combination with other therapies. In addition, Chk1 inhibition may be used as a therapeutic target for abrogating the G2 DNA damage checkpoint arrest; a situation that may selectively sensitize p53-deficient tumor cells to radiation or chemotherapy treatment.
[0043] By “related” is meant that the reduction of Chk1 expression (specifically Chk1 gene) RNA levels and thus reduction in the level of the respective protein will relieve, to some extent, the symptoms of the disease or condition.
[0044] The nucleic acid-based inhibitors of the invention are added directly, or can be complexed with cationic lipids, packaged within liposomes, or otherwise delivered to target cells or tissues. The nucleic acid or nucleic acid complexes can be locally administered to relevant tissues ex vivo, or in vivo through injection, infusion pump or stent, with or without their incorporation in biopolymers. In preferred embodiments, the enzymatic nucleic acid inhibitors comprise sequences, which are complementary to the substrate sequences in Tables III to VIII. Examples of such enzymatic nucleic acid molecules also are shown in Tables III to VIII. Examples of such enzymatic nucleic acid molecules consist essentially of sequences defined in these Tables.
[0045] In yet another embodiment, the invention features antisense nucleic acid molecules and 2-5A chimera including sequences complementary to the substrate sequences shown in Tables III to IX. Such nucleic acid molecules can include sequences as shown for the binding arms of the enzymatic nucleic acid molecules in Tables III to VIII and sequences shown as GeneBloc™ sequences in Table IX. Similarly, triplex molecules can be provided targeted to the corresponding DNA target regions, and containing the DNA equivalent of a target sequence or a sequence complementary to the specified target (substrate) sequence. Typically, antisense molecules will be complementary to a target sequence along a single contiguous sequence of the antisense molecule. However, in certain embodiments, an antisense molecule may bind to substrate such that the substrate molecule forms a loop, and/or an antisense molecule may bind such that the antisense molecule forms a loop. Thus, the antisense molecule may be complementary to two (or even more) non-contiguous substrate sequences or two (or even more) non-contiguous sequence portions of an antisense molecule may be complementary to a target sequence or both.
[0046] By “consists essentially of” is meant that the active nucleic acid molecule of the invention, for example an enzymatic nucleic acid molecule, contains an enzymatic center or core equivalent to those in the examples, and binding arms able to bind RNA such that cleavage at the target site occurs. Other sequences may be present which do not interfere with such cleavage. Thus, a core region may, for example, include one or more loop, stem-loop structure or linker, which does not prevent enzymatic activity. Thus, the underlined regions in the sequences in Tables III and IV can be such a loop, stem-loop, nucleotide linker, and/or non-nucleotide linker and can be represented generally as sequence “X”. For example, a core sequence for a hammerhead enzymatic nucleic acid can comprise a conserved sequence, such as 5′-CUGAUGAG-3′ and 5′-CGAA-3 ′ connected by a sequence X, where is 5′-GCCGUUAGGC-3′ (SEQ ID NO 3173) or any other stem II region known in the art or a nucleotide and/or non-nucleotide linker. Similarly, for other nucleic acid molecules of the instant invention, such as Inozyme, G-cleaver, amberzyme, zinzyme, DNAzyme, antisense, 2-5A antisense, triplex forming nucleic acid, and decoy nucleic acids, other sequences or non-nucleotide linkers may be present that do not interfere with the function of the nucleic acid molecule.
[0047] Sequence X may be a linker of ≧2 nucleotides in length, preferably 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 26, 30, where the nucleotides may preferably be internally base-paired to form a stem of preferably ≧2 base pairs. Alternatively or in addition, sequence X may be a non-nucleotide linker. In yet another embodiment, the nucleotide linker X can be a nucleic acid aptamer, such as an ATP aptamer, HIV Rev aptamer (RRE), HIV Tat aptamer (TAR) and others (for a review see Gold et al., 1995, Annu. Rev. Biochem., 64, 763; and Szostak & Ellington, 1993, in The RNA World, ed. Gesteland and Atkins, pp. 511, CSH Laboratory Press). A “nucleic acid aptamer” as used herein is meant to indicate a nucleic acid sequence capable of interacting with a ligand. The ligand can be any natural or a synthetic molecule, including but not limited to a resin, metabolites, nucleosides, nucleotides, drugs, toxins, transition state analogs, peptides, lipids, proteins, amino acids, nucleic acid molecules, hormones, carbohydrates, receptors, cells, viruses, bacteria and others.
[0048] In yet another embodiment, the non-nucleotide linker X is as defined herein. The term “non-nucleotide” as used herein include either abasic nucleotide, polyether, polyamine, polyamide, peptide, carbohydrate, lipid, or polyhydrocarbon compounds. Specific examples include those described by Seela and Kaiser, Nucleic Acids Res. 1990, 18:6353 and Nucleic Acids Res. 1987, 15:3113; Cload and Schepartz, J. Am. Chem. Soc. 1991, 113:6324; Richardson and Schepartz, J. Am. Chem. Soc. 1991, 113:5109; Ma et al., Nucleic Acids Res. 1993, 21:2585 and Biochemistry 1993, 32:1751; Durand et al., Nucleic Acids Res. 1990, 18:6353; McCurdy et al., Nucleosides & Nucleotides 1991, 10:287; Jschke et al., Tetrahedron Lett. 1993, 34:301; Ono et al., Biochemistry 1991, 30:9914; Arnold et al., International Publication No. WO 89/02439; Usman et al., International Publication No. WO 95/06731; Dudycz et al., International Publication No. WO 95/11910 and Ferentz and Verdine, J. Am. Chem. Soc. 1991, 113:4000, all hereby incorporated by reference herein. A “non-nucleotide” further means any group or compound which can be incorporated into a nucleic acid chain in the place of one or more nucleotide units, including either sugar and/or phosphate substitutions, and allows the remaining bases to exhibit their enzymatic activity. The group or compound can be abasic in that it does not contain a commonly recognized nucleotide base, such as adenosine, guanine, cytosine, uracil or thymine. Thus, in a preferred embodiment, the invention features an enzymatic nucleic acid molecule having one or more non-nucleotide moieties, and having enzymatic activity to cleave an RNA or DNA molecule.
[0049] In another aspect of the invention, ribozymes or antisense molecules that cleave target RNA molecules and inhibit Chk1 (specifically Chk1 gene) activity are expressed from transcription units inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Ribozyme or antisense expressing viral vectors could be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the ribozymes or antisense are delivered as described above, and persist in target cells. Alternatively, viral vectors may be used that provide for transient expression of ribozymes or antisense. Such vectors can be repeatedly administered as necessary. Once expressed, the ribozymes or antisense bind to the target RNA and inhibit its function or expression. Delivery of ribozyme or antisense expressing vectors can be systemic, such as by intravenous or intramuscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell.
[0050] By “vectors” is meant any nucleic acid- and/or viral-based technique used to deliver a desired nucleic acid.
[0051] By “patient” is meant an organism, which is a donor or recipient of explanted cells or the cells themselves. “Patient” also refers to an organism to which the nucleic acid molecules of the invention can be administered. Preferably, a patient is a mammal or mammalian cells. More preferably, a patient is a human or human cells.
[0052] By “enhanced enzymatic activity” is meant to include activity measured in cells and/or in vivo where the activity is a reflection of both the catalytic activity and the stability of the nucleic acid molecules of the invention. In this invention, the product of these properties can beincreased in vivo compared to an all RNA enzymatic nucleic acid or all DNA enzyme. In some cases, the activity or stability of the nucleic acid molecule can bedecreased (i.e., less than ten-fold), but the overall activity of the nucleic acid molecule is enhanced, in vivo.
[0053] The nucleic acid molecules of the instant invention, individually, or in combination or in conjunction with other drugs, can be used to treat diseases or conditions discussed above. For example, to treat a disease or condition associated with the levels of Chk1, the patient may be treated, or other appropriate cells may be treated, as is evident to those skilled in the art, individually or in combination with one or more drugs under conditions suitable for the treatment.
[0054] In a further embodiment, the described molecules, such as antisense or ribozymes, can be used in combination with other known treatments to treat conditions or diseases discussed above. For example, the described molecules could be used in combination with one or more known therapeutic agents to treat cancer, including but not limited to cancer of the colon, rectum, lung, breast and prostate.
[0055] In another preferred embodiment, the invention features nucleic acid-based inhibitors (e.g., enzymatic nucleic acid molecules (ribozymes), antisense nucleic acids, 2-5A antisense chimeras, triplex DNA, antisense nucleic acids containing RNA cleaving chemical groups) and methods for their use to down regulate or inhibit the expression of genes (e.g., Chk1) capable of progression and/or maintenance of cancer.
[0056] In another aspect, the invention provides mammalian cells containing one or more nucleic acid molecules and/or expression vectors of this invention. The one or more nucleic acid molecules may independently be targeted to the same or different sites.
[0057] By “comprising” is meant including, but not limited to, whatever follows the word “comprising”. Thus, use of the term “comprising” indicates that the listed elements are required or mandatory, but that other elements are optional and may or may not be present. By “consisting of” is meant including, and limited to, whatever follows the phrase “consisting of”. Thus, the phrase “consisting of” indicates that the listed elements are required or mandatory, and that no other elements may be present.
[0058] Other features and advantages of the invention will be apparent from the following description of the preferred embodiments thereof, and from the claims.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0059] First the drawings will be described briefly.
DRAWINGS
[0060]
FIG. 1 shows the secondary structure model for seven different classes of enzymatic nucleic acid molecules. Arrow indicates the site of cleavage. -------- indicate the target sequence. Lines interspersed with dots are meant to indicate tertiary interactions. - is meant to indicate base-paired interaction. Group I Intron: P1-P9.0 represent various stem-loop structures (Cech et al., 1994, Nature Struc. Bio., 1, 273). RNase P (MIRNA): EGS represents external guide sequence (Forster et al., 1990, Science, 249, 783; Pace et al., 1990, J. Biol. Chem., 265, 3587). Group II Intron: 5′SS means 5′ splice site; 3′SS means 3′-splice site; IBS means intron binding site; EBS means exon binding site (Pyle et al., 1994, Biochemistry, 33, 2716). VS RNA: I-VI are meant to indicate six stem-loop structures; shaded regions are meant to indicate tertiary interaction (Collins, International PCT Publication No. WO 96/19577). HDV Ribozyme: : I-IV are meant to indicate four stem-loop structures (Been et al., U.S. Pat. No. 5,625,047). Hammerhead Ribozyme: I-III are meant to indicate three stem-loop structures; stems I-III can be of any length and may be symmetrical or asymmetrical (Usman et al., 1996, Curr. Op. Struct. Bio., 1, 527). Hairpin Ribozyme: Helix 1, 4 and 5 can be of any length; Helix 2 is between 3 and 8 base-pairs long; Y is a pyrimidine; Helix 2 (H2) is provided with a least 4 base pairs (i.e., n is 1, 2, 3 or 4) and helix 5 can be optionally provided of length 2 or more bases (preferably 3 -20 bases, i.e., m is from 1-20 or more). Helix 2 and helix 5 may be covalently linked by one or more bases (i.e., r is ≧1 base). Helix 1, 4 or 5 may also be extended by 2 or more base pairs (e.g., 4-20 base pairs) to stabilize the ribozyme structure, and preferably is a protein binding site. In each instance, each N and N′ independently is any normal or modified base and each dash represents a potential base-pairing interaction. These nucleotides may be modified at the sugar, base or phosphate. Complete base-pairing is not required in the helices, but is preferred. Helix 1 and 4 can be of any size (i.e., o and p is each independently from 0 to any number, e.g., 20) as long as some base-pairing is maintained. Essential bases are shown as specific bases in the structure, but those in the art will recognize that one or more may be modified chemically (abasic, base, sugar and/or phosphate modifications) or replaced with another base without significant effect. Helix 4 can be formed from two separate molecules, i.e., without a connecting loop. The connecting loop when present may be a ribonucleotide with or without modifications to its base, sugar or phosphate. “q”≧ is 2 bases. The connecting loop can also be replaced with a non-nucleotide linker molecule. H refers to bases A, U, or C. Y refers to pyrimidine bases. “______” refers to a covalent bond. (Burke et al., 1996, Nucleic Acids & MoL Biol., 10, 129; Chowrira etal., U.S. Pat. No. 5,631,359).
[0061]
FIG. 2 shows examples of chemically stabilized ribozyme motifs. HH Rz, represents hammerhead ribozyme motif (Usman et al., 1996, Curr. Op. Struct. Bio., 1, 527); NCH Rz represents the NCH ribozyme motif (Ludwig & Sproat, International PCT Publication No. WO 98/58058); G-Cleaver, represents G-cleaver ribozyme motif (Kore et al., 1998, Nucleic Acids Research 26, 4116-4120). N or n, represent independently a nucleotide which may be same or different and have complementarity to each other; rI, represents ribo-Inosine nucleotide; arrow indicates the site of cleavage within the target. Position 4 of the HH Rz and the NCH Rz is shown as having 2′-C-allyl modification, but those skilled in the art will recognize that this position can be modified with other modifications well known in the art, so long as such modifications do not significantly inhibit the activity of the ribozyme.
[0062]
FIG. 3 shows an example of the Amberzyme ribozyme motif that is chemically stabilized (see, for example, Beigelman et al., International PCT publication No. WO 99/55857, incorporated by reference herein; also referred to as Class I Motif). The Amberzyme motif is a class of enzymatic nucleic molecules that do not require the presence of a ribonucleotide (2′-OH) group for its activity.
[0063]
FIG. 4 shows an example of the Zinzyme A ribozyme motif that is chemically stabilized (Beigelman et al., International PCT publication No. WO 99/55857, incorporated by reference herein; also referred to as Class A or Class II Motif). The Zinzyme motif is a class of enzymatic nucleic molecules that do not require the presence of a ribonucleotide (2′-OH) group for its activity.
[0064]
FIG. 5 shows an example of a DNAzyme motif described by Santoro et al., 1997, PNAS, 94, 4262.
[0065]
FIG. 6 shows a bar graph of a nucleic acid inhibitor (50 to 200 nM GeneBloc™ screen against Chk1 RNA in HeLa cells using 1.25 μg/ml GSV lipid with 24 hour sustained delivery in a 96-well format. Relative amounts of target RNA were measured normalized to actin using real-time PCR monitoring of amplification compared to mismatch nucleic acid and untreated controls. The sequences of GeneBloc™ reagents used in this experiment are shown in Table IX.
[0066]
FIG. 7 shows a bar graph of a lipid optimization study utilizing lead nucleic acid inhibitors (GeneBlocs™) targeting Chk1 RNA in HeLa cells; 96-well plate format, 5000 cells/well, GSV lipid. Six different lipid concentrations are shown in conjunction with two different concentrations of the nucleic acid inhibitors.
[0067]
FIG. 8 shows a bar graph displaying a time-course inhibition study of a lead nucleic acid inhibitor (GeneBloc™) targeting Chk1 RNA compared to a scrambled nucleic acid control, both at 5 and 100 nM concentrations; 96-well plate format, 5000 cells/well, 1.0 μg/ml GSV lipid.
[0068]
FIG. 9 shows a bar graph representing inhibition of Chk1 RNA via primary lead (GeneBloc™) inhibition as described in FIG. 6, however utilizing a 6-well plate format with a cell density of 150,000 cells per well.
[0069]
FIG. 10 shows a bar graph representing inhibition of Chk1 RNA via primary lead (GeneBloc™) inhibition in conjunction with +/− etoposide and nocodazole treatment; 50 nM GeneBloc™, 1.25 μg/ml GSV lipid, HeLa cells, 6-well plate format, 100,000 cells/well.
[0070]
FIG. 11 shows a bar graph of a lipid optimization study utilizing a lead nucleic acid inhibitor (GeneBloc™) targeting Chk1 RNA in DLD-1 cells; 96-well plate format, 15,000 cells/well, GSV lipid. Four different lipid concentrations are shown in conjunction with two different concentrations of the nucleic acid inhibitor.
[0071]
FIG. 12 shows a bar graph of a lipid optimization study utilizing a lead nucleic acid inhibitor (GeneBloc™) targeting Chk1 RNA in MCF-7 cells; 96-well plate format, 10,000 cells/well, GSV lipid. Four different lipid concentrations are shown in conjunction with two different concentrations of the nucleic acid inhibitor.
[0072]
FIG. 13 shows a dose curve of primary and secondary nucleic acid inhibitor (GeneBloc™) leads targeting Chk1 RNA in HeLa cells using 1.25 μg/ml GSV lipid, 24 hr time-point, 96-well plate format with a density of 5000 cells/well.
Mechanism of action of Nucleic Acid Molecules of the Invention
[0073] Antisense: Antisense molecules can be modified or unmodified RNA, DNA, or mixed polymer oligonucleotides which primarily function by specifically binding to matching sequences resulting in inhibition of peptide synthesis (Wu-Pong, November 1994, BioPharm, 20-33). The antisense oligonucleotide binds to target RNA by Watson Crick base-pairing and blocks gene expression by preventing ribosomal translation of the bound sequences either by steric blocking or by activating RNase H enzyme. Antisense molecules can also alter protein synthesis by interfering with RNA processing or transport from the nucleus into the cytoplasm (Mukhopadhyay & Roth, 1996, Crit. Rev. in Oncogenesis 7, 151-190).
[0074] In addition, binding of single stranded DNA to RNA may result in nuclease degradation of the heteroduplex (Wu-Pong, supra; Crooke, supra). To date, the only backbone modified DNA chemistry which will act as substrates for RNase H are phosphorothioates, phosphorodithioates, and borontrifluoridates. Recently it has been reported that 2′-arabino and 2′-fluoro arabino-containing oligos can also activate RNase H activity.
[0075] A number of antisense molecules have been described that utilize novel configurations of chemically modified nucleotides, secondary structure, and/or RNase H substrate domains (Woolf et al., International PCT Publication No. WO 98/13526; Thompson et al., International PCT Publication No. WO 99/54459; Hartmann et al., USSN 60/101,174 which was filed on Sep. 21, 1998) all of these are incorporated by reference herein in their entirety.
[0076] In addition, antisense deoxyoligoribonucleotides can be used to target RNA by means of DNA-RNA interactions, thereby activating RNase H, which digests the target RNA in the duplex. Antisense DNA can be expressed via the use of a single stranded DNA intracellular expression vector or equivalents and variations thereof.
[0077] Triplex Forming Olihonucleotides (TFO): Single stranded DNA can be designed to bind to genomic DNA in a sequence specific manner. TFOs are comprised of pyrimidine-rich oligonucleotides which bind DNA helices through Hoogsteen Base-pairing (Wu-Pong, supra). The resulting triple helix composed of the DNA sense, DNA antisense, and TFO disrupts RNA synthesis by RNA polymerase. The TFO mechanism can result in gene expression or cell death since binding may be irreversible (Mukhopadhyay & Roth, supra).
[0078] 2-5A Antisense Chimera: The 2-5A system is an interferon mediated mechanism for RNA degradation found in higher vertebrates (Mitra et al., 1996, Proc Nat Acad Sci USA 93, 6780-6785 ). Two types of enzymes, 2-5A synthetase and RNase L, are required for RNA cleavage. The 2-5A synthetases require double stranded RNA to form 2′-5′ oligoadenylates (2-5A). 2-5 A then acts as an allosteric effector for utilizing RNase L which has the ability to cleave single stranded RNA. The ability to form 2-5A structures with double stranded RNA makes this system particularly useful for inhibition of viral replication.
[0079] (2′-5′) oligoadenylate structures can be covalently linked to antisense molecules to form chimeric oligonucleotides capable of RNA cleavage (Torrence, supra). These molecules putatively bind and activate a 2-5A dependent RNase, the oligonucleotide/enzyme complex then binds to a target RNA molecule which can then be cleaved by the RNase enzyme.
[0080] Enzymatic Nucleic Acid: Seven basic varieties of naturally occurring enzymatic RNAs are presently known. In addition, several in vitro selection (evolution) strategies (Orgel, 1979, Proc. R. Soc. London, B 205, 435) have been used to evolve new nucleic acid catalysts capable of catalyzing cleavage and ligation of phosphodiester linkages (Joyce, 1989, Gene, 82, 83-87; Beaudry et al., 1992, Science 257, 635-641; Joyce, 1992, Scientific American 267, 90-97; Breaker et al., 1994, TIBTECH 12, 268; Bartel et al.,1993, Science 261:1411-1418; Szostak, 1993, TIBS 17, 89-93; Kumar et al., 1995, FASEB J, 9, 1183; Breaker, 1996, Curr. Op. Biotech., 7, 442; Santoro et al., 1997, Proc. Natl. Acad. Sci., 94, 4262; Tang et al., 1997, RNA 3, 914; Nakamaye & Eckstein, 1994, supra; Long & Uhlenbeck, 1994, supra; Ishizaka et al., 1995, supra; Vaish et al., 1997, Biochemistry 36, 6495; all of these are incorporated by reference herein). Each can catalyze a series of reactions including the hydrolysis of phosphodiester bonds in trans (and thus can cleave other RNA molecules) under physiological conditions.
[0081] Nucleic acid molecules of this invention will block to some extent Chk1 protein expression and can be used to treat disease or diagnose disease associated with the levels of Chk1.
[0082] The enzymatic nature of a ribozyme has significant advantages, such as the concentration of ribozyme necessary to affect a therapeutic treatment is lower. This advantage reflects the ability of the ribozyme to act enzymatically. Thus, a single ribozyme molecule is able to cleave many molecules of target RNA. In addition, the ribozyme is a highly specific inhibitor, with the specificity of inhibition depending not only on the base-pairing mechanism of binding to the target RNA, but also on the mechanism of target RNA cleavage. Single mismatches, or base-substitutions, near the site of cleavage can be chosen to completely eliminate catalytic activity of a ribozyme.
[0083] Nucleic acid molecules having an endonuclease enzymatic activity are able to repeatedly cleave other separate RNA molecules in a nucleotide base sequence-specific manner. Such enzymatic nucleic acid molecules can be targeted to virtually any RNA transcript, and achieve efficient cleavage in vitro (Zaug et al., 324, Nature 429 1986 ; Uhlenbeck, 1987 Nature 328, 596; Kim et al., 84 Proc. Natl. Acad. Sci. USA 8788, 1987; Dreyfus, 1988, Einstein Quart. J. Bio. Med., 6, 92; Haseloff and Gerlach, 334 Nature 585, 1988; Cech, 260 JAMA 3030, 1988; and Jefferies et al., 17 Nucleic Acids Research 1371, 1989; Santoro et al., 1997 supra).
[0084] Because of their sequence specificity, trans-cleaving ribozymes can be used as therapeutic agents for human disease (Usman & McSwiggen, 1995 Ann. Rep. Med. Chem. 30, 285-294; Christoffersen and Marr, 1995 J. Med. Chem. 38, 2023-2037). Ribozymes can be designed to cleave specific RNA targets within the background of cellular RNA. Such a cleavage event renders the RNA non-functional and abrogates protein expression from that RNA. In this manner, synthesis of a protein associated with a disease state can be selectively inhibited (Warashina et al., 1999, Chemistry and Biology, 6, 237-250).
[0085] The nucleic acid molecules of the instant invention are also referred to as GeneBloc™ reagents, which are essentially nucleic acid molecules (e.g.; ribozymes, antisense) capable of down-regulating gene expression.
[0086] GeneBlocs are modified oligonucleotides including ribozymes and modified antisense oligonucleotides that bind to and target specific mRNA molecules. Because GeneBlocs can be designed to target any specific mRNA, their potential applications are quite broad. Traditional antisense approaches have often relied heavily on the use of phosphorothioate modifications to enhance stability in biological samples, leading to a myriad of specificity problems stemming from non-specific protein binding and general cytotoxicity (Stein, 1995, Nature Medicine, 1, 1119). In contrast, GeneBlocs contain a number of modifications that confer nuclease resistance while making minimal use of phosphorothioate linkages, which reduces toxicity, increases binding affinity and minimizes non-specific effects compared with traditional antisense oligonucleotides. Similar reagents have recently been utilized successfully in various cell culture systems (Vassar, et al., 1999, Science, 286, 735) and in vivo (Jarvis et al., manuscript in preparation). In addition, novel cationic lipids can be utilized to enhance cellular uptake in the presence of serum. Since ribozymes and antisense oligonucleotides regulate gene expression at the RNA level, the ability to maintain a steady-state dose of GeneBloc over several days was important for target protein and phenotypic analysis. The advances in resistance to nuclease degradation and prolonged activity in vitro have supported the use of GeneBlocs in target validation applications.
Target sites
[0087] Targets for useful ribozymes and antisense nucleic acids can be determined as disclosed in Draper et al., WO 93/23569; Sullivan et al., WO 93/23057; Thompson et al., WO 94/02595; Draper et al., WO 95/04818; McSwiggen et al., U.S. Pat. No. 5,525,468. All of these publications are hereby incorporated by reference herein in their totality. Other examples include the following PCT applications, which concern inactivation of expression of disease-related genes: WO 95/23225, WO 95/13380, WO 94/02595, all of which are incorporated by reference herein. Rather than repeat the guidance provided in those documents here, specific examples of such methods are provided herein, not limiting to those in the art. Ribozymes and antisense to such targets are designed as described in those applications and synthesized to be tested in vitro and in vivo, as also described. The sequences of human Chk1 RNAs were screened for optimal enzymatic nucleic acid and antisense target sites using a computer-folding algorithm. Antisense, hammerhead, DNAzyme, NCH, amberzyme, zinzyme, or G-Cleaver ribozyme binding/cleavage sites were identified. These sites are shown in Tables III to VIII (all sequences are 5′ to 3′ in the tables; underlined regions can be any sequence or linker X, the actual sequence is not relevant here). The nucleotide base position is noted in the Tables as that site to be cleaved by the designated type of enzymatic nucleic acid molecule. While human sequences can be screened and enzymatic nucleic acid molecule and/or antisense thereafter designed, as discussed in Stinchcomb et al., WO 95/23225, mouse targeted ribozymes may be useful to test efficacy of action of the enzymatic nucleic acid molecule and/or antisense prior to testing in humans.
[0088] Antisense, hammerhead, DNAzyme, NCH, amberzyme, zinzyme or G-Cleaver ribozyme binding/cleavage sites were identified. The nucleic acid molecules are individually analyzed by computer folding (Jaeger et al., 1989 Proc. Natl. Acad. Sci. USA, 86, 7706) to assess whether the sequences fold into the appropriate secondary structure. Those nucleic acid molecules with unfavorable intramolecular interactions such as between the binding arms and the catalytic core are eliminated from consideration. Varying binding arm lengths can be chosen to optimize activity.
[0089] Antisense, hammerhead, DNAzyme, NCH, amberzyme, zinzyme or G-Cleaver ribozyme binding/cleavage sites were identified and were designed to anneal to various sites in the RNA target. The binding arms are complementary to the target site sequences described above. The nucleic acid molecules were chemically synthesized. The method of synthesis used follows the procedure for normal DNA/RNA synthesis as described below and in Usman et al., 1987 J. Am. Chem. Soc., 109, 7845; Scaringe et al., 1990 Nucleic Acids Res., 18, 5433; Wincott et al., 1995 Nucleic Acids Res. 23, 2677-2684; and Caruthers et al., 1992, Methods in Enzymology 211,3-19.
Synthesis of Nucleic acid Molecules
[0090] Synthesis of nucleic acids greater than 100 nucleotides in length is difficult using automated methods, and the therapeutic cost of such molecules is prohibitive. In this invention, small nucleic acid motifs (“small refers to nucleic acid motifs no more than 100 nucleotides in length, preferably no more than 80 nucleotides in length, and most preferably no more than 50 nucleotides in length; e.g., antisense oligonucleotides, hammerhead or the NCH ribozymes) are preferably used for exogenous delivery. The simple structure of these molecules increases the ability of the nucleic acid to invade targeted regions of RNA structure. Exemplary molecules of the instant invention are chemically synthesized, and others can similarly be synthesized.
[0091] Oligonucleotides (e.g.; antisense GeneBlocs™) are synthesized using protocols known in the art as described in Caruthers et al., 1992, Methods in Enzymology 211, 3-19, Thompson et al., International PCT Publication No. WO 99/54459, Wincott et al., 1995, Nucleic Acids Res. 23, 2677-2684, Wincott et al., 1997, Methods Mol. Bio., 74, 59, Brennan et al., 1998, Biotechnol Bioeng., 61, 33-45, and Brennan, U.S. Pat. No. 6,001,311. All of these references are incorporated herein by reference. The synthesis of oligonucleotides makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end, and phosphorarnidites at the 3′-end. In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 μmol scale protocol with a 2.5 min coupling step for 2′-O-methylated nucleotides and a 45 sec coupling step for 2′-deoxy nucleotides. Table II outlines the amounts and the contact times of the reagents used in the synthesis cycle. Alternatively, syntheses at the 0.2 μmol scale can be performed on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, Calif.) with minimal modification to the cycle. A 33-fold excess (60 μL of 0.11 M=6.6 μmol) of 2′-O-methyl phosphoramidite and a 105-fold excess of S-ethyl tetrazole (60 μL of 0.25 M=15 μmol) can be used in each coupling cycle of 2′-O-methyl residues relative to polymer-bound 5′-hydroxyl. A 22-fold excess (40 μL of 0.11 M=4.4 μmol) of deoxy phosphoramidite and a 70-fold excess of S-ethyl tetrazole (40 μL of 0.25 M=10 μmol) can be used in each coupling cycle of deoxy residues relative to polymer-bound 5′-hydroxyl. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by calorimetric quantitation of the trityl fractions, are typically 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include; detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); and oxidation solution is 16.9 mM I2, 49 mM pyridine, 9% water in THF (PERSEPTIVE™). Burdick & Jackson Synthesis Grade acetonitrile is used directly from the reagent bottle. S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-dioxide, 0.05 M in acetonitrile) is used.
[0092] Deprotection of the antisense oligonucleotides is performed as follows: the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aq. methylamine (1 mL) at 65° C. for 10 min. After cooling to −20° C., the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H20/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the oligoribonucleotide, are dried to a white powder.
[0093] The method of synthesis used for normal RNA including certain enzymatic nucleic acid molecules follows the procedure as described in Usman et al., 1987, J. Am. Chem. Soc., 109, 7845; Scaringe et al., 1990, Nucleic Acids Res., 18, 5433; Wincott et al., 1995, Nucleic Acids Res. 23, 2677-2684 and Wincott et al., 1997, Methods Mol. Bio., 74, 59, and makes use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end, and phosphoramidites at the 3′-end. In a non-limiting example, small scale syntheses are conducted on a 394 Applied Biosystems, Inc. synthesizer using a 0.2 μmol scale protocol with a 7.5 min coupling step for alkylsilyl protected nucleotides and a 2.5 min coupling step for 2′-O-methylated nucleotides. Table II outlines the amounts and the contact times of the reagents used in the synthesis cycle. Alternatively, syntheses at the 0.2 μmol scale can be done on a 96-well plate synthesizer, such as the instrument produced by Protogene (Palo Alto, Calif.) with minimal modification to the cycle. A 33-fold excess (60 μL of 0.11 M=6.6 μmol) of 2′-O-methyl phosphoramidite and a 75-fold excess of S-ethyl tetrazole (60 μL of 0.25 M=15 μmol) can be used in each coupling cycle of 2′-O-methyl residues relative to polymer-bound 5′-hydroxyl. A 66-fold excess (120 μL of 0.11 M=13.2 μmol) of alkylsilyl (ribo) protected phosphoramidite and a 150-fold excess of S-ethyl tetrazole (120 μL of 0.25 M=30 μmol) can be used in each coupling cycle of ribo residues relative to polymer-bound 5′-hydroxyl. Average coupling yields on the 394 Applied Biosystems, Inc. synthesizer, determined by colorimetric quantitation of the trityl fractions, are typically 97.5-99%. Other oligonucleotide synthesis reagents for the 394 Applied Biosystems, Inc. synthesizer include; detritylation solution is 3% TCA in methylene chloride (ABI); capping is performed with 16% N-methyl imidazole in THF (ABI) and 10% acetic anhydride/10% 2,6-lutidine in THF (ABI); oxidation solution is 16.9 mM I2, 49 mM pyridine, 9% water in THF (PERSEPTIVE™). Burdick & Jackson Synthesis Grade acetonitrile is used directly from the reagent bottle. S-Ethyltetrazole solution (0.25 M in acetonitrile) is made up from the solid obtained from American International Chemical, Inc. Alternately, for the introduction of phosphorothioate linkages, Beaucage reagent (3H-1,2-Benzodithiol-3-one 1,1-dioxide 0.05 M in acetonitrile) is used.
[0094] Deprotection of the RNA is performed using either a two-pot or one-pot protocol. For the two-pot protocol, the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 40% aq. methylamine (1 mL) at 65° C. for 10 min. After cooling to −20° C., the supernatant is removed from the polymer support. The support is washed three times with 1.0 mL of EtOH:MeCN:H20/3:1:1, vortexed and the supernatant is then added to the first supernatant. The combined supernatants, containing the oligoribonucleotide, are dried to a white powder. The base deprotected oligoribonucleotide is resuspended in anhydrous TEA/HF/NMP solution (300 μL of a solution of 1.5 mL N-methylpyrrolidinone, 750 μL TEA and 1 mL TEA•3HF to provide a 1.4 M HF concentration) and heated to 65° C. After 1.5 h, the oligomer is quenched with 1.5 M NH4HCO3.
[0095] Alternatively, for the one-pot protocol, the polymer-bound trityl-on oligoribonucleotide is transferred to a 4 mL glass screw top vial and suspended in a solution of 33% ethanolic methylamine/DMSO: 1/1 (0.8 mL) at 65° C. for 15 min. The vial is brought to r.t. TEA•3HF (0.1 mL) is added and the vial is heated at 65° C. for 15 min. The sample is cooled at −20° C. and then quenched with 1.5 M NH4HCO3.
[0096] For purification of the trityl-on oligomers, the quenched NH4HCO3 solution is loaded onto a C-18 containing cartridge that had been prewashed with acetonitrile followed by 50 mM TEAA. After washing the loaded cartridge with water, the RNA is detritylated with 0.5% TFA for 13 min. The cartridge is then washed again with water, salt exchanged with 1 M NaCl and washed with water again. The oligonucleotide is then eluted with 30% acetonitrile.
[0097] Inactive hammerhead ribozymes or binding attenuated control (BAC) oligonucleotides) are synthesized by substituting a U for G5 and a U for A14 (numbering from Hertel, K. J., et al., 1992, Nucleic Acids Res., 20, 3252). Similarly, one or more nucleotide substitutions can be introduced in other enzymatic nucleic acid molecules to inactivate the molecule and such molecules can serve as a negative control.
[0098] The average stepwise coupling yields are typically >98% (Wincott et al., 1995 Nucleic Acids Res. 23, 2677-2684). Those of ordinary skill in the art will recognize that the scale of synthesis can be adapted to be larger or smaller than the examples described above including but not limited to 96-well format, all that is important is the ratio of chemicals used in the reaction.
[0099] Alternatively, the nucleic acid molecules of the present invention can be synthesized separately and joined together post-synthetically, for example by ligation (Moore et al., 1992, Science 256, 9923; Draper et al., International PCT publication No. WO 93/23569; Shabarova et al., 1991, Nucleic Acids Research 19, 4247; Bellon et al., 1997, Nucleosides & Nucleotides, 16, 951; Bellon et al., 1997, Bioconjugate Chem. 8, 204).
[0100] The nucleic acid molecules of the present invention are modified extensively to enhance stability by modification with nuclease resistant groups, for example, 2′-amino, 2′-C-allyl, 2′-flouro, 2′-O-methyl, 2′-H (for a review see Usman and Cedergren, 1992, TIBS 17, 34; Usman et al., 1994, Nucleic Acids Symp. Ser. 31, 163). Ribozymes are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; See Wincott et al., supra, the totality of which is hereby incorporated herein by reference) and are re-suspended in water.
[0101] The sequences of the ribozymes and antisense constructs that are chemically synthesized, useful in this study, are shown in Tables III to IX. Those in the art will recognize that these sequences are representative only of many more such sequences where the enzymatic portion of the ribozyme (all but the binding arms) is altered to affect activity. The ribozyme and antisense construct sequences listed in Tables III to IX may be formed of ribonucleotides or other nucleotides or non-nucleotides. Such ribozymes with enzymatic activity are equivalent to the ribozymes described specifically in the Tables.
Optimizing Activity of the nucleic acid molecule of the invention.
[0102] Chemically synthesizing nucleic acid molecules with modifications (base, sugar and/or phosphate) that prevent their degradation by serum ribonucleases can increase their potency (see e.g., Eckstein et at., International Publication No. WO 92/07065; Perrault et al., 1990 Nature 344, 565; Pieken et al., 1991, Science 253, 314; Usman and Cedergren, 1992, Trends in Biochem. Sci. 17, 334; Usman et al., International Publication No. WO 93/15187; Rossi et al., International Publication No. WO 91/03162; Sproat, U.S. Pat. No. 5,334,711; and Burgin et al., supra); all of these describe various chemical modifications that can be made to the base, phosphate and/or sugar moieties of the nucleic acid molecules described herein. All these references are incorporated by reference herein. Modifications which enhance their efficacy in cells, and removal of bases from nucleic acid molecules to shorten oligonucleotide synthesis times and reduce chemical requirements are desired.
[0103] There are several examples in the art describing sugar, base and phosphate modifications that can be introduced into nucleic acid molecules with significant enhancement in their nuclease stability and efficacy. For example, oligonucleotides are modified to enhance stability and/or enhance biological activity by modification with nuclease resistant groups, for example, 2′-amino, 2′-C-allyl, 2′-flouro, 2′-O-methyl, 2′-H, nucleotide base modifications (for a review see Usman and Cedergren, 1992, TIBS. 17, 34; Usman et al., 1994, Nucleic Acids Symp. Ser. 31, 163; Burgin et al., 1996, Biochemistry , 35, 14090). Sugar modifications of nucleic acid molecules have been extensively described in the art (see Eckstein et al., International Publication PCT No. WO 92/07065; Perrault et al. Nature, 1990, 344, 565-568; Pieken et al. Science, 1991, 253, 314-317; Usman and Cedergren, Trends in Biochem. Sci. , 1992, 17, 334-339; Usman et al. International Publication PCT No. WO 93/15187; Sproat, U.S. Pat. No. 5,334,711 and Beigelman et al, 1995, J. Biol. Chem., 270,25702; Beigelman et al., International PCT publication No. WO 97/26270; Beigelman et al., U.S. Pat. No. 5,716,824; Usman et al., U.S. Pat. No. 5,627,053; Woolf et al., International PCT Publication No. WO 98/13526; Thompson et al., USSN 60/082,404 which was filed on Apr. 20, 1998; Karpeisky et al., 1998, Tetrahedron Lett., 39, 1131; Earnshaw and Gait, 1998, Biopolymers (Nucleic acid Sciences), 48, 39-55; Verma and Eckstein, 1998, Annu. Rev. Biochem., 67, 99-134; and Burlina et al., 1997, Bioorg. Med. Chem., 5, 1999-2010; all of the references are hereby incorporated by reference herein in their totalities). Such publications describe general methods and strategies to determine the location of incorporation of sugar, base and/or phosphate modifications and the like into ribozymes without inhibiting catalysis. In view of such teachings, similar modifications can be used as described herein to modify the nucleic acid molecules of the instant invention.
[0104] While chemical modification of oligonucleotide internucleotide linkages with phosphorothioate, phosphorothioate, and/or 5′-methylphosphonate linkages improves stability, too many of these modifications may cause some toxicity. Therefore when designing nucleic acid molecules the amount of these internucleotide linkages should be minimized. The reduction in the concentration of these linkages should lower toxicity resulting in increased efficacy and higher specificity of these molecules.
[0105] Nucleic acid molecules having chemical modifications which maintain or enhance activity are provided. Such nucleic acid is also generally more resistant to nucleases than unmodified nucleic acid. Thus, in a cell and/or in vivo the activity may not be significantly lowered. Therapeutic nucleic acid molecules delivered exogenously must optimally be stable within cells until translation of the target RNA has been inhibited long enough to reduce the levels of the undesirable protein. This period of time varies between hours to days depending upon the disease state. Clearly, nucleic acid molecules must be resistant to nucleases in order to function as effective intracellular therapeutic agents. Improvements in the chemical synthesis of RNA and DNA (Wincott et al., 1995 Nucleic Acids Res. 23, 2677; Caruthers et al., 1992, Methods in Enzymology 211,3-19 (incorporated by reference herein) have expanded the ability to modify nucleic acid molecules by introducing nucleotide modifications to enhance their nuclease stability as described above.
[0106] Use of the nucleic acid-based molecules of the present invention will lead to better treatment of the disease progression by affording the possibility of combination therapies (e.g., multiple antisense or enzymatic nucleic acid molecules targeted to different genes, nucleic acid molecules coupled with known small molecule inhibitors, or intermittent treatment with combinations of molecules (including different motifs) and/or other chemical or biological molecules). The treatment of patients with nucleic acid molecules can also include combinations of different types of nucleic acid molecules.
[0107] Therapeutic nucleic acid molecules (e.g., enzymatic nucleic acid molecules and antisense nucleic acid molecules) delivered exogenously must optimally be stable within cells until translation of the target RNA has been inhibited long enough to reduce the levels of the undesirable protein. This period of time varies between hours to days depending upon the disease state. Clearly, these nucleic acid molecules must be resistant to nucleases in order to function as effective intracellular therapeutic agents. Improvements in the chemical synthesis of nucleic acid molecules described in the instant invention and in the art have expanded the ability to modify nucleic acid molecules by introducing nucleotide modifications to enhance their nuclease stability as described above.
[0108] In yet another preferred embodiment, nucleic acid catalysts having chemical modifications which maintain or enhance enzymatic activity are provided. Such nucleic acid is also generally more resistant to nucleases than unmodified nucleic acid. Thus, in a cell and/or in vivo the activity may not be significantly lowered. As exemplified herein such ribozymes are useful in a cell and/or in vivo even if activity over all is reduced 10 fold (Burgin et al., 1996, Biochemistry, 35, 14090). Such ribozymes herein are said to “maintain” the enzymatic activity of an all RNA ribozyme.
[0109] In another aspect the nucleic acid molecules comprise a 5′ and/or a 3′-cap structure.
[0110] By “cap structure” is meant chemical modifications, which have been incorporated at either terminus of the oligonucleotide (see, for example, Wincott et al., WO 97/26270, incorporated by reference herein). These terminal modifications protect the nucleic acid molecule from exonuclease degradation, and may help in delivery and/or localization within a cell. The cap may be present at the 5′-terminus (5′-cap) or at the 3′-terminus (3′-cap) or may be present on both termini. In non-limiting examples the 5′-cap is selected from the group comprising inverted abasic residue (moiety), 4′,5′-methylene nucleotide; I-(beta-D-erythrofuranosyl) nucleotide, 4′-thio nucleotide, carbocyclic nucleotide; 1,5-anhydrohexitol nucleotide; L-nucleotides; alpha-nucleotides; modified base nucleotide; phosphorodithioate linkage; threo-pentofaranosyl nucleotide; acyclic 3′,4′-seco nucleotide; acyclic 3,4-dihydroxybutyl nucleotide; acyclic 3,5-dihydroxypentyl nucleotide, 3′-3′-inverted nucleotide moiety; 3′-3′-inverted abasic moiety; 3′-2′-inverted nucleotide moiety; 3′-2′-inverted abasic moiety; 1,4-butanediol phosphate; 3′-phosphoramidate; hexylphosphate; aminohexyl phosphate; 3′-phosphate; 3′-phosphorothioate; phosphorodithioate; or bridging or non-bridging methylphosphonate moiety (for more details see Wincott et al., International PCT publication No. WO 97/26270, incorporated by reference herein).
[0111] In yet another preferred embodiment, the 3′-cap is selected from a group comprising, 4′,5′-methylene nucleotide; 1-(beta-D-erythrofuranosyl) nucleotide; 4′-thio nucleotide, carbocyclic nucleotide; 5′-amino-alkyl phosphate; 1,3-diamino-2-propyl phosphate, 3-aminopropyl phosphate; 6-aminohexyl phosphate; 1,2-aminododecyl phosphate; hydroxypropyl phosphate; 1,5-anhydrohexitol nucleotide; L-nucleotide; alpha-nucleotide; modified base nucleotide; phosphorodithioate; threo-pentofuranosyl nucleotide; acyclic 3′,4′-seco nucleotide; 3,4-dihydroxybutyl nucleotide; 3,5-dihydroxypentyl nucleotide, 5′-5′-inverted nucleotide moiety; 5′-5′-inverted abasic moiety; 5′-phosphoramidate; 5′-phosphorothioate; 1,4-butanediol phosphate; 5′-amino; bridging and/or non-bridging 5′-phosphoramidate, phosphorothioate and/or phosphorodithioate, bridging or non bridging methylphosphonate and 5′-mercapto moieties (for more details, see Beaucage and Iyer, 1993, Tetrahedron 49, 1925; incorporated by reference herein).
[0112] By the term “non-nucleotide” is meant any group or compound which can be incorporated into a nucleic acid chain in the place of one or more nucleotide units, including either sugar and/or phosphate substitutions, and allows the remaining bases to exhibit their enzymatic activity. The group or compound is abasic in that it does not contain a commonly recognized nucleotide base, such as adenosine, guanine, cytosine, uracil or thymine.
[0113] An “alkyl” group refers to a saturated aliphatic hydrocarbon, including straight-chain, branched-chain, and cyclic alkyl groups. Preferably, the alkyl group has 1 to 12 carbons. More preferably it is a lower alkyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkyl group may be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO2 or N(CH3)2, amino, or SH. The term also includes alkenyl groups which are unsaturated hydrocarbon groups containing at least one carbon—carbon double bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkenyl group has 1 to 12 carbons. More preferably it is a lower alkenyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkenyl group may be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO2, halogen, N(CH3)2, amino, or SH. The term “alkyl” also includes alkynyl groups which have an unsaturated hydrocarbon group containing at least one carbon—carbon triple bond, including straight-chain, branched-chain, and cyclic groups. Preferably, the alkynyl group has 1 to 12 carbons. More preferably it is a lower alkynyl of from 1 to 7 carbons, more preferably 1 to 4 carbons. The alkynyl group may be substituted or unsubstituted. When substituted the substituted group(s) is preferably, hydroxyl, cyano, alkoxy, ═O, ═S, NO2 or N(CH3)2, amino or SH.
[0114] Such alkyl groups may also include aryl, alkylaryl, carbocyclic aryl, heterocyclic aryl, amide and ester groups. An “aryl” group refers to an aromatic group which has at least one ring having a conjugated π electron system and includes carbocyclic aryl, heterocyclic aryl and biaryl groups, all of which may be optionally substituted. The preferred substituent(s) of aryl groups are halogen, trihalomethyl, hydroxyl, SH, OH, cyano, alkoxy, alkyl, alkenyl, alkynyl, and amino groups. An “alkylaryl” group refers to an alkyl group (as described above) covalently joined to an aryl group (as described above). Carbocyclic aryl groups are groups wherein the ring atoms on the aromatic ring are all carbon atoms. The carbon atoms are optionally substituted. Heterocyclic aryl groups are groups having from 1 to 3 heteroatoms as ring atoms in the aromatic ring and the remainder of the ring atoms are carbon atoms. Suitable heteroatoms include oxygen, sulfur, and nitrogen, and include furanyl, thienyl, pyridyl, pyrrolyl, N-lower alkyl pyrrolo, pyrimidyl, pyrazinyl, imidazolyl and the like, all optionally substituted. An “amide” refers to an —C(O)—NH—R, where R is either alkyl, aryl, alkylaryl or hydrogen. An “ester” refers to an —C(O)—OR′, where R is either alkyl, aryl, alkylaryl or hydrogen.
[0115] By “nucleotide” is meant a heterocyclic nitrogenous base in N-glycosidic linkage with a phosphorylated sugar. Nucleotides are recognized in the art to include natural bases (standard), and modified bases well known in the art. Such bases are generally located at the 1′ position of a nucleotide sugar moiety. Nucleotides generally comprise a base, sugar and a phosphate group. The nucleotides can be unmodified or modified at the sugar, phosphate and/or base moiety, (also referred to interchangeably as nucleotide analogs, modified nucleotides, non-natural nucleotides, non-standard nucleotides and other; see for example, Usman and McSwiggen, supra; Eckstein et al., International PCT Publication No. WO 92/07065; Usman et al., International PCT Publication No. WO 93/15187; Uhlman & Peyman, supra all are hereby incorporated by reference herein). There are several examples of modified nucleic acid bases known in the art as summarized by Limbach et al., 1994, Nucleic Acids Res. 22, 2183. Some of the non-limiting examples of chemically modified and other natural nucleic acid bases that can be introduced into nucleic acids include, inosine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2, 4, 6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (e.g., 5-methylcytidine), 5-alkyluridines (e.g., ribothymidine), 5-halouridine (e.g., 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (e.g. 6-methyluridine), propyne, quesosine, 2-thiouridine, 4-thiouridine, wybutosine, wybutoxosine, 4-acetylcytidine, 5-(carboxyhydroxymethyl)uridine, 5′-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluridine, beta-D-galactosylqueosine, 1-methyladenosine, 1-methylinosine, 2,2-dimethylguanosine, 3-methylcytidine, 2-methyladenosine, 2-methylguanosine, N6-methyladenosine, 7-methylguanosine, 5-methoxyaminomethyl-2-thiouridine, 5-methylaminomethyluridine, 5-methylcarbonylmethyluridine, 5-methyloxyuridine, 5-methyl-2-thiouridine, 2-methylthio-N6-isopentenyladenosine, -D-mannosylqueosine, uridine-5-oxyacetic acid, 2-thiocytidine, threonine derivatives and others (Burgin et al., 1996, Biochemistry, 35, 14090; Uhlman & Peyman, supra). By “modified bases” in this aspect is meant nucleotide bases other than adenine, guanine, cytosine and uracil at 1′ position or their equivalents; such bases may be used at any position, for example, within the catalytic core of an enzymatic nucleic acid molecule and/or in the substrate-binding regions of the nucleic acid molecule.
[0116] By “nucleoside” is meant a heterocyclic nitrogenous base in N-glycosidic linkage with a sugar. Nucleosides are recognized in the art to include natural bases (standard), and modified bases well known in the art. Such bases are generally located at the 1′ position of a nucleoside sugar moiety. Nucleosides generally comprise a base and sugar group. The nucleosides can be unmodified or modified at the sugar, and/or base moiety, (also referred to interchangeably as nucleoside analogs, modified nucleosides, non-natural nucleosides, non-standard nucleosides and other; see for example, Usman and McSwiggen, supra; Eckstein et al., International PCT Publication No. WO 92/07065; Usman et al., International PCT Publication No. WO 93/15187; Uhlman & Peyman, supra all are hereby incorporated by reference herein). There are several examples of modified nucleic acid bases known in the art as summarized by Limbach et al., 1994, Nucleic Acids Res. 22, 2183. Some of the non-limiting examples of chemically modified and other natural nucleic acid bases that can be introduced into nucleic acids include, inosine, purine, pyridin-4-one, pyridin-2-one, phenyl, pseudouracil, 2, 4, 6-trimethoxy benzene, 3-methyl uracil, dihydrouridine, naphthyl, aminophenyl, 5-alkylcytidines (e.g., 5-methylcytidine), 5-alkyluridines (e.g., ribothymidine), 5-halouridine (e.g., 5-bromouridine) or 6-azapyrimidines or 6-alkylpyrimidines (e.g. 6-methyluridine), propyne, quesosine, 2-thiouridine, 4-thiouridine, wybutosine, wybutoxosine, 4-acetylcytidine, 5-(carboxyhydroxymethyl)uridine, 5′-carboxymethylaminomethyl-2 -thiouridine, 5-carboxymethylaminomethyluridine, -D-galactosylqueosine, 1-methyladenosine, 1-methylinosine, 2,2-dimethylguanosine, 3-methylcytidine, 2-methyladenosine, 2-methylguanosine, N6-methyladenosine, 7-methylguanosine, 5-methoxyaminomethyl-2-thiouridine, 5-methylaminomethyluridine, 5-methylcarbonylmethyluridine, 5-methyloxyuridine, 5-methyl-2-thiouridine, 2-methylthio-N6-isopentenyladenosine, beta-D-mannosylqueosine, uridine-5-oxyacetic acid, 2-thiocytidine, threonine derivatives and others (Burgin et al., 1996, Biochemistry, 35, 14090; Uhlman & Peyman, supra). By “modified bases” in this aspect is meant nucleoside bases other than adenine, guanine, cytosine and uracil at 1′ position or their equivalents; such bases may be used at any position, for example, within the catalytic core of an enzymatic nucleic acid molecule and/or in the substrate-binding regions of the nucleic acid molecule.
[0117] In a preferred embodiment, the invention features modified ribozymes with phosphate backbone modifications comprising one or more phosphorothioate, phosphorodithioate, methylphosphonate, morpholino, amidate carbamate, carboxymethyl, acetamidate, polyamide, sulfonate, sulfonamide, sulfamate, formacetal, thioformacetal, and/or alkylsilyl, substitutions. For a review of oligonucleotide backbone modifications see Hunziker and Leumann, 1995, Nucleic Acid Analogues: Synthesis and Properties, in Modern Synthetic Methods, VCH, 331-417, and Mesmaeker et al., 1994, Novel Backbone Replacements for Oligonucleotides, in Carbohydrate Modifications in Antisense Research, ACS, 24-39.
[0118] By “abasic” is meant sugar moieties lacking a base or having other chemical groups in place of a base at the 1′ position, (for more details, see Wincott et al., International PCT publication No. WO 97/26270).
[0119] By “unmodified nucleoside” is meant one of the bases adenine, cytosine, guanine, thymine, uracil joined to the 1′ carbon of beta-D-ribo-furanose.
[0120] By “modified nucleoside” is meant any nucleotide base which contains a modification in the chemical structure of an unmodified nucleotide base, sugar and/or phosphate.
[0121] In connection with 2′-modified nucleotides as described for the present invention, by “amino” is meant 2′-NH2 or 2′—O—NH2, which may be modified or unmodified. Such modified groups are described, for example, in Eckstein et al., U.S. Pat. No. 5,672,695 and Matulic-Adamic et al., WO 98/28317, respectively, which are both incorporated by reference herein in their entireties.
[0122] Various modifications to nucleic acid (e.g., antisense and ribozyme) structure can be made to enhance the utility of these molecules. Such modifications will enhance shelf-life, half-life in vitro, stability, and ease of introduction of such oligonucleotides to the target site, e.g., to enhance penetration of cellular membranes, and confer the ability to recognize and bind to targeted cells.
[0123] Use of these molecules will lead to better treatment of the disease progression by affording the possibility of combination therapies (e.g., multiple ribozymes targeted to different genes, ribozymes coupled with known small molecule inhibitors, or intermittent treatment with combinations of ribozymes (including different ribozyme motifs) and/or other chemical or biological molecules). The treatment of patients with nucleic acid molecules may also include combinations of different types of nucleic acid molecules. Therapies may be devised which include a mixture of ribozymes (including different ribozyme motifs), antisense and/or 2-5A chimera molecules to one or more targets to alleviate symptoms of a disease.
Administration of Nucleic Acid Molecules
[0124] Methods for the delivery of nucleic acid molecules are described in Akhtar et al., 1992, Trends Cell Bio., 2, 139; and Delivery Strategies for Antisense Oligonucleotide Therapeutics, ed. Akhtar, 1995 which are both incorporated herein by reference. Sullivan et al., PCT WO 94/02595, further describes the general methods for delivery of enzymatic RNA molecules. These protocols may be utilized for the delivery of virtually any nucleic acid molecule. Nucleic acid molecules may be administered to cells by a variety of methods known to those familiar to the art, including, but not restricted to, encapsulation in liposomes, by iontophoresis, or by incorporation into other vehicles, such as hydrogels, cyclodextrins, biodegradable nanocapsules, and bioadhesive microspheres. For some indications, nucleic acid molecules may be directly delivered ex vivo to cells or tissues with or without the aforementioned vehicles. Alternatively, the nucleic acid/vehicle combination is locally delivered by direct injection or by use of a catheter, infusion pump or stent. Other routes of delivery include, but are not limited to, intravascular, intramuscular, subcutaneous or joint injection, aerosol inhalation, oral (tablet or pill form), topical, systemic, ocular, intraperitoneal and/or intrathecal delivery. More detailed descriptions of nucleic acid delivery and administration are provided in Sullivan et al., supra, Draper et al., PCT W093/23569, Beigelman et al., PCT W099/05094, and Klimuk et al., PCT W099/04819 all of which have been incorporated by reference herein.
[0125] The molecules of the instant invention can be used as pharmaceutical agents. Pharmaceutical agents prevent, inhibit the occurrence, or treat (alleviate a symptom to some extent, preferably all of the symptoms) of a disease state in a patient.
[0126] The negatively charged polynucleotides of the invention can be administered (e.g., RNA, DNA or protein) and introduced into a patient by any standard means, with or without stabilizers, buffers, and the like, to form a pharmaceutical composition. When it is desired to use a liposome delivery mechanism, standard protocols for formation of liposomes can be followed. The compositions of the present invention may also be formulated and used as tablets, capsules or elixirs for oral administration; suppositories for rectal administration; sterile solutions; suspensions for injectable administration; and other compositions known in the art.
[0127] The present invention also includes pharmaceutically acceptable formulations of the compounds described. These formulations include salts of the above compounds, e.g., acid addition salts, including salts of hydrochloric, hydrobromic, acetic acid, and benzene sulfonic acid.
[0128] A pharmacological composition or formulation refers to a composition or formulation in a form suitable for administration, e.g., systemic administration, into a cell or patient, preferably a human. Suitable forms, in part, depend upon the use or the route of entry, for example oral, transdermal, or by injection. Such forms should not prevent the composition or formulation from reaching a target cell (i.e., a cell to which the negatively charged polymer is desired to be delivered to). For example, pharmacological compositions injected into the blood stream should be soluble. Other factors are known in the art, and include considerations such as toxicity and forms which prevent the composition or formulation from exerting its effect.
[0129] By “systemic administration” is meant in vivo systemic absorption or accumulation of drugs in the blood stream followed by distribution throughout the entire body. Administration routes that lead to systemic absorption include, without limitations: intravenous, subcutaneous, intraperitoneal, inhalation, oral, intrapulmonary and intramuscular. Each of these administration routes exposes the desired negatively charged polymers, e.g., nucleic acids, to an accessible diseased tissue. The rate of entry of a drug into the circulation has been shown to be a function of molecular weight or size. The use of a liposome or other drug carrier comprising the compounds of the instant invention can potentially localize the drug, for example, in certain tissue types, such as the tissues of the reticular endothelial system (RES). A liposome formulation that can facilitate the association of drug with the surface of cells, such as, lymphocytes and macrophages is also useful. This approach may provide enhanced delivery of the drug to target cells by taking advantage of the specificity of macrophage and lymphocyte immune recognition of abnormal cells, such as cancer cells.
[0130] By pharmaceutically acceptable formulation is meant, a composition or formulation that allows for the effective distribution of the nucleic acid molecules of the instant invention in the physical location most suitable for their desired activity. Non-limiting examples of agents suitable for formulation with the nucleic acid molecules of the instant invention include: P-glycoprotein inhibitors (such as Pluronic P85) which can enhance entry of drugs into the CNS (Jolliet-Riant and Tillement, 1999, Fundam. Clin. Pharmacol., 13, 16-26); biodegradable polymers, such as poly (DL-lactide-coglycolide) microspheres for sustained release delivery after intracerebral implantation (Emerich, DF et al, 1999, Cell Transplant, 8, 47-58) Alkermes, Inc. Cambridge, Mass.; and loaded nanoparticles, such as those made of polybutylcyanoacrylate, which can deliver drugs across the blood brain barrier and can alter neuronal uptake mechanisms (Prog Neuropsychopharmacol Biol Psychiatry, 23, 941-949, 1999). Other non-limiting examples of delivery strategies for the nucleic acid molecules of the instant invention include material described in Boado et al., 1998, J. Pharm. Sci., 87, 1308-1315; Tyler et al., 1999, FEBS Lett., 421, 280-284; Pardridge et al., 1995, PNAS USA., 92, 5592-5596; Boado, 1995, Adv. Drug Delivery Rev., 15, 73-107; Aldrian-Herrada et al., 1998, Nucleic Acids Res., 26, 4910-4916; and Tyler et al., 1999, PNAS USA., 96, 7053-7058.
[0131] The invention also features the use of the composition comprising surface-modified liposomes containing poly (ethylene glycol) lipids (PEG-modified, or long-circulating liposomes or stealth liposomes). These formulations offer a method for increasing the accumulation of drugs in target tissues. This class of drug carriers resists opsonization and elimination by the mononuclear phagocytic system (MPS or RES), thereby enabling longer blood circulation times and enhanced tissue exposure for the encapsulated drug (Lasic et al. Chem. Rev. 1995, 95, 2601-2627; Ishiwata et al., Chem. Pharm. Bull. 1995, 43, 1005-1011). All incorporated by reference herein. Such liposomes have been shown to accumulate selectively in tumors, presumably by extravasation and capture in the neovascularized target tissues (Lasic et al., Science 1995, 267, 1275-1276; Oku et al.,1995, Biochim. Biophys. Acta, 1238, 86-90). All incorporated by reference herein. The long-circulating liposomes enhance the pharmacokinetics and pharmacodynamics of DNA and RNA, particularly compared to conventional cationic liposomes which are known to accumulate in tissues of the MPS (Liu et al., J. Biol. Chem. 1995, 42, 24864-24870; Choi et al., International PCT Publication No. WO 96/10391; Ansell et al., International PCT Publication No. WO 96/10390; Holland et al., International PCT Publication No. WO 96/10392; all of which are incorporated by reference herein). Long-circulating liposomes are also likely to protect drugs from nuclease degradation to a greater extent compared to cationic liposomes, based on their ability to avoid accumulation in metabolically aggressive MPS tissues such as the liver and spleen.
[0132] The present invention also includes compositions prepared for storage or administration which include a pharmaceutically effective amount of the desired compounds in a pharmaceutically acceptable carrier or diluent. Acceptable carriers or diluents for therapeutic use are well known in the pharmaceutical art, and are described, for example, in Remington's Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro edit. 1985) hereby incorporated by reference herein. For example, preservatives, stabilizers, dyes and flavoring agents may be provided. These include sodium benzoate, sorbic acid and esters of p-hydroxybenzoic acid. In addition, antioxidants and suspending agents may be used.
[0133] A pharmaceutically effective dose is that dose required to prevent, inhibit the occurrence, or treat (alleviate a symptom to some extent, preferably all of the symptoms) of a disease state. The pharmaceutically effective dose depends on the type of disease, the composition used, the route of administration, the type of mammal being treated, the physical characteristics of the specific mammal under consideration, concurrent medication, and other factors which those skilled in the medical arts will recognize. Generally, an amount between 0.1 mg/kg and 100 mg/kg body weight/day of active ingredients is administered dependent upon potency of the negatively charged polymer.
[0134] The nucleic acid molecules of the present invention may also be administered to a patient in combination with other therapeutic compounds to increase the overall therapeutic effect. The use of multiple compounds to treat an indication may increase the beneficial effects while reducing the presence of side effects.
[0135] Alternatively, certain of the nucleic acid molecules of the instant invention can be expressed within cells from eukaryotic promoters (e.g., Izant and Weintraub, 1985, Science, 229, 345; McGarry and Lindquist, 1986, Proc. Natl. Acad. Sci., USA 83, 399; Scanlon et al., 1991, Proc. Natl. Acad. Sci. USA, 88, 10591-5; Kashani-Sabet et al., 1992, Antisense Res. Dev., 2, 3-15; Dropulic et al., 1992, J. Virol, 66, 1432-41; Weerasinghe et al., 1991, J. Virol., 65, 5531-4; Ojwang et al., 1992, Proc. Natl. Acad. Sci. USA, 89, 10802-6; Chen et al., 1992, Nucleic Acids Res., 20, 4581-9; Sarver et al., 1990 Science, 247, 1222-1225; Thompson et al., 1995, Nucleic Acids Res., 23, 2259; Good et al., 1997, Gene Therapy, 4, 45; all of the references are hereby incorporated in their totality by reference herein). Those skilled in the art realize that any nucleic acid can be expressed in eukaryotic cells from the appropriate DNA/RNA vector. The activity of such nucleic acids can be augmented by their release from the primary transcript by a ribozyme (Draper et al., PCT WO 93/23569, and Sullivan et al., PCT WO 94/02595; Ohkawa et al., 1992, Nucleic Acids Symp. Ser., 27, 15-6; Taira et al., 1991, Nucleic Acids Res., 19, 5125-30; Ventura et al., 1993, Nucleic Acids Res., 21, 3249-55; Chowrira et al., 1994, J. Biol. Chem., 269, 25856; all of these references are hereby incorporated in their totalities by reference herein).
[0136] In another aspect of the invention, RNA molecules of the present invention are preferably expressed from transcription units (see, for example, Couture et al., 1996, TIG., 12, 510) inserted into DNA or RNA vectors. The recombinant vectors are preferably DNA plasmids or viral vectors. Ribozyme expressing viral vectors could be constructed based on, but not limited to, adeno-associated virus, retrovirus, adenovirus, or alphavirus. Preferably, the recombinant vectors capable of expressing the nucleic acid molecules are delivered as described above, and persist in target cells. Alternatively, viral vectors may be used that provide for transient expression of nucleic acid molecules. Such vectors might be repeatedly administered as necessary. Once expressed, the nucleic acid molecule binds to the target MRNA. Delivery of nucleic acid molecule expressing vectors could be systemic, such as by intravenous or intra-muscular administration, by administration to target cells ex-planted from the patient followed by reintroduction into the patient, or by any other means that would allow for introduction into the desired target cell (for a review, see Couture et al., 1996, TIG., 12, 510).
[0137] In one aspect, the invention features an expression vector comprising a nucleic acid sequence encoding at least one of the nucleic acid molecules disclosed in the instant invention. The nucleic acid sequence encoding the nucleic acid molecule of the instant invention is operable linked in a manner which allows expression of that nucleic acid molecule.
[0138] In another aspect, the invention features an expression vector comprising: a) a transcription initiation region (e.g., eukaryotic pol I,II or III initiation region); b) a transcription termination region (e.g., eukaryotic pol I,II or III termination region); c) a nucleic acid sequence encoding at least one of the nucleic acid catalyst of the instant invention; and wherein said sequence is operably linked to said initiation region and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule. The vector may optionally include an open reading frame (ORF) for a protein operably linked on the 5′ side or the 3′-side of the sequence encoding the nucleic acid catalyst of the invention; and/or an intron (intervening sequences).
[0139] Transcription of the nucleic acid molecule sequences are driven from a promoter for eukaryotic RNA polymerase I (pol I), RNA polymerase II (pol II), or RNA polymerase III (pol III). Transcripts from pol II or pol III promoters will be expressed at high levels in all cells; the levels of a given pol II promoter in a given cell type will depend on the nature of the gene regulatory sequences (enhancers, silencers, etc.) present nearby. Prokaryotic RNA polymerase promoters are also used, providing that the prokaryotic RNA polymerase enzyme is expressed in the appropriate cells (Elroy-Stein and Moss, 1990, Proc. Natl. Acad. Sci. U S A, 87, 6743-7; Gao and Huang 1993, Nucleic Acids Res.., 21, 2867-72; Lieber et al., 1993, Methods Enzymol., 217, 47-66; Zhou et al., 1990, Mol. Cell. Biol., 10, 4529-37). All of these references are incorporated by reference herein.
[0140] Several investigators have demonstrated that nucleic acid molecules, such as ribozymes expressed from such promoters can function in mammalian cells (e.g. Kashani-Sabet et al., 1992, Antisense Res. Dev., 2, 3-15; Ojwang et al., 1992, Proc. Natl. Acad. Sci. U S A, 89, 10802-6; Chen et al., 1992, Nucleic Acids Res., 20, 4581-9; Yu et al., 1993, Proc. Natl. Acad. Sci. U S A, 90, 6340-4; L'Huillier et al., 1992, EMBO J., 11, 4411-8; Lisziewicz et al., 1993, Proc. Natl. Acad. Sci. U. S. A, 90, 8000-4; Thompson et al., 1995, Nucleic Acids Res., 23, 2259; and Sullenger & Cech, 1993, Science, 262, 1566). More specifically, transcription units such as the ones derived from genes encoding U6 small nuclear (snRNA), transfer RNA (tRNA) and adenovirus VA RNA are useful in generating high concentrations of desired RNA molecules such as ribozymes in cells (Thompson et al., supra; Couture and Stinchcomb, 1996, supra; Noonberg et al., 1994, Nucleic Acid Res., 22, 2830; Noonberg et al., U.S. Pat. No. 5,624,803; Good et al., 1997, Gene Ther., 4, 45; and Beigelman et al., International PCT Publication No. WO 96/18736; all of these publications are incorporated by reference herein. The above ribozyme transcription units can be incorporated into a variety of vectors for introduction into mammalian cells, including but not restricted to, plasmid DNA vectors, viral DNA vectors (such as adenovirus or adeno-associated virus vectors), or viral RNA vectors (such as retroviral or alphavirus vectors) (for a review, see Couture and Stinchcomb, 1996, supra).
[0141] In yet another aspect, the invention features an expression vector comprising a nucleic acid sequence encoding at least one of the nucleic acid molecules of the invention, in a manner which allows expression of that nucleic acid molecule. The expression vector comprises in one embodiment; a) a transcription initiation region; b) a transcription termination region; c) a nucleic acid sequence encoding at least one said nucleic acid molecule; and wherein said sequence is operably linked to said initiation region and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.
[0142] In another preferred embodiment, the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an open reading frame; d) a nucleic acid sequence encoding at least one said nucleic acid molecule, wherein said sequence is operably linked to the 3′-end of said open reading frame; and wherein said sequence is operably linked to said initiation region, said open reading frame and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.
[0143] In yet another embodiment the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an intron; d) a nucleic acid sequence encoding at least one said nucleic acid molecule; and wherein said sequence is operably linked to said initiation region, said intron and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.
[0144] In another embodiment, the expression vector comprises: a) a transcription initiation region; b) a transcription termination region; c) an intron; d) an open reading frame; e) a nucleic acid sequence encoding at least one said nucleic acid molecule, wherein said sequence is operably linked to the 3′-end of said open reading frame; and wherein said sequence is operably linked to said initiation region, said intron, said open reading frame and said termination region, in a manner which allows expression and/or delivery of said nucleic acid molecule.
EXAMPLES
[0145] The following are non-limiting examples showing the selection, isolation, synthesis and activity of nucleic acids of the instant invention.
[0146] The following examples demonstrate the selection and design of Antisense, hammerhead, DNAzyme, NCH, Amberzyme, Zinzyme, or G-Cleaver ribozyme molecules and binding/cleavage sites within Chk1 RNA.
Nucleic acid inhibition of Chk1 target RNA
[0147] Control of the cell cycle is one of the most highly orchestrated events in the cell. There is a great deal of interest in discovering the function of genes involved in mitotic checkpoint abrogation, since inhibition of these genes or activities of these gene products could sensitize cells to DNA damaging agents. In these studies, the cell cycle regulatory role of Chk1 (GeneBank Accession #AF016582 is investigated).
[0148] In the fission yeast Schizosaccharomyces pombe, DNA damage by gamma irradiation or a chemical agent such as etoposide leads to activation of Cbk1 by phosphorylation. Chk1, also known as p56chk1, is a Wee 1-like protein kinase, which phosphorylates and inactivates Cdc25. Cdc25 is a phosphatase that acts directly on Cdc2. Chk1 is required for the DNA damage checkpoint, whereas the rad gene products are required for both S—M and DNA damage checkpoints. Wee 1 is also phosphorylated by Chk1 in vitro, also suggesting that Wee 1 is regulated by Chk1 in vivo and the resulting G2 delay is the result of maintaining Y15 phosphorylation on Cdc2. In normal mammalian cells, DNA damage would lead to arrest at G1/S arrest via the p53 pathway, or G2/M arrest via the Cdc2/CyclinB pathway. Thus, p53- cells can remain viable following DNA damage because of the Cdc2/CyclinB arrest pathway. If the Cdc2/CyclinB mediated checkpoint is abrogated via inhibition of Wee1 and Myt1 by small molecule inhibitors in a p53- cell type, then viability is compromised. Chk1 has recently been cloned from mammalian cells. The Chk1 protein is modified in response to DNA damage, and has been shown to bind and phosphorylate Cdc25A, Cdc25B and Cdc25C. The phosphorylation of Cdc25C prevents activation of the Cdc2/CyclinB complex and blocks entry into mitosis, thereby validating the inhibition of Chk1 as a target for nucleic acid based therapeutics.
[0149] To address whether checkpoint kinases function redundantly during DNA replication and/or DNA damage checkpoint responses, applicant undertook an oligonucleotide-based approach to block Chk1 gene function in a human cell line. HeLa cells lacking Chk1 protein failed to maintain a G2 cell cycle arrest after etoposide or gamma radiation-induced DNA damaging treatments. Additionally, Chk1-defeicient cells failed to respond to the DNA replication inhibitor hydroxyurea. Based on these results, applicant concludes that the Chk1 kinase plays an essential role in both the DNA replication and DNA damage checkpoint responses. These results also suggest the neither Chk2 nor C-TAK1 kinases function in these checkpoint responses to a significant level, at least in HeLa cells. Thus, Chk1 is validated as an attractive therapeutic target for abrogating the G2 DNA damage checkpoint arrest; a situation that may selectively sensitize p53-deficient tumor cells to radiation or chemotherapy treatment.
Identification of Potential Target Sites in Human Chk1 RNA
[0150] The sequence of human Chk1 is screened for accessible sites using a computer-folding algorithm. Regions of the RNA are identified that do not form secondary folding structures. These regions contain potential ribozyme and/or antisense binding/cleavage sites. The sequences of these binding/cleavage sites are shown in Tables III-IX.
Selection of Enzymatic Nucleic Acid Cleavage Sites in Human Chk1 RNA
[0151] Ribozyme target sites are chosen by analyzing sequences of Human Chk1 (Genbank accession number: AF016582) and prioritizing the sites on the basis of folding. Ribozymes are designed that could bind each target and are individually analyzed by computer folding (Christoffersen et al., 1994 J. Mol. Struc. Theochem, 311, 273; Jaeger et al., 1989, Proc. Natl. Acad. Sci. USA, 86, 7706) to assess whether the ribozyme sequences fold into the appropriate secondary structure. Those ribozymes with unfavorable intramolecular interactions between the binding arms and the catalytic core are eliminated from consideration. As noted below, varying binding arm lengths can be chosen to optimize activity. Generally, at least 5 bases on each arm are able to bind to, or otherwise interact with, the target RNA.
Chemical Synthesis and Purification of Ribozymes and Antisense for Efficient Cleavage and/or blocking of Chk1 RNA
[0152] Ribozymes and antisense constructs are designed to anneal to various sites in the RNA message. The binding arms of the ribozymes are complementary to the target site sequences described above, while the antisense constructs are fully complimentary to the target site sequences described above. The ribozymes and antisense constructs were chemically synthesized. The method of synthesis used followed the procedure for normal RNA synthesis as described above and in Usman et al., (1987 J. Am. Chem. Soc., 109, 7845), Scaringe et al., (1990 Nucleic Acids Res., 18, 5433) and Wincott et al., supra, and made use of common nucleic acid protecting and coupling groups, such as dimethoxytrityl at the 5′-end, and phosphoramidites at the 3′-end. The average stepwise coupling yields were typically >98%.
[0153] Ribozymes and antisense constructs are also synthesized from DNA templates using bacteriophage T7 RNA polymerase (Milligan and Uhlenbeck, 1989, Methods Enzymol. 180, 51). Ribozymes and antisense constructs are purified by gel electrophoresis using general methods or are purified by high pressure liquid chromatography (HPLC; see Wincott et al., supra; the totality of which is hereby incorporated herein by reference) and are resuspended in water. The sequences of the chemically synthesized ribozymes and antisense constructs used in this study are shown below in Table III-IX.
Ribozyme Cleavage of Chk1 RNA Target in vitro
[0154] Ribozymes targeted to the human Chk1 RNA are designed and synthesized as described above. These ribozymes can be tested for cleavage activity in vitro, for example, using the following procedure. The target sequences and the nucleotide location within the Chk1 RNA are given in Tables III-IX.
[0155] Cleavage Reactions: Full-length or partially full-length, internally-labeled target RNA for ribozyme cleavage assay is prepared by in vitro transcription in the presence of [a-32P] CTP, passed over a G 50 Sephadex® column by spin chromatography and used as substrate RNA without further purification. Alternately, substrates are 5′-32P-end labeled using T4 polynucleotide kinase enzyme. Assays are performed by pre-warming a 2× concentration of purified ribozyme in ribozyme cleavage buffer (50 mM Tris-HCl, pH 7.5 at 37° C., 10 mM MgCl2) and the cleavage reaction was initiated by adding the 2× ribozyme mix to an equal volume of substrate RNA (maximum of 1-5 nM) that was also pre-warmed in cleavage buffer. As an initial screen, assays are carried out for 1 hour at 37° C. using a final concentration of either 40 nM or 1 mM ribozyme, i.e., ribozyme excess. The reaction is quenched by the addition of an equal volume of 95% formamide, 20 mM EDTA, 0.05% bromophenol blue and 0.05% xylene cyanol after which the sample is heated to 95° C. for 2 minutes, quick chilled and loaded onto a denaturing polyacrylamide gel. Substrate RNA and the specific RNA cleavage products generated by ribozyme cleavage are visualized on an autoradiograph of the gel. The percentage of cleavage is determined by Phosphor Imager® quantitation of bands representing the intact substrate and the cleavage products.
Nucleic acid inhibition of Chk1 target RNA in vivo
[0156] Antisense nucleic acid molecules (GeneBlocs™) targeted to the human Chk1 RNA are designed and synthesized as described above. These nucleic acid molecules can be tested for cleavage activity in vivo, for example, using the following procedure. The target sequences and the nucleotide location within the Chk1 RNA are given in Tables III-IX.
[0157] Two formats were used to test the efficacy of nucleic acid reagents (GeneBlocs™ targeting Chk1. First, the reagents were tested on asynchronous HeLa cells, to determine the extent of RNA and protein inhibition. To demonstrate whether cells bypass the G2/M checkpoint, HeLa cells (p53−) are treated with etoposide to damage the DNA. Nocodazole and the potential checkpoint inhibitor are added 16 hours later, when all the cells should be arrested in G2. Nocodazole blocks cells from leaving mitosis, so if they have abrogated the checkpoint, the cells will be blocked in mitosis and appear “rounded” in shape. Other surrogate mitotic markers include decreased phosphorylation of cdc-2 at Thr14 and Tyr15, phosphorylation of Myt-1, and phosphorylation of PP1. This study set out to determine whether inhibiting expression of the Chk1 gene would allow the G2/M checkpoint to be bypassed after DNA damage, as well as determining if the presence of p53 influences the DNA-damage checkpoint response.
[0158] Eight GeneBloc™ reagents (e.g.; see Table IX) were selected against the Chk1 cDNA target. RNA inhibition was measured after delivery of these reagents by GSV lipid (Glenn Research) to HeLa cells. Relative amounts of target RNA were measured versus actin using real-time PCR monitoring of amplification (ABI 7700 Taqman®). The results are shown in FIG. 6. The comparison is made to a mixture of 5 oligonucleotide sequences made to unrelated targets (GB-3) or to a randomized oligonucleotide control with the same overall length and chemistry, but randomly substituted at each position (GBC3.2). Primary and secondary lead reagents were chosen for the target and optimization performed. The optimal GSV lipid concentration was chosen after screening for RNA inhibition with oligonucleotides at 5 and 50 nM (FIG. 7). After optimal lipid concentration was chosen, a RNA time-course of inhibition was performed with the lead nucleic acid molecule (GeneBloc™) (FIG. 8). In addition, a cell-plating format was tested for RNA inhibition. The use of a 96-well (5000 cells/well) versus six-well (150,000 cells/well) plating density made no difference in the extent of RNA inhibition (FIG. 9). The phenotypic assays require treatment with etoposide and nocodazole as described above, and RNA inhibition in this assay was also determined (FIG. 10). The various treatments had essentially no effect on RNA levels.
[0159] Optimization of delivery conditions were also performed in DLD-1 (p53−) (FIG. 11) and MCF-7 (FIG. 12) (p53+) cells. Similar levels of inhibition were observed when compared to HeLa cells at the optimal GSV concentration. Dose curves were also generated in HeLa cells with the two best lead nucleic acid molecules (FIG. 13). IC50 values for both leads were in the 1-2 nM range. Similar IC50s were observed in DLD-1 and MCF-7 cells. Protein levels were assessed at 8, 24 and 32 hours after nucleic acid administration, as well as one to five days post delivery. The target protein was significantly reduced (80-90%) by 24 hours after nucleic acid administration and remained low (undetectable by western blot) until at least day 5. Application of nucleic acid inhibitors in the checkpoint abrogation assay resulted in the “rounding up” phenotype for the Chk1 target. Also, there is an increase in Myt 1 phosphorylation and a large increase in PP1 phosphorylation. There also appear to be decreases in phosphorylation of the Y15 and T14 residues on Cdc2, although this is not complete. Most importantly, this evidence demonstrates the role of Chk1 in the G2/M checkpoint and suggests that inhibitors of Chk1 activity can be useful alone or in combination with DNA damaging agents in treatment of certain types of cancer.
Indications
[0160] Particular degenerative and disease states that can be associated with Chk1 expression modulation include but are not limited to cancers of the colon, rectum, lung, breast and prostate
[0161] The present body of knowledge in Chk1 research indicates the need for methods to assay Chk1 activity and for compounds that can regulate Chk1 expression for research, diagnostic, and therapeutic use.
[0162] Radiation and chemotherapeutic treatments are non-limiting examples of methods that can be combined with or used in conjunction with the nucleic acid molecules (e.g. ribozymes and antisense molecules) of the instant invention. Those skilled in the art will recognize that other drug compounds and therapies can be similarly be readily combined with the nucleic acid molecules of the instant invention (e.g. ribozymes and antisense molecules) are hence within the scope of the instant invention.
Diagnostic uses
[0163] The nucleic acid molecules of this invention (e.g., ribozymes) can be used as diagnostic tools to examine genetic drift and mutations within diseased cells or to detect the presence of Chk1 RNA in a cell. The close relationship between ribozyme activity and the structure of the target RNA allows the detection of mutations in any region of the molecule which alters the base-pairing and three-dimensional structure of the target RNA. By using multiple ribozymes described in this invention, one can map nucleotide changes which are important to RNA structure and function in vitro, as well as in cells and tissues. Cleavage of target RNAs with ribozymes can be used to inhibit gene expression and define the role (essentially) of specified gene products in the progression of disease. In this manner, other genetic targets can be defined as important mediators of the disease. These experiments will lead to better treatment of the disease progression by affording the possibility of combinational therapies (e.g., multiple ribozymes targeted to different genes, ribozymes coupled with known small molecule inhibitors, or intermittent treatment with combinations of ribozymes and/or other chemical or biological molecules). Other in vitro uses of ribozymes of this invention are well known in the art, and include detection of the presence of mRNAs associated with Chk1-related condition. Such RNA is detected by determining the presence of a cleavage product after treatment with a ribozyme using standard methodology.
[0164] In a specific example, ribozymes which can cleave only wild-type or mutant forms of the target RNA are used for the assay. The first ribozyme is used to identify wild-type RNA present in the sample and the second ribozyme is used to identify mutant RNA in the sample. As reaction controls, synthetic substrates of both wild-type and mutant RNA is cleaved by both ribozymes to demonstrate the relative ribozyme efficiencies in the reactions and the absence of cleavage of the “non-targeted” RNA species. The cleavage products from the synthetic substrates also serve to generate size markers for the analysis of wild-type and mutant RNAs in the sample population. Thus, each analysis requires two ribozymes, two substrates and one unknown sample, which is combined into six reactions. The presence of cleavage products is determined using an RNAse protection assay so that full-length and cleavage fragments of each RNA can be analyzed in one lane of a polyacrylamide gel. It is not absolutely required to quantify the results to gain insight into the expression of mutant RNAs and putative risk of the desired phenotypic changes in target cells. The expression of mRNA whose protein product is implicated in the development of the phenotype (i.e., Chk1) is adequate to establish risk. If probes of comparable specific activity are used for both transcripts, then a qualitative comparison of RNA levels will be adequate and will decrease the cost of the initial diagnosis. Higher mutant form to wild-type ratios are correlated with higher risk whether RNA levels are compared qualitatively or quantitatively.
Additional Uses
[0165] Potential usefulness of sequence-specific enzymatic nucleic acid molecules of the instant invention might have many of the same applications for the study of RNA that DNA restriction endonucleases have for the study of DNA (Nathans et al., 1975 Ann. Rev. Biochem. 44:273). For example, the pattern of restriction fragments can be used to establish sequence relationships between two related RNAs, and large RNAs could be specifically cleaved to fragments of a size more useful for study. The ability to engineer sequence specificity of the enzymatic nucleic acid molecule is ideal for cleavage of RNAs of unknown sequence. Applicant has described the use of nucleic acid molecules to down-regulate gene expression of target genes in bacterial, microbial, fungal, viral, and eukaryotic systems including plant, or mammalian cells.
[0166] All patents and publications mentioned in the specification are indicative of the levels of skill of those skilled in the art to which the invention pertains. All references cited in this disclosure are incorporated by reference to the same extent as if each reference had been incorporated by reference in its entirety individually.
[0167] One skilled in the art would readily appreciate that the present invention is well adapted to carry out the objects and obtain the ends and advantages mentioned, as well as those inherent therein. The methods and compositions described herein as presently representative of preferred embodiments are exemplary and are not intended as limitations on the scope of the invention. Changes therein and other uses will occur to those skilled in the art, which are encompassed within the spirit of the invention, are defined by the scope of the claims.
[0168] It will be readily apparent to one skilled in the art that varying substitutions and modifications can be made to the invention disclosed herein without departing from the scope and spirit of the invention. Thus, such additional embodiments are within the scope of the present invention and the following claims.
[0169] The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. Thus, for example, in each instance herein any of the terms “comprising”, “consisting essentially of’ and “consisting of’ may be replaced with either of the other two terms. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions of excluding any equivalents of the features shown and described or portions thereof, but it is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments, optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the description and the appended claims.
[0170] In addition, where features or aspects of the invention are described in terms of Markush groups or other grouping of alternatives, those skilled in the art will recognize that the invention is also thereby described in terms of any individual member or subgroup of members of the Markush group or other group.
[0171] Other embodiments are within the claims that follow.
1TABLE I
|
|
Characteristics of naturally occurring ribozymes
|
|
Group I Introns
Size: ˜150 to >1000 nucleotides.
Requires a U in the target sequence immediately 5′ of the cleavage site.
Binds 4-6 nucleotides at the 5′-side of the cleavage site.
Reaction mechanism: attack by the 3′-OH of guanosine to generate
cleavage products with 3′-OH and 5′-guanosine.
Additional protein cofactors required in some cases to help folding and
maintainance of the active structure.
Over 300 known members of this class. Found as an intervening sequence
in Tetrahymena thermophila rRNA, fungal mitochondria, chloroplasts,
phage T4, blue-green algae, and others.
Major structural features largely established through phylogenetic
comparisons, mutagenesis, and biochemical studies [i,ii].
Complete kinetic framework established for one ribozyme [iii,iv,v,vi].
Studies of ribozyme folding and substrate docking underway [vii,viii,ix].
Chemical modification investigation of important residues well
established [x,xi].
The small (4-6 nt) binding site may make this ribozyme too non-specific
for targeted RNA cleavage, however, the Tetrahymena group I intron has
been used to repair a “defective” beta-galactosidase message by
the ligation of new beta-galactosidase sequences onto the defective
message [xii].
RNAse P RNA (M1 RNA)
Size: ˜290 to 400 nucleotides.
RNA portion of a ubiquitous ribonucleoprotein enzyme.
Cleaves tRNA precursors to form mature tRNA [xiii].
Reaction mechanism: possible attack by M2+—OH to generate cleavage
products with 3′-OH and 5′-phosphate.
RNAse P is found throughout the prokaryotes and eukaryotes. The RNA
subunit has been sequenced from bacteria, yeast, rodents, and primates.
Recruitment of endogenous RNAse P for therapeutic applications is
possible through hybridization of an External Guide Sequence (EGS) to
the target RNA [xiv,xv]
Important phosphate and 2′ OH contacts recently identified [xvi,xvii]
Group II Introns
Size: >1000 nucleotides.
Trans cleavage of target RNAs recently demonstrated [xviii,xix].
Sequence requirements not fully determined.
Reaction mechanism: 2′-OH of an internal adenosine generates cleavage
products with 3′-OH and a “lariat” RNA containing a 3′-5′ and a
2′-5′ branch point.
Only natural ribozyme with demonstrated participation in DNA cleavage
[xx,xxi] in addition to RNA cleavage and ligation.
Major structural features largely established through phylogenetic
comparisons [xxii].
Important 2′ OH contacts beginning to be identified [xxiii]
Kinetic framework under development [xxiv]
Neurospora VS RNA
Size: ˜144 nucleotides.
Trans cleavage of hairpin target RNAs recently demonstrated [xxv].
Sequence requirements not fully determined.
Reaction mechanism: attack by 2′-OH 5′ to the scissile bond to generate
cleavage products with 2′,3′-cyclic phosphate and 5′-OH ends.
Binding sites and structural requirements not fully determined.
Only 1 known member of this class. Found in Neurospora VS RNA.
Hammerhead Ribozyme
(see text for references)
Size: ˜13 to 40 nucleotides.
Requires the target sequence UH immediately 5′ of the cleavage site.
Binds a variable number nucleotides on both sides of the cleavage site.
Reaction mechanism: attack by 2′-OH 5′ to the scissile bond to generate
cleavage products with 2′,3′-cyclic phosphate and 5′-OH ends.
14 known members of this class. Found in a number of plant pathogens
(virusoids) that use RNA as the infectious agent.
Essential structural features largely defined, including 2 crystal structures
[xxvi,xxvii]
Minimal ligation activity demonstrated (for engineering through in vitro
selection) [xxviii]
Complete kinetic framework established for two or more ribozymes [xxix].
Chemical modification investigation of important residues well
established [xxx].
Hairpin Ribozyme
Size: ˜50 nucleotides.
Requires the target sequence GUC immediately 3′ of the cleavage site.
Binds 4-6 nucleotides at the 5′-side of the cleavage site and a variable
number to the 3′-side of the cleavage site.
Reaction mechanism: attack by 2′-OH 5′ to the scissile bond to generate
cleavage products with 2′,3′-cyclic phosphate and 5′-OH ends.
3 known members of this class. Found in three plant pathogen (satellite
RNAs of the tobacco ringspot virus, arabis mosaic virus and chicory
yellow mottle virus) which uses RNA as the infectious agent.
Essential structural features largely defined [xxxi,xxxii,xxxiii,xxxiv]
Ligation activity (in addition to cleavage activity) makes ribozyme
amenable to engineering through in vitro selection [xxxv]
Complete kinetic framework established for one ribozyme [xxxvi].
Chemical modification investigation of important residues
begun [xxxvii,xxxviii].
Hepatitis Delta Virus (HDV) Ribozyme
Size: ˜60 nucleotides.
Trans cleavage of target RNAs demonstrated [xxxix].
Binding sites and structural requirements not fully determined, although no
sequences 5′ of cleavage site are required. Folded ribozyme contains a
pseudoknot structure [xl].
Reaction mechanism: attack by 2′-OH 5′ to the scissile bond to
generate cleavage products with 2′,3′-cyclic phosphate and 5′-OH ends.
Only 2 known members of this class. Found in human HDV.
Circular form of HDV is active and shows increased nuclease stability [xli]
|
iMichel, Francois; Westhof, Eric. Slippery substrates. Nat. Struct Biol. (1994), 1(1), 5-7.
iiLisacek, Frederique; Diaz, Yolande; Michel, Francois. Automatic identification of group I intron cores in genomic DNA sequences. J. Mol. Biol. (1994), 235(4), 1206-17.
iiiHerschlag, Daniel; Cech, Thomas R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 1. Kinetic description of the reaction of an RNA substrate complementary to the active site. Biochemistry (1990), 29(44), 10159-71.
ivHerschlag, Daniel; Cech, Thomas R. Catalysis of RNA cleavage by the Tetrahymena thermophila ribozyme. 2. Kinetic description of the reaction of an RNA substrate that forms a mismatch at the active site. Biochemistry (1990), 29(44), 10172-80.
vKnitt, Deborah S.; Herschlag, Daniel. pH Dependencies of the Tetrahymena Ribozyme Reveal an Unconventional Origin of an Apparent pKa. Biochemistry (1996), 35(5), 1560-70.
viBevilacqua, Philip C.; Sugimoto, Naoki; Turner, Douglas H. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme. Biochemistry (1996), 35(2), 648-58.
viiLi, Yi; Bevilacqua, Philip C.; Mathews, David; Turner, Douglas H. Thermodynamic and activation parameters for binding of a pyrene-labeled substrate by the Tetrahymena ribozyme: docking is not diffusion-controlled and is driven by a favorable entropy change. Biochemistry (1995), 34(44), 14394-9.
viiiBanerjee, Aloke Raj; Turner, Douglas H. The time dependence of chemical modification reveals slow steps in the folding of a group I ribozyme. Biochemistry (1995), 34(19), 6504-12.
ixZarrinkar, Patrick P.; Williamson, James R. The P9.1-P9.2 peripheral extension helps guide folding of the Tetrahymena ribozyme. Nucleic Acids Res. (1996), 24(5), 854-8.
xStrobel, Scott A.; Cech, Thomas R. Minor groove recognition of the conserved G.cntdot.U pair at the Tetrahymena ribozyme reaction site. Science (Washington, D.C.) (1995), 267(5198), 675-9.
xiStrobel, Scott A.; Cech, Thomas R. Exocyclic Amine of the Conserved G.cntdot.U Pair at the Cleavage Site of the Tetrahymena Ribozyme Contributes to 5′-Splice Site Selection and Transition State Stabilization. Biochemistry (1996), 35(4), 1201-11.
xiiSullenger, Bruce A.; Cech, Thomas R. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature (London) (1994), 371 (6498), 619-22.
xiiiRobertson, H.D.; Altman, S.; Smith, J. D. J. Biol. Chem., 247, 5243-5251 (1972).
xivForster, Anthony C.; Altman, Sidney. External guide sequences for an RNA enzyme. Science (Washington, D.C., 1883-) (1990), 249(4970), 783-6.
xvYuan, Y.; Hwang, E. S.; Altman, S. Targeted cleavage of mRNA by human RNase P. Proc. Natl. Acad. Sci. USA (1992) 89, 8006-10.
xviHarris, Michael E.; Pace, Norman R. Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. RNA (1995), 1(2), 210-18.
xviiPan, Tao; Loria, Andrew; Zhong, Kun. Probing of tertiary interactions in RNA: 2′-hydroxyl-base contacts between the RNase P RNA and pre-tRNA. Proc. Natl. Acad. Sci. U.S.A. (1995), 92(26), 12510-14.
xviiiPyle, Anna Marie; Green, Justin B. Building a Kinetic Framework for Group II Intron Ribozyme Activity: Quantitation of Interdomain Binding and Reaction Rate. Biochemistry (1994), 33(9), 2716-25.
xixMichels, William J. Jr.; Pyle, Anna Marie. Conversion of a Group II Intron into a New Multiple-Turnover Ribozyme that Selectively Cleaves Oligonucleotides: Elucidation of Reaction Mechanism and Structure/Function Relationships. Biochemistry (1995), 34(9), 2965-77.
xxZimmerly, Steven; Guo, Huatao; Eskes, Robert; Yang, Jian; Perlman, Philip S.; Lambowitz, Alan M. A group II intron RNA is a catalytic component of a DNA endonuclease involved in intron mobility. Cell (Cambridge, Mass.) (1995), 83(4), 529-38.
xxiGriffin, Edmund A., Jr.; Qin, Zhifeng; Michels, Williams J., Jr.; Pyle, Anna Marie. Group II intron ribozymes that cleave DNA and RNA linkages with similar efficiency, and lack contacts with substrate 2′-hydroxyl groups. Chem. Biol. (1995), 2(11), 761-70.
xxiiMichel, Francois; Ferat, Jean Luc. Structure and activities of group II introns. Annu. Rev. Biochem. (1995), 64, 435-61.
xxiiiAbramovitz, Dana L.; Friedman, Richard A.; Pyle, Anna Marie. Catalytic role of 2′-hydroxyl groups within a group II intron active site. Science (Washington, D.C.) (1996), 271(5254), 1410-13.
xxivDaniels, Danette L.; Michels, William J., Jr.; Pyle, Anna Marie. Two competing pathways for self-splicing by group II introns: a quantitative analysis of in vitro reaction rates and products. J. Mol. Biol. (1996), 256(1), 31-49.
xxvGuo, Hans C. T.; Collins, Richard A. Efficient trans-cleavage of a stem-loop RNA substrate by a ribozyme derived from Neurospora VS RNA. EMBO J. (1995), 14(2), 368-76.
xxviScott, W. G., Finch, J. T., Aaron, K. The crystal structure of an all RNA hammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage. Cell, (1995), 81, 991-1002.
xxviiMcKay, Structure and function of the hammerhead ribozyme: an unfinished story. RNA, (1996), 2, 395-403.
xxviiiLong, D., Uhlenbeck, O., Hertel, K. Ligation with hammerhead ribozymes. U.S. Pat. No. 5,633,133.
xxixHertel, K. J., Herschlag, D., Uhlenbeck, O. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry, (1994) 33, 3374-3385. Beigelman, L., et al., Chemical modifications of hammerhead ribozymes. J. Biol. Chem., (1995) 270, 25702-25708.
xxxBeigelman, L., et al., Chemical modifications of hammerhead ribozymes. J. Biol. Chem., (1995) 270, 25702-25708.
xxxiHampel, Arnold; Tritz, Richard; Hicks, Margaret; Cruz, Philip. ‘Hairpin’ catalytic RNA model: evidence for helixes and sequence requirement for substrate RNA. Nucleic Acids Res. (1990), 18(2), 299-304.
xxxiiChowrira, Bharat M.; Berzal-Herranz, Alfredo; Burke, John M. Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature (London) (1991), 354(6351), 320-2.
xxxiiiBerzal-Herranz, Alfredo; Joseph, Simpson; Chowrira, Bharat M.; Butcher, Samuel E.; Burke, John M. Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J. (1993), 12(6), 2567-73.
xxxivJoseph, Simpson; Berzal-Herranz, Alfredo; Chowrira, Bharat M.; Butcher, Samuel E. Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates. Genes Dev. (1993), 7(1), 130-8.
xxxvBerzal-Herranz, Alfredo; Joseph, Simpson; Burke, John M. In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions. Genes Dev. (1992), 6(1), 129-34.
xxxviHegg, Lisa A.; Fedor, Martha J. Kinetics and Thermodynamics of Intermolecular Catalysis by Hairpin Ribozymes. Biochemistry (1995), 34(48), 15813-28.
xxxviiGrasby, Jane A.; Mersmann, Karin; Singh, Mohinder; Gait, Michael J. Purine Functional Groups in Essential Residues of the Hairpin Ribozyme Required for Catalytic Cleavage of RNA. Biochemistry (1995), 34(12), 4068-76.
xxxviiiSchmidt, Sabine; Beigelman, Leonid; Karpeisky, Alexander; Usman, Nassim; Sorensen, Ulrik S.; Gait, Michael J. Base and sugar requirements for RNA cleavage of essential nucleoside residues in internal loop B of the hairpin ribozyme: implications for secondary structure. Nucleic Acids Res. (1996), 24(4), 573-81.
xxxixPerrotta, Anne T.; Been, Michael D. Cleavage of oligoribonucleotides by a ribozyme derived from the hepatitis delta virus RNA sequence. Biochemistry (1992), 31(1), 16-21.
xlPerrotta, Anne T.; Been, Michael D. A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. Nature (London) (1991), 350(6317), 434-6.
xliPuttaraju, M.; Perrotta, Anne T.; Been, Michael D. A circular trans-acting hepatitis delta virus ribozyme. Nucleic Acids Res. (1993), 21(18), 4253-8.
[0172]
2
TABLE II
|
|
|
A. 2.5 μmol Synthesis Cycle ABI 394 Instrument
|
Reagent
Equivalents
Amount
Wait Time* DNA
Wait Time* 2’-O-methyl
Wait Time* RNA
|
|
Phosphoramidites
6.5
163 μL
45 sec
2.5 min
7.5 min
|
S-Ethyl Tetrazole
23.8
238 μL
45 sec
2.5 min
7.5 min
|
Acetic Anhydride
100
233 μL
5 sec
5 sec
5 sec
|
N-Methyl
186
233 μL
5 sec
5 sec
5 sec
|
Imidazole
|
TCA
176
2.3 μL
21 sec
21 sec
21 sec
|
Iodine
11.2
1.7 μL
45 sec
45 sec
45 sec
|
Beaucage
12.9
645 μL
100 sec
300 sec
300 sec
|
Acetonitrile
NA
6.67 μL
NA
NA
NA
|
B. 0.2 μmol Synthesis Cycle ABI 394 Instrument
|
Phosphoramidites
15
31 μL
45 sec
233 sec
465 sec
|
S-Ethyl Tetrazole
38.7
31 μL
45 sec
233 min
465 sec
|
Acetic Anhydride
655
124 μL
5 sec
5 sec
5 sec
|
N-Methyl
1245
124 μL
5 sec
5 sec
5 sec
|
Imidazole
|
TCA
700
732 μL
10 sec
10 sec
10 sec
|
Iodine
20.6
244 μL
15 sec
15 sec
15 sec
|
Beaucage
7.7
232 μL
100 sec
300 sec
300 sec
|
Acetonitrile
NA
2.64 μL
NA
NA
NA
|
|
C. 0.2 μmol Synthesis Cycle 96 well Instrument
|
Equivalents: DNA/
Amount: DNA/2’-O-
Wait Time* 2’-O-
|
Reagent
2’-O-methyl/Ribo
methyl/Ribo
Wait Time* DNA
methyl
Wait Time* Ribo
|
|
Phosphoramidites
22/33/66
40/60/120 μL
60 sec
180 sec
360 sec
|
S-Ethyl Tetrazole
70/105/210
40/60/120 μL
60 sec
180 min
360 sec
|
Acetic Anhydride
265/265/265
50/50/50 μL
10 sec
10 sec
10 sec
|
N-Methyl
502/502/502
50/50/50 μL
10 sec
10 sec
10 sec
|
Imidazole
|
TCA
238/475/475
250/500/500μL
15 sec
15 sec
15 sec
|
Iodine
6.8/6.8/6.8
80/80/80 μL
30 sec
30 sec
30 sec
|
Beaucage
34/51/51
80/120/120
100 sec
200 sec
200 sec
|
Acetonitrile
NA
1150/1150/1150 μL
NA
NA
NA
|
|
*Wait time does not include contact time during delivery.
|
[0173]
3
TABLE III
|
|
|
Human Chk1 Hammerhead Ribozyme and Substrate Sequence
|
Rz Seq
|
Pos
Substrate
Seq ID
Ribozyme
ID
|
|
12
CGGACAGU C CGCCGAGG
1
CCUCGGCG CUGAUGAG GCCGUUAGGC CGAA ACUGUCCG
1423
|
25
GAGGUGCU C GGUGGAGU
2
ACUCCACC CUGAUGAG GCCGUUAGGC CGAA AGCACCUC
1424
|
34
GGUGGAGU C AUGGCAGU
3
ACUGCCAU CUGAUGAG GCCGUUAGGC CGAA ACUCCACC
1425
|
48
AGUGCCCU U UGUGGAAG
4
CUUCCACA CUGAUGAG GCCGUUAGGC CGAA AGGGCACU
1426
|
49
GUGCCCUU U GUGGAAGA
5
UCUUCCAC CUGAUGAG GCCGUUAGGC CGAA AAGGGCAC
1427
|
66
CUGGGACU U GGUGCAAA
6
UUUGCACC CUGAUGAG GCCGUUAGGC CGAA AGUCCCAG
1428
|
93
AGGUGCCU A UGGAGAAG
7
CUUCUCCA CUGAUGAG GCCGUUAGGC CGAA AGGCACCU
1429
|
103
GGAGAAGU U CAACUUGC
8
GCAAGUUG CUGAUGAG GCCGUUAGGC CGAA ACUUCUCC
1430
|
104
GAGAAGUU C AACUUGCU
9
AGCAAGUU CUGAUGAG GCCGUUAGGC CGAA AACUUCUC
1431
|
109
GUUCAACU U GCUGUGAA
10
UUCACAGC CUGAUGAG GCCGUUAGGC CGAA AGUUGAAC
1432
|
119
CUGUGAAU A GAGUAACU
11
AGUUACUC CUGAUGAG GCCGUUAGGC CGAA AUUCACAG
1433
|
123
AAUAGAGU A ACUGAAGA
12
UCUUCAGU CUGAUGAG GCCGUUAGGC CGAA ACUCUAUU
1434
|
139
GAAGCAGU C GCAGUGAA
13
UUCACUGC CUGAUGAG GCCGUUAGGC CGAA ACUGCUUC
1435
|
151
GUGAAGAU U GUAGAUAU
14
AUAUCUAC CUGAUGAG GCCGUUAGGC CGAA AUCUUCAC
1436
|
154
AAGAUUGU A GAUAUGAA
15
UUCAUAUC CUGAUGAG GCCGUUAGGC CGAA ACAAUCUU
1437
|
158
UUGUAGAU A UGAAGCGU
16
ACGCUUCA CUGAUGAG GCCGUUAGGC CGAA AUCUACAA
1438
|
172
CGUGCCGU A GACUGUCC
17
GGACAGUC CUGAUGAG GCCGUUAGGC CGAA ACGGCACG
1439
|
179
UAGACUGU C CAGAAAAU
18
AUUUUCUG CUGAUGAG GCCGUUAGGC CGAA ACAGUCUA
1440
|
188
CAGAAAAU A UUAAGAAA
19
UUUCUUAA CUGAUGAG GCCGUUAGGC CGAA AUUUUCUG
1441
|
190
GAAAAUAU U AAGAAAGA
20
UCUUUCUU CUGAUGAG GCCGUUAGGC CGAA AUAUUUUC
1442
|
191
AAAAUAUU A AGAAAGAG
21
CUCUUUCU CUGAUGAG GCCGUUAGGC CGAA AAUAUUUU
1443
|
202
AAAGAGAU C UGUAUCAA
22
UUGAUACA CUGAUGAG GCCGUUAGGC CGAA AUCUCUUU
1444
|
206
AGAUCUGU A UCAAUAAA
23
UUUAUUGA CUGAUGAG GCCGUUAGGC CGAA ACAGAUCU
1445
|
208
AUCUGUAU C AAUAAAAU
24
AUUUUAUU CUGAUGAG GCCGUUAGGC CGAA AUACAGAU
1446
|
212
GUAUCAAU A AAAUGCUA
25
UAGCAUUU CUGAUGAG GCCGUUAGGC CGAA AUUGAUAC
1447
|
220
AAAAUGCU A AAUCAUGA
26
UCAUGAUU CUGAUGAG GCCGUUAGGC CGAA AGCAUUUU
1448
|
224
UGCUAAAU C AUGAAAAU
27
AUUUUCAU CUGAUGAG GCCGUUAGGC CGAA AUUUAGCA
1449
|
235
GAAAAUGU A GUAAAAUU
28
AAUUUUAC CUGAUGAG GCCGUUAGGC CGAA ACAUUUUC
1450
|
238
AAUGUAGU A AAAUUCUA
29
UAGAAUUU CUGAUGAG GCCGUUAGGC CGAA ACUACAUU
1451
|
243
AGUAAAAU U CUAUGGUC
30
GACCAUAG CUGAUGAG GCCGUUAGGC CGAA AUUUUACU
1452
|
244
GUAAAAUU C UAUGGUCA
31
UGACCAUA CUGAUGAG GCCGUUAGGC CGAA AAUUUUAC
1453
|
246
AAAAUUCU A UGGUCACA
32
UGUGACCA CUGAUGAG GCCGUUAGGC CGAA AGAAUUUU
1454
|
251
UCUAUGGU C ACAGGAGA
33
UCUCCUGU CUGAUGAG GCCGUUAGGC CGAA ACCAUAGA
1455
|
269
AAGGCAAU A UCCAAUAU
34
AUAUUGGA CUGAUGAG GCCGUUAGGC CGAA AUUGCCUU
1456
|
271
GGCAAUAU C CAAUAUUU
35
AAAUAUUG CUGAUGAG GCCGUUAGGC CGAA AUAUUGCC
1457
|
276
UAUCCAAU A UUUAUUUC
36
GAAAUAAA CUGAUGAG GCCGUUAGGC CGAA AUUGGAUA
1458
|
278
UCCAAUAU U UAUUUCUG
37
CAGAAAUA CUGAUGAG GCCGUUAGGC CGAA AUAUUGGA
1459
|
279
CCAAUAUU U AUUUCUGG
38
CCAGAAAU CUGAUGAG GCCGUUAGGC CGAA AAUAUUGG
1460
|
280
CAAUAUUU A UUUCUGGA
39
UCCAGAAA CUGAUGAG GCCGUUAGGC CGAA AAAUAUUG
1461
|
282
AUAUUUAU U UCUGGAGU
40
ACUCCAGA CUGAUGAG GCCGUUAGGC CGAA AUAAAUAU
1462
|
283
UAUUUAUU U CUGGAGUA
41
UACUCCAG CUGAUGAG GCCGUUAGGC CGAA AAUAAAUA
1463
|
284
AUUUAUUU C UGGAGUAC
42
GUACUCCA CUGAUGAG GCCGUUAGGC CGAA AAAUAAAU
1464
|
291
UCUGGAGU A CUGAUGUG
43
CACUACAG CUGAUGAG GCCGUUAGGC CGAA ACUCCAGA
1465
|
296
AGUACUGU A GUGGAGGA
44
UCCUCCAC CUGAUGAG GCCGUUAGGC CGAA ACAGUACU
1466
|
310
GGAGAGCU U UUUGACAG
45
CUGUCAAA CUGAUGAG GCCGUUAGGC CGAA AGCUCUCC
1467
|
311
GAGAGCUU U UUGACAGA
46
UCUGUCAA CUGAUGAG GCCGUUAGGC CGAA AAGCUCUC
1468
|
312
AGAGCUUU U UGACAGAA
47
UUCUGUCA CUGAUGAG GCCGUUAGGC CGAA AAAGCUCU
1469
|
313
GAGCUUUU U GACAGAAU
48
AUUCUGUC CUGAUGAG GCCGUUAGGC CGAA AAAAGCUC
1470
|
322
GACAGAAU A GAGCCAGA
49
UCUGGCUC CUGAUGAG GCCGUUAGGC CGAA AUUCUGUC
1471
|
334
CCAGACAU A GGCAUGCC
50
GGCAUGCC CUGAUGAG GCCGUUAGGC CGAA AUGUCUGG
1472
|
356
CAGAUGCU C AGAGAUUC
51
GAAUCUCU CUGAUGAG GCCGUUAGGC CGAA AGCAUCUG
1473
|
363
UCAGAGAU U CUUCCAUC
52
GAUGGAAG CUGAUGAG GCCGUUAGGC CGAA AUCUCUGA
1474
|
364
CAGAGAUU C UUCCAUCA
53
UGAUGGAA CUGAUGAG GCCGUUAGGC CGAA AAUCUCUG
1475
|
366
GAGAUUCU U CCAUCAAC
54
GUUGAUGG CUGAUGAG GCCGUUAGGC CGAA AGAAUCUC
1476
|
367
AGAUUCUU C CAUCAACU
55
AGUUGAUG CUGAUGAG GCCGUUAGGC CGAA AAGAAUCU
1477
|
371
UCUUCCAU C AACUCAUG
56
CAUGAGUU CUGAUGAG GCCGUUAGGC CGAA AUGGAAGA
1478
|
376
CAUCAACU C AUGGCAGG
57
CCUGCCAU CUGAUGAG GCCGUUAGGC CGAA AGUUGAUG
1479
|
391
GGGGUGGU U UAUCUGCA
58
UGCAGAUA CUGAUGAG GCCGUUAGGC CGAA ACCACCCC
1480
|
392
GGGUGGUU U AUCUGCAU
59
AUGCAGAU CUGAUGAG GCCGUUAGGC CGAA AACCACCC
1481
|
393
GGUGGUUU A UCUGCAUG
60
CAUGCAGA CUGAUGAG GCCGUUAGGC CGAA AAACCACC
1482
|
395
UGGUUUAU C UGCAUGGU
61
ACCAUGCA CUGAUGAG GCCGUUAGGC CGAA AUAAACCA
1483
|
404
UGCAUGGU A UUGGAAUA
62
UAUUCCAA CUGAUGAG GCCGUUAGGC CGAA ACCAUGCA
1484
|
406
CAUGGUAU U GGAAUAAC
63
GUUAUUCC CUGAUGAG GCCGUUAGGC CGAA AUACCAUG
1485
|
412
AUUGGAAU A ACUCACAG
64
CUGUGAGU CUGAUGAG GCCGUUAGGC CGAA AUUCCAAU
1486
|
416
GAAUAACU C ACAGGGAU
65
AUCCCUGU CUGAUGAG GCCGUUAGGC CGAA AGUUAUUC
1487
|
425
ACAGGGAU A UUAAACCA
66
UGGUUUAA CUGAUGAG GCCGUUAGGC CGAA AUCCCUGU
1488
|
427
AGGGAUAU U AAACCAGA
67
UCUGGUUU CUGAUGAG GCCGUUAGGC CGAA AUAUCCCU
1489
|
428
GGGAUAUU A AACCAGAA
68
UUCUGGUU CUGAUGAG GCCGUUAGGC CGAA AAUAUCCC
1490
|
440
CAGAAAAU C UUCUGUUG
69
CAACAGAA CUGAUGAG GCCGUUAGGC CGAA AUUUUCUG
1491
|
442
GAAAAUCU U CUGUUGGA
70
UCCAACAG CUGAUGAG GCCGUUAGGC CGAA AGAUUUUC
1492
|
443
AAAAUCUU C UGUUGGAU
71
AUCCAACA CUGAUGAG GCCGUUAGGC CGAA AAGAUUUU
1493
|
447
UCUUCUGU U GGAUGAAA
72
UUUCAUCC CUGAUGAG GCCGUUAGGC CGAA ACAGAAGA
1494
|
461
AAAGGGAU A ACCUCAAA
73
UUUGAGGU CUGAUGAG GCCGUUAGGC CGAA AUCCCUUU
1495
|
466
GAUAACCU C AAAAUCUC
74
GAGAUUUU CUGAUGAG GCCGUUAGGC CGAA AGGUUAUC
1496
|
472
CUCAAAAU C UCAGACUU
75
AAGUCUGA CUGAUGAG GCCGUUAGGC CGAA AUUUUGAG
1497
|
474
CAAAAUCU C AGACUUUG
76
CAAAGUCU CUGAUGAG GCCGUUAGGC CGAA AGAUUUUG
1498
|
480
CUCAGACU U UGGCUUGG
77
CCAAGCCA CUGAUGAG GCCGUUAGGC CGAA AGUCUGAG
1499
|
481
UCAGACUU U GGCUUGGC
78
GCCAAGCC CUGAUGAG GCCGUUAGGC CGAA AAGUCUGA
1500
|
486
CUUUGGCU U GGCAACAG
79
CUGUUGCC CUGAUGAG GCCGUUAGGC CGAA AGCCAAAG
1501
|
496
GCAACAGU A UUUCGGUA
80
UACCGAAA CUGAUGAG GCCGUUAGGC CGAA ACUGUUGC
1502
|
498
AACAGUAU U UCGGUAUA
81
UAUACCGA CUGAUGAG GCCGUUAGGC CGAA AUACUGUU
1503
|
499
ACAGUAUU U CGGUAUAA
82
UUAUACCG CUGAUGAG GCCGUUAGGC CGAA AAUACUGU
1504
|
500
CAGUAUUU C GGUAUAAU
83
AUUAUACC CUGAUGAG GCCGUUAGGC CGAA AAAUACUG
1505
|
504
AUUUCGGU A UAAUAAUC
84
GAUUAUUA CUGAUGAG GCCGUUAGGC CGAA ACCGAAAU
1506
|
506
UUCGGUAU A AUAAUCGU
85
ACGAUUAU CUGAUGAG GCCGUUAGGC CGAA AUACCGAA
1507
|
509
GGUAUAAU A AUCGUGAG
86
CUCACGAU CUGAUGAG GCCGUUAGGC CGAA AUUAUACC
1508
|
512
AUAAUAAU C GUGAGCGU
87
ACGCUCAC CUGAUGAG GCCGUUAGGC CGAA AUUAUUAU
1509
|
521
GUGAGCGU U UGUUGAAC
88
GUUCAACA CUGAUGAG GCCGUUAGGC CGAA ACGCUCAC
1510
|
522
UGAGCGUU U GUUGAACA
89
UGUUCAAC CUGAUGAG GCCGUUAGGC CGAA AACGCUCA
1511
|
525
GCGUUUGU U GAACAAGA
90
UCUUGUUC CUGAUGAG GCCGUUAGGC CGAA ACAAACGC
1512
|
542
UGUGUGGU A CUUUACCA
91
UGGUAAAG CUGAUGAG GCCGUUAGGC CGAA ACCACACA
1513
|
545
GUGGUACU U UACCAUAU
92
AUAUGGUA CUGAUGAG GCCGUUAGGC CGAA AGUACCAC
1514
|
546
UGGUACUU U ACCAUAUG
93
CAUAUGGU CUGAUGAG GCCGUUAGGC CGAA AAGUACCA
1515
|
547
GGUACUUU A CCAUAUGU
94
ACAUAUGG CUGAUGAG GCCGUUAGGC CGAA AAAGUACC
1516
|
552
UUUACCAU A UGUUGCUC
95
GAGCAACA CUGAUGAG GCCGUUAGGC CGAA AUGGUAAA
1517
|
556
CCAUAUGU U GCUCCAGA
96
UCUGGAGC CUGAUGAG GCCGUUAGGC CGAA ACAUAUGG
1518
|
560
AUGUUGCU C CAGAACUU
97
AAGUUCUG CUGAUGAG GCCGUUAGGC CGAA AGCAACAU
1519
|
568
CCAGAACU U CUGAAGAG
98
CUCUUCAG CUGAUGAG GCCGUUAGGC CGAA AGUUCUGG
1520
|
569
CAGAACUU C UGAAGAGA
99
UCUCUUCA CUGAUGAG GCCGUUAGGC CGAA AAGUUCUG
1521
|
585
AAGAGAAU U UCAUGCAG
100
CUGCAUGA CUGAUGAG GCCGUUAGGC CGAA AUUCUCUU
1522
|
586
AGAGAAUU U CAUGCAGA
101
UCUGCAUG CUGAUGAG GCCGUUAGGC CGAA AAUUCUCU
1523
|
587
GAGAAUUU C AUGCAGAA
102
UUCUGCAU CUGAUGAG GCCGUUAGGC CGAA AAAUUCUC
1524
|
601
GAACCAGU U GAUGUUUG
103
CAAACAUC CUGAUGAG GCCGUUAGGC CGAA ACUGGUUC
1525
|
607
GUUGAUGU U UGGUCCUG
104
CAGGACCA CUGAUGAG GCCGUUAGGC CGAA ACAUCAAC
1526
|
608
UUGAUGUU U GGUCCUGU
105
ACAGGACC CUGAUGAG GCCGUUAGGC CGAA AACAUCAA
1527
|
612
UGUUUGGU C CUGUGGAA
106
UUCCACAG CUGAUGAG GCCGUUAGGC CGAA ACCAAACA
1528
|
622
UGUGGAAU A GUACUUAC
107
GUAAGUAC CUGAUGAG GCCGUUAGGC CGAA AUUCCACA
1529
|
625
GGAAUAGU A CUUACUGC
108
GCAGUAAG CUGAUGAG GCCGUUAGGC CGAA ACUAUUCC
1530
|
628
AUAGUACU U ACUGCAAU
109
AUUGCAGU CUGAUGAG GCCGUUAGGC CGAA AGUACUAU
1531
|
629
UAGUACUU A CUGCAAUG
110
CAUUGCAG CUGAUGAG GCCGUUAGGC CGAA AAGUACUA
1532
|
640
GCAAUGCU C GCUGGAGA
111
UCUCCAGC CUGAUGAG GCCGUUAGGC CGAA AGCAUUGC
1533
|
651
UGGAGAAU U GCCAUGGG
112
CCCAUGGC CUGAUGAG GCCGUUAGGC CGAA AUUCUCCA
1534
|
680
ACAGCUGU C AGGAGUAU
113
AUACUCCU CUGAUGAG GCCGUUAGGC CGAA ACAGCUGU
1535
|
687
UCAGGAGU A UUCUGACU
114
AGUCAGAA CUGAUGAG GCCGUUAGGC CGAA ACUCCUGA
1536
|
689
AGGAGUAU U CUGACUGG
115
CCAGUCAG CUGAUGAG GCCGUUAGGC CGAA AUACUCCU
1537
|
690
GGAGUAUU C UGACUGGA
116
UCCAGUCA CUGAUGAG GCCGUUAGGC CGAA AAUACUCC
1538
|
714
AAAAACAU A CCUCAACC
117
GGUUGAGG CUGAUGAG GCCGUUAGGC CGAA AUGUUUUU
1539
|
718
ACAUACCU C AACCCUUG
118
CAAGGGUU CUGAUGAG GCCGUUAGGC CGAA AGGUAUGU
1540
|
725
UCAACCCU U GGAAAAAA
119
UUUUUUCC CUGAUGAG GCCGUUAGGC CGAA AGGGUUGA
1541
|
736
AAAAAAAU C GAUUCUGC
120
GCAGAAUC CUGAUGAG GCCGUUAGGC CGAA AUUUUUUU
1542
|
740
AAAUCGAU U CUGCUCCU
121
AGGAGCAG CUGAUGAG GCCGUUAGGC CGAA AUCGAUUU
1543
|
741
AAUCGAUU C UGCUCCUC
122
GAGGAGCA CUGAUGAG GCCGUUAGGC CGAA AAUCGAUU
1544
|
746
AUUCUGCU C CUCUAGCU
123
AGCUAGAG CUGAUGAG GCCGUUAGGC CGAA AGCAGAAU
1545
|
749
CUGCUCCU C AUGCUCUG
124
CAGAGCUA CUGAUGAG GCCGUUAGGC CGAA AGGAGCAG
1546
|
751
GCUCCUCU A GCUCUGCU
125
AGCAGAGC CUGAUGAG GCCGUUAGGC CGAA AGAGGAGC
1547
|
755
CUCUAGCU C UGCUGCAU
126
AUGCAGCA CUGAUGAG GCCGUUAGGC CGAA AGCUAGAG
1548
|
764
UGCUGCAU A AAAUCUUA
127
UAAGAUUU CUGAUGAG GCCGUUAGGC CGAA AUGCAGCA
1549
|
769
CAUAAAAU C UUAGUUGA
128
UCAACUAA CUGAUGAG GCCGUUAGGC CGAA AUUUUAUG
1550
|
771
UAAAAUCU U AGUUGAGA
129
UCUCAACU CUGAUGAG GCCGUUAGGC CGAA AGAUUUUA
1551
|
772
AAAAUCUU A GUUGAGAA
130
UUCUCAAC CUGAUGAG GCCGUUAGGC CGAA AAGAUUUU
1552
|
775
AUCUUAGU U GAGAAUCC
131
GGAUUCUC CUGAUGAG GCCGUUAGGC CGAA ACUAAGAU
1553
|
782
UUGAGAAU C CAUCAGCA
132
UGCUGAUG CUGAUGAG GCCGUUAGGC CGAA AUUCUCAA
1554
|
786
GAAUCCAU C AGCAAGAA
133
UUCUUGCU CUGAUGAG GCCGUUAGGC CGAA AUGGAUUC
1555
|
796
GCAAGAAU U ACCAUUCC
134
GGAAUGGU CUGAUGAG GCCGUUAGGC CGAA AUUCUUGC
1556
|
797
CAAGAAUU A CCAUUCCA
135
UGGAAUGG CUGAUGAG GCCGUUAGGC CGAA AAUUCUUG
1557
|
802
AUUACCAU U CCAGACAU
136
AUGUCUGG CUGAUGAG GCCGUUAGGC CGAA AUGGUAAU
1558
|
803
UUACCAUU C CAGACAUC
137
GAUGUCUG CUGAUGAG GCCGUUAGGC CGAA AAUGGUAA
1559
|
811
CCAGACAU C AAAAAAGA
138
UCUUUUUU CUGAUGAG GCCGUUAGGC CGAA AUGUCUGG
1560
|
821
AAAAAGAU A GAUGGUAC
139
GUACCAUC CUGAUGAG GCCGUUAGGC CGAA AUCUUUUU
1561
|
828
UAGAUGGU A CAACAAAC
140
GUUUGUUG CUGAUGAG GCCGUUAGGC CGAA ACCAUCUA
1562
|
841
AAACCCCU C AAGAAAGG
141
CCUUUCUU CUGAUGAG GCCGUUAGGC CGAA AGGGGUUU
1563
|
868
CCCCGAGU C ACUUCAGG
142
CCUGAAGU CUGAUGAG GCCGUUAGGC CGAA ACUCGGGG
1564
|
872
GAGUCACU U CAGGUGGU
143
ACCACCUG CUGAUGAG GCCGUUAGGC CGAA AGUGACUC
1565
|
873
AGUCACUU C AGGUGGUG
144
CACCACCU CUGAUGAG GCCGUUAGGC CGAA AAGUGACU
1566
|
885
UGGUGUGU C AGAGUCUC
145
GAGACUCU CUGAUGAG GCCGUUAGGC CGAA ACACACCA
1567
|
891
GUCAGAGU C UCCCAGUG
146
CACUGGGA CUGAUGAG GCCGUUAGGC CGAA ACUCUGAC
1568
|
893
CAGAGUCU C CCAGUGGA
147
UCCACUGG CUGAUGAG GCCGUUAGGC CGAA AGACUCUG
1569
|
903
CAGUGGAU U UUCUAAGC
148
GCUUAGAA CUGAUGAG GCCGUUAGGC CGAA AUCCACUG
1570
|
904
AGUGGAUU U UCUAAGCA
149
UGCUUAGA CUGAUGAG GCCGUUAGGC CGAA AAUCCACU
1571
|
905
GUGGAUUU U CUAAGCAC
150
GUGCUUAG CUGAUGAG GCCGUUAGGC CGAA AAAUCCAC
1572
|
906
UGGAUUUU C UAAGCACA
151
UGUGCUUA CUGAUGAG GCCGUUAGGC CGAA AAAAUCCA
1573
|
908
GAUUUUCU A AGCACAUU
152
AAUGUGCU CUGAUGAG GCCGUUAGGC CGAA AGAAAAUC
1574
|
916
AAGCACAU U CAAUCCAA
153
UUGGAUUG CUGAUGAG GCCGUUAGGC CGAA AUGUGCUU
1575
|
917
AGCACAUU C AAUCCAAU
154
AUUGGAUU CUGAUGAG GCCGUUAGGC CGAA AAUGUGCU
1576
|
921
CAUUCAAU C CAAUUUGG
155
CCAAAUUG CUGAUGAG GCCGUUAGGC CGAA AUUGAAUG
1577
|
926
AAUCCAAU U UGGACUUC
156
GAAGUCCA CUGAUGAG GCCGUUAGGC CGAA AUUGGAUU
1578
|
927
AUCCAAUU U GGACUUCU
157
AGAAGUCC CUGAUGAG GCCGUUAGGC CGAA AAUUGGAU
1579
|
933
UUUGGACU U CUCUCCAG
158
CUGGAGAG CUGAUGAG GCCGUUAGGC CGAA AGUCCAAA
1580
|
934
UUGGACUU C UCUCCAGU
159
ACUGGAGA CUGAUGAG GCCGUUAGGC CGAA AAGUCCAA
1581
|
936
GGACUUCU C UCCAGUAA
160
UUACUGGA CUGAUGAG GCCGUUAGGC CGAA AGAAGUCC
1582
|
938
ACUUCUCU C CAGUAAAC
161
GUUUACUG CUGAUGAG GCCGUUAGGC CGAA AGAGAAGU
1583
|
943
UCUCCAGU A AACAGUGC
162
GCACUGUU CUGAUGAG GCCGUUAGGC CGAA ACUGGAGA
1584
|
953
ACAGUGCU U CUAGUGAA
163
UUCACUAG CUGAUGAG GCCGUUAGGC CGAA AGCACUGU
1585
|
954
CAGUGCUU C UAGUGAAG
164
CUUCACUA CUGAUGAG GCCGUUAGGC CGAA AAGCACUG
1586
|
956
GUGCUUCU A GUGAAGAA
165
UUCUUCAC CUGAUGAG GCCGUUAGGC CGAA AGAAGCAC
1587
|
975
UGUGAAGU A CUCCAGUU
166
AACUGGAG CUGAUGAG GCCGUUAGGC CGAA ACUUCACA
1588
|
978
GAAGUACU C CAGUUCUC
167
GAGAACUG CUGAUGAG GCCGUUAGGC CGAA AGUACUUC
1589
|
983
ACUCCAGU U CUCAGCCA
168
UGGCUGAG CUGAUGAG GCCGUUAGGC CGAA ACUGGAGU
1590
|
984
CUCCAGUU C UCAGCCAG
169
CUGGCUGA CUGAUGAG GCCGUUAGGC CGAA AACUGGAG
1591
|
986
CCAGUUCU C AGCCAGAA
170
UUCUGGCU CUGAUGAG GCCGUUAGGC CGAA AGAACUGG
1592
|
1007
GCACAGGU C UUUCCUUA
171
UAAGGAAA CUGAUGAG GCCGUUAGGC CGAA ACCUGUGC
1593
|
1009
ACAGGUCU U UCCUUAUG
172
CAUAAGGA CUGAUGAG GCCGUUAGGC CGAA AGACCUGU
1594
|
1010
CAGGUCUU U CCUUAUGG
173
CCAUAAGG CUGAUGAG GCCGUUAGGC CGAA AAGACCUG
1595
|
1011
AGGUCUUU C CUUAUGGG
174
CCCAUAAG CUGAUGAG GCCGUUAGGC CGAA AAAGACCU
1596
|
1014
UCUUUCCU U AUGGGAUA
175
UAUCCCAU CUGAUGAG GCCGUUAGGC CGAA AGGAAAGA
1597
|
1015
CUUUCCUU A UGGGAUAC
176
GUAUCCCA CUGAUGAG GCCGUUAGGC CGAA AAGGAAAG
1598
|
1022
UAUGGGAU A CCAGCCCC
177
GGGGCUGG CUGAUGAG GCCGUUAGGC CGAA AUCCCAUA
1599
|
1032
CAGCCCCU C AUACAUUG
178
CAAUGUAU CUGAUGAG GCCGUUAGGC CGAA AGGGGCUG
1600
|
1035
CCCCUCAU A CAUUGAUA
179
UAUCAAUG CUGAUGAG GCCGUUAGGC CGAA AUGAGGGG
1601
|
1039
UCAUACAU U GAUAAAUU
180
AAUUUAUC CUGAUGAG GCCGUUAGGC CGAA AUGUAUGA
1602
|
1043
ACAUUGAU A AAUUGGUA
181
UACCAAUU CUGAUGAG GCCGUUAGGC CGAA AUCAAUGU
1603
|
1047
UGAUAAAU U GGUACAAG
182
CUUGUACC CUGAUGAG GCCGUUAGGC CGAA AUUUAUCA
1604
|
1051
AAAUUGGU A CAAGGGAU
183
AUCCCUUG CUGAUGAG GCCGUUAGGC CGAA ACCAAUUU
1605
|
1060
CAAGGGAU C AGCUUUUC
184
GAAAAGCU CUGAUGAG GCCGUUAGGC CGAA AUCCCUUG
1606
|
1065
GAUCAGCU U UUCCCAGC
185
GCUGGGAA CUGAUGAG GCCGUUAGGC CGAA AGCUGAUC
1607
|
1066
AUCAGCUU U UCCCAGCC
186
GGCUGGGA CUGAUGAG GCCGUUAGGC CGAA AAGCUGAU
1608
|
1067
UCAGCUUU U CCCAGCCC
187
GGGCUGGG CUGAUGAG GCCGUUAGGC CGAA AAAGCUGA
1609
|
1068
CAGCUUUU C CCAGCCCA
188
UGGGCUGG CUGAUGAG GCCGUUAGGC CGAA AAAAGCUG
1610
|
1082
CCACAUGU C CUGAUCAU
189
AUGAUCAG CUGAUGAG GCCGUUAGGC CGAA ACAUGUGG
1611
|
1088
GUCCUGAU C AUAUGCUU
190
AAGCAUAU CUGAUGAG GCCGUUAGGC CGAA AUCAGGAC
1612
|
1091
CUGAUCAU A UGCUUUUG
191
CAAAAGCA CUGAUGAG GCCGUUAGGC CGAA AUGAUCAG
1613
|
1096
CAUAUGCU U UUGAAUAG
192
CUAUUCAA CUGAUGAG GCCGUUAGGC CGAA AGCAUAUG
1614
|
1097
AUAUGCUU U UGAAUAGU
193
ACUAUUCA CUGAUGAG GCCGUUAGGC CGAA AAGCAUAU
1615
|
1098
UAUGCUUU U GAAUAGUC
194
GACUAUUC CUGAUGAG GCCGUUAGGC CGAA AAAGCAUA
1616
|
1103
UUUUGAAU A GUCAGUUA
195
UAACUGAC CUGAUGAG GCCGUUAGGC CGAA AUUCAAAA
1617
|
1106
UGAAUAGU C AGUUACUU
196
AAGUAACU CUGAUGAG GCCGUUAGGC CGAA ACUAUUCA
1618
|
1110
UAGUCAGU U ACUUGGCA
197
UGCCAAGU CUGAUGAG GCCGUUAGGC CGAA ACUGACUA
1619
|
1111
AGUCAGUU A CUUGGCAC
198
GUGCCAAG CUGAUGAG GCCGUUAGGC CGAA AACUGACU
1620
|
1114
CAGUUACU U GGCACCCC
199
GGGGUGCC CUGAUGAG GCCGUUAGGC CGAA AGUAACUG
1621
|
1128
CCCAGGAU C CUCACAGA
200
UCUGUGAG CUGAUGAG GCCGUUAGGC CGAA AUCCUGGG
1622
|
1131
AGGAUCCU C ACAGAACC
201
GGUUCUGU CUGAUGAG GCCGUUAGGC CGAA AGGAUCCU
1623
|
1152
GCAGCGGU U GGUCAAAA
202
UUUUGACC CUGAUGAG GCCGUUAGGC CGAA ACCGCUGC
1624
|
1156
CGGUUGGU C AAAAGAAU
203
AUUCUUUU CUGAUGAG GCCGUUAGGC CGAA ACCAACCG
1625
|
1173
GACACGAU U CUUUACCA
204
UGGUAAAG CUGAUGAG GCCGUUAGGC CGAA AUCGUGUC
1626
|
1174
ACACGAUU C UUUACCAA
205
UUGGUAAA CUGAUGAG GCCGUUAGGC CGAA AAUCGUGU
1627
|
1176
ACGAUUCU U UACCAAAU
206
AUUUGGUA CUGAUGAG GCCGUUAGGC CGAA AGAAUCGU
1628
|
1177
CGAUUCUU U ACCAAAUU
207
AAUUUGGU CUGAUGAG GCCGUUAGGC CGAA AAGAAUCG
1629
|
1178
GAUUCUUU A CCAAAUUG
208
CAAUUUGG CUGAUGAG GCCGUUAGGC CGAA AAAGAAUC
1630
|
1185
UACCAAAU U GGAUGCAG
209
CUGCAUCC CUGAUGAG GCCGUUAGGC CGAA AUUUGGUA
1631
|
1200
AGACAAAU C UUAUCAAU
210
AUUGAUAA CUGAUGAG GCCGUUAGGC CGAA AUUUGUCU
1632
|
1202
ACAAAUCU U AUCAAUGC
211
GCAUUGAU CUGAUGAG GCCGUUAGGC CGAA AGAUUUGU
1633
|
1203
CAAAUCUU A UCAAUGCC
212
GGCAUUGA CUGAUGAG GCCGUUAGGC CGAA AAGAUUUG
1634
|
1205
AAUCUUAU C AAUGCCUG
213
CAGGCAUU CUGAUGAG GCCGUUAGGC CGAA AUAAGAUU
1635
|
1223
AAGAGACU U GUGAGAAG
214
CUUCUCAC CUGAUGAG GCCGUUAGGC CGAA AGUCUCUU
1636
|
1233
UGAGAAGU U GGGCUAUC
215
GAUAGCCC CUGAUGAG GCCGUUAGGC CGAA ACUUCUCA
1637
|
1239
GUUGGGCU A UCAAUGGA
216
UCCAUUGA CUGAUGAG GCCGUUAGGC CGAA AGCCCAAC
1638
|
1241
UGGGCUAU C AAUGGAAG
217
CUUCCAUU CUGAUGAG GCCGUUAGGC CGAA AUAGCCCA
1639
|
1256
AGAAAAGU U GUAUGAAU
218
AUUCAUAC CUGAUGAG GCCGUUAGGC CGAA ACUUUUCU
1640
|
1259
AAAGUUGU A UGAAUCAG
219
CUGAUUCA CUGAUGAG GCCGUUAGGC CGAA ACAACUUU
1641
|
1265
GUAUGAAU C AGGUUACU
220
AGUAACCU CUGAUGAG GCCGUUAGGC CGAA AUUCAUAC
1642
|
1270
AAUCAGGU U ACUAUAUC
221
GAUAUAGU CUGAUGAG GCCGUUAGGC CGAA ACCUGAUU
1643
|
1271
AUCAGGUU A CUAUAUCA
222
UGAUAUAG CUGAUGAG GCCGUUAGGC CGAA AACCUGAU
1644
|
1274
AGGUUACU A UAUCAACA
223
UGUUGAUA CUGAUGAG GCCGUUAGGC CGAA AGUAACCU
1645
|
1276
GUUACUAU A UCAACAAC
224
GUUGUUGA CUGAUGAG GCCGUUAGGC CGAA AUAGUAAC
1646
|
1278
UACUAUAU C AACAACUG
225
CAGUUGUU CUGAUGAG GCCGUUAGGC CGAA AUAUAGUA
1647
|
1289
CAACUGAU A GGAGAAAC
226
GUUUCUCC CUGAUGAG GCCGUUAGGC CGAA AUCAGUUG
1648
|
1301
GAAACAAU A AACUCAUU
227
AAUGAGUU CUGAUGAG GCCGUUAGGC CGAA AUUGUUUC
1649
|
1306
AAUAAACU C AUUUUCAA
228
UUGAAAAU CUGAUGAG GCCGUUAGGC CGAA AGUUUAUU
1650
|
1309
AAACUCAU U UUCAAAGU
229
ACUUUGAA CUGAUGAG GCCGUUAGGC CGAA AUGAGUUU
1651
|
1310
AACUCAUU U UCAAAGUG
230
CACUUUGA CUGAUGAG GCCGUUAGGC CGAA AAUGAGUU
1652
|
1311
ACUCAUUU U CAAAGUGA
231
UCACUUUG CUGAUGAG GCCGUUAGGC CGAA AAAUGAGU
1653
|
1312
CUCAUUUU C AAAGUGAA
232
UUCACUUU CUGAUGAG GCCGUUAGGC CGAA AAAAUGAG
1654
|
1322
AAGUGAAU U UGUUAGAA
233
UUCUAACA CUGAUGAG GCCGUUAGGC CGAA AUUCACUU
1655
|
1323
AGUGAAUU U GUUAGAAA
234
UUUCUAAC CUGAUGAG GCCGUUAGGC CGAA AAUUCACU
1656
|
1326
GAAUUUGU U AGAAAUGG
235
CCAUUUCU CUGAUGAG GCCGUUAGGC CGAA ACAAAUUC
1657
|
1327
AAUUUGUU A GAAAUGGA
236
UCCAUUUC CUGAUGAG GCCGUUAGGC CGAA AACAAAUU
1658
|
1340
UGGAUGAU A AAAUAUUG
237
CAAUAUUU CUGAUGAG GCCGUUAGGC CGAA AUCAUCCA
1659
|
1345
GAUAAAAU A UUGGUUGA
238
UCAACCAA CUGAUGAG GCCGUUAGGC CGAA AUUUUAUC
1660
|
1347
UAAAAUAU U GGUUGACU
239
AGUCAACC CUGAUGAG GCCGUUAGGC CGAA AUAUUUUA
1661
|
1351
AUAUUGGU U GACUUCCG
240
CGGAAGUC CUGAUGAG GCCGUUAGGC CGAA ACCAAUAU
1662
|
1356
GGUUGACU U CCGGCUUU
241
AAAGCCGG CUGAUGAG GCCGUUAGGC CGAA AGUCAACC
1663
|
1357
GUUGACUU C CGGCUUUC
242
GAAAGCCG CUGAUGAG GCCGUUAGGC CGAA AAGUCAAC
1664
|
1363
UUCCGGCU U UCUAAGGG
243
CCCUUAGA CUGAUGAG GCCGUUAGGC CGAA AGCCGGAA
1665
|
1364
UCCGGCUU U CUAAGGGU
244
ACCCUUAG CUGAUGAG GCCGUUAGGC CGAA AAGCCGGA
1666
|
1365
CCGGCUUU C UAAGGGUG
245
CACCCUUA CUGAUGAG GCCGUUAGGC CGAA AAAGCCGG
1667
|
1367
GGCUUUCU A AGGGUGAU
246
AUCACCCU CUGAUGAG GCCGUUAGGC CGAA AGAAAGCC
1668
|
1380
UGAUGGAU U GGAGUUCA
247
UGAACUCC CUGAUGAG GCCGUUAGGC CGAA AUCCAUCA
1669
|
1386
AUUGGAGU U CAAGAGAC
248
GUCUCUUG CUGAUGAG GCCGUUAGGC CGAA ACUCCAAU
1670
|
1387
UUGGAGUU C AAGAGACA
249
UGUCUCUU CUGAUGAG GCCGUUAGGC CGAA AACUCCAA
1671
|
1398
GAGACACU U CCUGAAGA
250
UCUUCAGG CUGAUGAG GCCGUUAGGC CGAA AGUGUCUC
1672
|
1399
AGACACUU C CUGAAGAU
251
AUCUUCAG CUGAUGAG GCCGUUAGGC CGAA AAGUGUCU
1673
|
1408
CUGAAGAU U AAAGGGAA
252
UUCCCUUU CUGAUGAG GCCGUUAGGC CGAA AUCUUCAG
1674
|
1409
UGAAGAUU A AAGGGAAG
253
CUUCCCUU CUGAUGAG GCCGUUAGGC CGAA AAUCUUCA
1675
|
1423
AAGCUGAU U GAUAUUGU
254
ACAAUAUC CUGAUGAG GCCGUUAGGC CGAA AUCAGCUU
1676
|
1427
UGAUUGAU A UUGUGAGC
255
GCUCACAA CUGAUGAG GCCGUUAGGC CGAA AUCAAUCA
1677
|
1429
AUUGAUAU U GUGAGCAG
256
CUGCUCAC CUGAUGAG GCCGUUAGGC CGAA AUAUCAAU
1678
|
1447
CAGAAGGU U UGGCUUCC
257
GGAAGCCA CUGAUGAG GCCGUUAGGC CGAA ACCUUCUG
1679
|
1448
AGAAGGUU U GGCUUCCU
258
AGGAAGCC CUGAUGAG GCCGUUAGGC CGAA AACCUUCU
1680
|
1453
GUUUGGCU U CCUGCCAC
259
GUGGCAGG CUGAUGAG GCCGUUAGGC CGAA AGCCAAAC
1681
|
1454
UUUGGCUU C CUGCCACA
260
UGUGGCAG CUGAUGAG GCCGUUAGGC CGAA AAGCCAAA
1682
|
1467
CACAUGAU C GGACCAUC
261
GAUGGUCC CUGAUGAG GCCGUUAGGC CGAA AUCAUGUG
1683
|
1475
CGGACCAU C GGCUCUGG
262
CCAGAGCC CUGAUGAG GCCGUUAGGC CGAA AUGGUCCG
1684
|
1480
CAUCGGCU C UGGGGAAU
263
AUUCCCCA CUGAUGAG GCCGUUAGGC CGAA AGCCGAUG
1685
|
1489
UGGGGAAU C CUGGUGAA
264
UUCACCAG CUGAUGAG GCCGUUAGGC CGAA AUUCCCCA
1686
|
1499
UGGUGAAU A UAGUGCUG
265
CAGCACUA CUGAUGAG GCCGUUAGGC CGAA AUUCACCA
1687
|
1501
GUGAAUAU A GUGCUGCU
266
AGCAGCAC CUGAUGAG GCCGUUAGGC CGAA AUAUUCAC
1688
|
1510
GUGCUGCU A UGUUGACA
267
UGUCAACA CUGAUGAG GCCGUUAGGC CGAA AGCAGCAC
1689
|
1514
UGCUAUGU U GACAUUAU
268
AUAAUGUC CUGAUGAG GCCGUUAGGC CGAA ACAUAGCA
1690
|
1520
GUUGACAU U AUUCUUCC
269
GGAAGAAU CUGAUGAG GCCGUUAGGC CGAA AUGUCAAC
1691
|
1521
UUGACAUU A UUCUUCCU
270
AGGAAGAA CUGAUGAG GCCGUUAGGC CGAA AAUGUCAA
1692
|
1523
GACAUUAU U CUUCCUAG
271
CUAGGAAG CUGAUGAG GCCGUUAGGC CGAA AUAAUGUC
1693
|
1524
ACAUUAUU C UUCCUAGA
272
UCUAGGAA CUGAUGAG GCCGUUAGGC CGAA AAUAAUGU
1694
|
1526
AUUAUUCU U CCUAGAGA
273
UCUCUAGG CUGAUGAG GCCGUUAGGC CGAA AGAAUAAU
1695
|
1527
UUAUUCUU C CUAGAGAA
274
UUCUCUAG CUGAUGAG GCCGUUAGGC CGAA AAGAAUAA
1696
|
1530
UUCUUCCU A GAGAAGAU
275
AUCUUCUC CUGAUGAG GCCGUUAGGC CGAA AGGAAGAA
1697
|
1539
GAGAAGAU U AUCCUGUC
276
GACAGGAU CUGAUGAG GCCGUUAGGC CGAA AUCUUCUC
1698
|
1540
AGAAGAUU A UCCUGUCC
277
GGACAGGA CUGAUGAG GCCGUUAGGC CGAA AAUCUUCU
1699
|
1542
AAGAUUAU C CUGUCCUG
278
CAGGACAG CUGAUGAG GCCGUUAGGC CGAA AUAAUCUU
1700
|
1547
UAUCCUGU C CUGCAAAC
279
GUUUGCAG CUGAUGAG GCCGUUAGGC CGAA ACAGGAUA
1701
|
1563
CUGCAAAU A GUAGUUCC
280
GGAACUAC CUGAUGAG GCCGUUAGGC CGAA AUUUGCAG
1702
|
1566
CAAAUAGU A GUUCCUGA
281
UCAGGAAC CUGAUGAG GCCGUUAGGC CGAA ACUAUUUG
1703
|
1569
AUAGUAGU U CCUGAAGU
282
ACUUCAGG CUGAUGAG GCCGUUAGGC CGAA ACUACUAU
1704
|
1570
UAGUAGUU C CUGAAGUG
283
CACUUCAG CUGAUGAG GCCGUUAGGC CGAA AACUACUA
1705
|
1580
UGAAGUGU U CACUUCCC
284
GGGAAGUG CUGAUGAG GCCGUUAGGC CGAA ACACUUCA
1706
|
1581
GAAGUGUU C ACUUCCCU
285
AGGGAAGU CUGAUGAG GCCGUUAGGC CGAA AACACUUC
1707
|
1585
UGUUCACU U CCCUGUUU
286
AAACAGGG CUGAUGAG GCCGUUAGGC CGAA AGUGAACA
1708
|
1586
GUUCACUU C CCUGUUUA
287
UAAACAGG CUGAUGAG GCCGUUAGGC CGAA AAGUGAAC
1709
|
1592
UUCCCUGU U UAUCCAAA
288
UUUGGAUA CUGAUGAG GCCGUUAGGC CGAA ACAGGGAA
1710
|
1593
UCCCUGUU U AUCCAAAC
289
GUUUGGAU CUGAUGAG GCCGUUAGGC CGAA AACAGGGA
1711
|
1594
CCCUGUUU A UCCAAACA
290
UGUUUGGA CUGAUGAG GCCGUUAGGC CGAA CUGAUGAG
1712
|
1596
CUGUUUAU C CAAACAUC
291
GAUGUUUG CUGAUGAG GCCGUUAGGC CGAA AUAAACAG
1713
|
1604
CCAAACAU C UUCCAAUU
292
AAUUGGAA CUGAUGAG GCCGUUAGGC CGAA AUGUUUGG
1714
|
1606
AAACAUCU U CCAAUUUA
293
UAAAUUGG CUGAUGAG GCCGUUAGGC CGAA AGAUGUUU
1715
|
1607
AACAUCUU C CAAUUUAU
294
AUAAAUUG CUGAUGAG GCCGUUAGGC CGAA AAGAUGUU
1716
|
1612
CUUCCAAU U UAUUUUGU
295
ACAAAAUA CUGAUGAG GCCGUUAGGC CGAA AUUGGAAG
1717
|
1613
UUCCAAUU U AUUUUGUU
296
AACAAAAU CUGAUGAG GCCGUUAGGC CGAA AAUUGGAA
1718
|
1614
UCCAAUUU A UUUUGUUU
297
AAACAAAA CUGAUGAG GCCGUUAGGC CGAA AAAUUGGA
1719
|
1616
CAAUUUAU U UUGUUUGU
298
ACAAACAA CUGAUGAG GCCGUUAGGC CGAA AUAAAUUG
1720
|
1617
AAUUUAUU U UGUUUGUU
299
AACAAACA CUGAUGAG GCCGUUAGGC CGAA AAUAAAUU
1721
|
1618
AUUUAUUU U GUUUGUUC
300
GAACAAAC CUGAUGAG GCCGUUAGGC CGAA AAAUAAAU
1722
|
1621
UAUUUUGU U UGUUCGGC
301
GCCGAACA CUGAUGAG GCCGUUAGGC CGAA ACAAAAUA
1723
|
1622
AUUUUGUU U GUUCGGCA
302
UGCCGAAC CUGAUGAG GCCGUUAGGC CGAA AACAAAAU
1724
|
1625
UUGUUUGU U CGGCAUAC
303
GUAUGCCG CUGAUGAG GCCGUUAGGC CGAA ACAAACAA
1725
|
1626
UGUUUGUU C GGCAUACA
304
UGUAUGCC CUGAUGAG GCCGUUAGGC CGAA AACAAACA
1726
|
1632
UUCGGCAU A CAAAUAAU
305
AUUAUUUG CUGAUGAG GCCGUUAGGC CGAA AUGCCGAA
1727
|
1638
AUACAAAU A AUACCUAU
306
AUAGGUAU CUGAUGAG GCCGUUAGGC CGAA AUUUGUAU
1728
|
1641
CAAAUAAU A CCUAUAUC
307
GAUAUAGG CUGAUGAG GCCGUUAGGC CGAA AUUAUUUG
1729
|
1645
UAAUACCU A UAUCUUAA
308
UUAAGAUA CUGAUGAG GCCGUUAGGC CGAA AGGUAUUA
1730
|
1647
AUACCUAU A UCUUAAUU
309
AAUUAAGA CUGAUGAG GCCGUUAGGC CGAA AUAGGUAU
1731
|
1649
ACCUAUAU C UUAAUUGU
310
ACAAUUAA CUGAUGAG GCCGUUAGGC CGAA AUAUAGGU
1732
|
1651
CUAUAUCU U AAUUGUAA
311
UUACAAUU CUGAUGAG GCCGUUAGGC CGAA AGAUAUAG
1733
|
1652
UAUAUCUU A AUUGUAAG
312
CUUACAAU CUGAUGAG GCCGUUAGGC CGAA AAGAUAUA
1734
|
1655
AUCUUAAU U GUAAGCAA
313
UUGCUUAC CUGAUGAG GCCGUUAGGC CGAA AUUAAGAU
1735
|
1658
UUAAUUGU A AGCAAAAC
314
GUUUUGCU CUGAUGAG GCCGUUAGGC CGAA ACAAUUAA
1736
|
1668
GCAAAACU U UGGGGAAA
315
UUUCCCCA CUGAUGAG GCCGUUAGGC CGAA AGUUUUGC
1737
|
1669
CAAAACUU U GGGGAAAG
316
CUUUCCCC CUGAUGAG GCCGUUAGGC CGAA AAGUUUUG
1738
|
1685
GGAUGAAU A GAAUUCAU
317
AUGAAUUC CUGAUGAG GCCGUUAGGC CGAA AUUCAUCC
1739
|
1690
AAUAGAAU U CAUUUGAU
318
AUCAAAUG CUGAUGAG GCCGUUAGGC CGAA AUUCUAUU
1740
|
1691
AUAGAAUU C AUUUGAUU
319
AAUCAAAU CUGAUGAG GCCGUUAGGC CGAA AAUUCUAU
1741
|
1694
GAAUUCAU U UGAUUAUU
320
AAUAAUCA CUGAUGAG GCCGUUAGGC CGAA AUGAAUUC
1742
|
1695
AAUUCAUU U GAUUAUUU
321
AAAUAAUC CUGAUGAG GCCGUUAGGC CGAA AAUGAAUU
1743
|
1699
CAUUUGAU U AUUUCUUC
322
GAAGAAAU CUGAUGAG GCCGUUAGGC CGAA AUCAAAUG
1744
|
1700
AUUUGAUU A UUUCUUCA
323
UGAAGAAA CUGAUGAG GCCGUUAGGC CGAA AAUCAAAU
1745
|
1702
UUGAUUAU U UCUUCAUG
324
CAUGAAGA CUGAUGAG GCCGUUAGGC CGAA AUAAUCAA
1746
|
1703
UGAUUAUU U CUUCAUGU
325
ACAUGAAG CUGAUGAG GCCGUUAGGC CGAA AAUAAUCA
1747
|
1704
GAUUAUUU C UUCAUGUG
326
CACAUGAA CUGAUGAG GCCGUUAGGC CGAA AAAUAAUC
1748
|
1706
UUAUUUCU U CAUGUGUG
327
CACACAUG CUGAUGAG GCCGUUAGGC CGAA AGAAAUAA
1749
|
1707
UAUUUCUU C AUGUGUGU
328
ACACACAU CUGAUGAG GCCGUUAGGC CGAA AAGAAAUA
1750
|
1716
AUGUGUGU U AUGUAUCU
329
AGAUACUA CUGAUGAG GCCGUUAGGC CGAA ACACACAU
1751
|
1717
UGUGUGUU U AGUAUCUG
330
CAGAUACU CUGAUGAG GCCGUUAGGC CGAA AACACACA
1752
|
1718
GUGUGUUU A GUAUCUGA
331
UCAGAUAC CUGAUGAG GCCGUUAGGC CGAA AAACACAC
1753
|
1721
UGUUUAGU A UCUGAAUU
332
AAUUCAGA CUGAUGAG GCCGUUAGGC CGAA ACUAAACA
1754
|
1723
UUUAGUAU C UGAAUUUG
333
CAAAUUCA CUGAUGAG GCCGUUAGGC CGAA AUACUAAA
1755
|
1729
AUCUGAAU U UGAAACUC
334
GAGUUUCA CUGAUGAG GCCGUUAGGC CGAA AUUCAGAU
1756
|
1730
UCUGAAUU U GAAACUCA
335
UGAGUUUC CUGAUGAG GCCGUUAGGC CGAA AAUUCAGA
1757
|
1737
UUGAAACU C AUCUGGUG
336
CACCAGAU CUGAUGAG GCCGUUAGGC CGAA AGUUUCAA
1758
|
1740
AAACUCAU C UGGUGGAA
337
UUCCACCA CUGAUGAG GCCGUUAGGC CGAA AUGAGUUU
1759
|
1756
AACCAAGU U UCAGGGGA
338
UCCCCUGA CUGAUGAG GCCGUUAGGC CGAA ACUUGGUU
1760
|
1757
ACCAAGUU U CAGGGGAC
339
GUCCCCUG CUGAUGAG GCCGUUAGGC CGAA AACUUGGU
1761
|
1758
CCAAGUUU C AGGGGACA
340
UGUCCCCU CUGAUGAG GCCGUUAGGC CGAA AAACUUGG
1762
|
1772
ACAUGAGU U UUCCAGCU
341
AGCUGGAA CUGAUGAG GCCGUUAGGC CGAA ACUCAUGU
1763
|
1773
CAUGAGUU U UCCAGCUU
342
AAGCUGGA CUGAUGAG GCCGUUAGGC CGAA AACUCAUG
1764
|
1774
AUGAGUUU U CCAGCUUU
343
AAAGCUGG CUGAUGAG GCCGUUAGGC CGAA AAACUCAU
1765
|
1775
UGAGUUUU C CAGCUUUU
344
AAAAGCUG CUGAUGAG GCCGUUAGGC CGAA AAAACUCA
1766
|
1781
UUCCAGCU U UUAUACAC
345
GUGUAUAA CUGAUGAG GCCGUUAGGC CGAA AGCUGGAA
1767
|
1782
UCCAGCUU U UAUACACA
346
UGUGUAUA CUGAUGAG GCCGUUAGGC CGAA AAGCUGGA
1768
|
1783
CCAGCUUU U AUACACAC
347
GUGUGUAU CUGAUGAG GCCGUUAGGC CGAA AAAGCUGG
1769
|
1784
CAGCUUUU A UACACACG
348
CGUGUGUA CUGAUGAG GCCGUUAGGC CGAA AAAAGCUG
1770
|
1786
GCUUUUAU A CACACGUA
349
UACGUGUG CUGAUGAG GCCGUUAGGC CGAA AUAAAAGC
1771
|
1794
ACACACGU A UCUCAUUU
350
AAAUGAGA CUGAUGAG GCCGUUAGGC CGAA ACGUGUGU
1772
|
1796
ACACGUAU C UCAUUUUU
351
AAAAAUGA CUGAUGAG GCCGUUAGGC CGAA AUACGUGU
1773
|
1798
ACGUAUCU C AUUUUUAU
352
AUAAAAAU CUGAUGAG GCCGUUAGGC CGAA AGAUACGU
1774
|
1801
UAUCUCAU U UUUAUCAA
353
UUGAUAAA CUGAUGAG GCCGUUAGGC CGAA AUGAGAUA
1775
|
1802
AUCUCAUU U UUAUCAAA
354
UUUGAUAA CUGAUGAG GCCGUUAGGC CGAA AAUGAGAU
1776
|
1803
UCUCAUUU U UAUCAAAA
355
UUUUGAUA CUGAUGAG GCCGUUAGGC CGAA AAAUGAGA
1777
|
1804
CUCAUUUU U AUCAAAAC
356
GUUUUGAU CUGAUGAG GCCGUUAGGC CGAA AAAAUGAG
1778
|
1805
UCAUUUUU A UCAAAACA
357
UGUUUUGA CUGAUGAG GCCGUUAGGC CGAA AAAAAUGA
1779
|
1807
AUUUUUAU C AAAACAUU
358
AAUGUUUU CUGAUGAG GCCGUUAGGC CGAA AUAAAAAU
1780
|
|
Input Sequence = AF016582 Cut Site = UH/.
|
Stem Length = 8. Core Sequence = CUGAUGAG GCCGUUAGGC CGAA
|
AF016582 (Homo sapiens checkpoint kinase Chk1 (CHK1) mRNA; 1821 bp)
|
[0174] Underlined region can be any X sequence or linker as previously defined herein.
4TABLE IV
|
|
Human Chk1 NCH Ribozyme and Substrate Sequence
Rz Seq
PosSubstrateSeq IDRibozymeID
|
9GGCCGGAC A GUCCGCCG359CGGCGGAC CUGAUGAG GCCGUUAGGC CGAA IUCCGGCC1781
13GGACAGUC C GCCGAGGU360ACCUCGGC CUGAUGAG GCCGUUAGGC CGAA IACUGUCC1782
16CAGUCCGC C GAGGUGCU361AGCACCUC CUGAUGAG GCCGUUAGGC CGAA ICGGACUG1783
24CGAGGUGC U CGGUGGAG362CUCCACCG CUGAUGAG GCCGUUAGGC CGAA ICACCUCG1784
35GUGGAGUC A UGGCAGUG363CACUGCCA CUGAUGAG GCCGUUAGGC CGAA IACUCCAC1785
40GUCAUGGC A GUGCCCUU364AAGGGCAC CUGAUGAG GCCGUUAGGC CGAA ICCAUGAC1786
45GGCAGUGC C CUUUGUGG365CCACAAAG CUGAUGAG GCCGUUAGGC CGAA ICACUGCC1787
46GCAGUGCC C UUUGUGGA366UCCACAAA CUGAUGAG GCCGUUAGGC CGAA IGCACUGC1788
47CAGUGCCC U UUGUGGAA367UUCCACAA CUGAUGAG GCCGUUAGGC CGAA IGGCACUG1789
59UGGAAGAC U GGGACUUG368CAAGUCCC CUGAUGAG GCCGUUAGGC CGAA IUCUUCCA1790
65ACUGGGAC U UGGUGCAA369UUGCACCA CUGAUGAG GCCGUUAGGC CGAA IUCCCAGU1791
72CUUGGUGC A AACCCUGG370CCAGGGUU CUGAUGAG GCCGUUAGGC CGAA ICACCAAG1792
76GUGCAAAC C CUGGGAGA371UCUCCCAG CUGAUGAG GCCGUUAGGC CGAA IUUUGCAC1793
77UGCAAACC C UGGGAGAA372UUCUCCCA CUGAUGAG GCCGUUAGGC CGAA IGUUUGCA1794
78GCAAACCC U GGGAGAAG373CUUCUCCC CUGAUGAG GCCGUUAGGC CGAA IGGUUUGC1795
91GAAGGUGC C UAUGGAGA374UCUCCAUA CUGAUGAG GCCGUUAGGC CGAA ICACCUUC1796
92AAGGUGCC U AUGGAGAA375UUCUCCAU CUGAUGAG GCCGUUAGGC CGAA IGCACCUU1797
105AGAAGUUC A ACUUGCUG376CAGCAAGU CUGAUGAG GCCGUUAGGC CGAA IAACUUCU1798
108AGUUCAAC U UGCUGUGA377UCACAGCA CUGAUGAG GCCGUUAGGC CGAA IUUGAACU1799
112CAACUUGC U GUGAAUAG378CUAUUCAC CUGAUGAG GCCGUUAGGC CGAA ICAAGUUG1800
127AGAGUAAC U GAAGAAGC379GCUUCUUC CUGAUGAG GCCGUUAGGC CGAA IUUACUCU1801
136GAAGAAGC A GUCGCAGU380ACUGCGAC CUGAUGAG GCCGUUAGGC CGAA ICUUCUUC1802
142GCAGUCGC A GUGAAGAU381AUCUUCAC CUGAUGAG GCCGUUAGGC CGAA ICGACUGC1803
169AAGCGUGC C GUAGACUG382CAGUCUAC CUGAUGAG GCCGUUAGGC CGAA ICACGCUU1804
176CCGUAGAC U GUCCAGAA383UUCUGGAC CUGAUGAG GCCGUUAGGC CGAA IUCUACGG1805
180AGACUGUC C AGAAAAUA384UAUUUUCU CUGAUGAG GCCGUUAGGC CGAA IACAGUCU1806
181GACUGUCC A GAAAAUAU385AUAUUUUC CUGAUGAG GCCGUUAGGC CGAA IGACAGUC1807
203AAGAGAUC U GUAUCAAU386AUUGAUAC CUGAUGAG GCCGUUAGGC CGAA IAUCUCUU1808
209UCUGUAUC A AUAAAAUG387CAUUUUAU CUGAUGAG GCCGUUAGGC CGAA IAUACAGA1809
219UAAAAUGC U AAAUCAUG388CAUGAUUU CUGAUGAG GCCGUUAGGC CGAA ICAUUUUA1810
225GCUAAAUC A UGAAAAUG389CAUUUUCA CUGAUGAG GCCGUUAGGC CGAA IAUUUAGC1811
245UAAAAUUC U AUGGUCAC390GUGACCAU CUGAUGAG GCCGUUAGGC CGAA IAAUUUUA1812
252CUAUGGUC A CAGGAGAG391CUCUCCUG CUGAUGAG GCCGUUAGGC CGAA IACCAUAG1813
254AUGGUCAC A GGAGAGAA392UUCUCUCC CUGAUGAG GCCGUUAGGC CGAA IUGACCAU1814
266GAGAAGGC A AUAUCCAA393UUGGAUAU CUGAUGAG GCCGUUAGGC CGAA ICCUUCUC1815
272GCAAUAUC C AAUAUUUA394UAAAUAUU CUGAUGAG GCCGUUAGGC CGAA IAUAUUGC1816
273CAAUAUCC A AUAUUUAU395AUAAAUAU CUGAUGAG GCCGUUAGGC CGAA IGAUAUUG1817
285UUUAUUUC U GGAGUACU396AGUACUCC CUGAUGAG GCCGUUAGGC CGAA IAAAUAAA1818
293UGGAGUAC U GUAGUGGA397UCCACUAC CUGAUGAG GCCGUUAGGC CGAA IUACUCCA1819
309AGGAGAGC U UUUUGACA398UGUCAAAA CUGAUGAG GCCGUUAGGC CGAA ICUCUCCU1820
317UUUUUGAC A GAAUAGAG399CUCUAUUC CUGAUGAG GCCGUUAGGC CGAA IUCAAAAA1821
327AAUAGAGC C AGACAUAG400CUAUGUCU CUGAUGAG GCCGUUAGGC CGAA ICUCUAUU1822
328AUAGAGCC A GACAUAGG401CCUAUGUC CUGAUGAG GCCGUUAGGC CGAA IGCUCUAU1823
332AGCCAGAC A UAGGCAUG402CAUGCCUA CUGAUGAG GCCGUUAGGC CGAA IUCUGGCU1824
338ACAUAGGC A UGCCUGAA403UUCAGGCA CUGAUGAG GCCGUUAGGC CGAA ICCUAUGU1825
342AGGCAUGC C UGAACCAG404CUGGUUCA CUGAUGAG GCCGUUAGGC CGAA ICAUGCCU1826
343GGCAUGCC U GAACCAGA405UCUGGUUC CUGAUGAG GCCGUUAGGC CGAA IGCAUGCC1827
348GCCUGAAC C AGAUGCUC406GAGCAUCU CUGAUGAG GCCGUUAGGC CGAA IUUCAGGC1828
349CCUGAACC A GAUGCUCA407UGAGCAUC CUGAUGAG GCCGUUAGGC CGAA IGUUCAGG1829
355CCAGAUGC U CAGAGAUU408AAUCUCUG CUGAUGAG GCCGUUAGGC CGAA ICAUCUGG1830
357AGAUGCUC A GAGAUUCU409AGAAUCUC CUGAUGAG GCCGUUAGGC CGAA IAGCAUCU1831
365AGAGAUUC U UCCAUCAA410UUGAUGGA CUGAUGAG GCCGUUAGGC CGAA IAAUCUCU1832
368GAUUCUUC C AUCAACUC411GAGUUGAU CUGAUGAG GCCGUUAGGC CGAA IAAGAAUC1833
369AUUCUUCC A UCAACUCA412UGAGUUGA CUGAUGAG GCCGUUAGGC CGAA IGAAGAAU1834
372CUUCCAUC A ACUCAUGG413CCAUGAGU CUGAUGAG GCCGUUAGGC CGAA IAUGGAAG1835
375CCAUCAAC U CAUGGCAG414CUGCCAUG CUGAUGAG GCCGUUAGGC CGAA IUUGAUGG1836
377AUCAACUC A UGGCAGGG415CCCUGCCA CUGAUGAG GCCGUUAGGC CGAA IAGUUGAU1837
382CUCAUGGC A GGGGUGGU416ACCACCCC CUGAUGAG GCCGUUAGGC CGAA ICCAUGAG1838
396GGUUUAUC U GCAUGGUA417UACCAUGC CUGAUGAG GCCGUUAGGC CGAA IAUAAACC1839
399UUAUCUGC A UGGUAUUG418CAAUACCA CUGAUGAG GCCGUUAGGC CGAA ICAGAUAA1840
415GGAAUAAC U CACAGGGA419UCCCUGUG CUGAUGAG GCCGUUAGGC CGAA IUUAUUCC1841
417AAUAACUC A CAGGGAUA420UAUCCCUG CUGAUGAG GCCGUUAGGC CGAA IAGUUAUU1842
419UAACUCAC A GGGAUAUU421AAUAUCCC CUGAUGAG GCCGUUAGGC CGAA IUGAGUUA1843
432UAUUAAAC C AGAAAAUC422GAUUUUCU CUGAUGAG GCCGUUAGGC CGAA IUUUAAUA1844
433AUUAAACC A GAAAAUCU423AGAUUUUC CUGAUGAG GCCGUUAGGC CGAA IGUUUAAU1845
441AGAAAAUC U UCUGUUGG424CCAACAGA CUGAUGAG GCCGUUAGGC CGAA IAUUUUCU1846
444AAAUCUUC U GUUGGAUG425CAUCCAAC CUGAUGAG GCCGUUAGGC CGAA IAAGAUUU1847
464GGGAUAAC C UCAAAAUC426GAUUUUGA CUGAUGAG GCCGUUAGGC CGAA IUUAUCCC1848
465GGAUAACC U CAAAAUCU427AGAUUUUG CUGAUGAG GCCGUUAGGC CGAA IGUUAUCC1849
467AUAACCUC A AAAUCUCA428UGAGAUUU CUGAUGAG GCCGUUAGGC CGAA IAGGUUAU1850
473UCAAAAUC U CAGACUUU429AAAGUCUG CUGAUGAG GCCGUUAGGC CGAA IAUUUUGA1851
475AAAAUCUC A GACUUUGG430CCAAAGUC CUGAUGAG GCCGUUAGGC CGAA IAGAUUUU1852
479UCUCAGAC U UUGGCUUG431CAAGCCAA CUGAUGAG GCCGUUAGGC CGAA IUCUGAGA1853
485ACUUUGGC U UGGCAACA432UGUUGCCA CUGAUGAG GCCGUUAGGC CGAA ICCAAAGU1854
490GGCUUGGC A ACAGUAUU433AAUACUGU CUGAUGAG GCCGUUAGGC CGAA ICCAAGCC1855
493UUGGCAAC A GUAUUUCG434CGAAAUAC CUGAUGAG GCCGUUAGGC CGAA IUUGCCAA1856
530UGUUGAAC A AGAUGUGU435ACACAUCU CUGAUGAG GCCGUUAGGC CGAA IUUCAACA1857
544UGUGGUAC U UUACCAUA436UAUGGUAA CUGAUGAG GCCGUUAGGC CGAA IUACCACA1858
549UACUUUAC C AUAUGUUG437CAACAUAU CUGAUGAG GCCGUUAGGC CGAA IUAAAGUA1859
550ACUUUACC A UAUGUUGC438GCAACAUA CUGAUGAG GCCGUUAGGC CGAA IGUAAAGU1860
559UAUGUUGC U CCAGAACU439AGUUCUGG CUGAUGAG GCCGUUAGGC CGAA ICAACAUA1861
561UGUUGCUC C AGAACUUC440GAAGUUCU CUGAUGAG GCCGUUAGGC CGAA IAGCAACA1862
562GUUGCUCC A GAACUUCU441AGAAGUUC CUGAUGAG GCCGUUAGGC CGAA IGAGCAAC1863
567UCCAGAAC U UCUGAAGA442UCUUCAGA CUGAUGAG GCCGUUAGGC CGAA IUUCUGGA1864
570AGAACUUC U GAAGAGAA443UUCUCUUC CUGAUGAG GCCGUUAGGC CGAA IAAGUUCU1865
588AGAAUUUC A UGCAGAAC444GUUCUGCA CUGAUGAG GCCGUUAGGC CGAA IAAAUUCU1866
592UUUCAUGC A GAACCAGU445ACUGGUUC CUGAUGAG GCCGUUAGGC CGAA ICAUGAAA1867
597UGCAGAAC C AGUUGAUG446CAUCAACU CUGAUGAG GCCGUUAGGC CGAA IUUCUGCA1868
598GCAGAACC A GUUGAUGU447ACAUCAAC CUGAUGAG GCCGUUAGGC CGAA IGUUCUGC1869
613GUUUGGUC C UGUGGAAU448AUUCCACA CUGAUGAG GCCGUUAGGC CGAA IACCAAAC1870
614UUUGGUCC U GUGGAAUA449UAUUCCAC CUGAUGAG GCCGUUAGGC CGAA IGACCAAA1871
627AAUAGUAC U UACUGCAA450UUGCAGUA CUGAUGAG GCCGUUAGGC CGAA IUACUAUU1872
631GUACUUAC U GCAAUGCU451AGCAUUGC CUGAUGAG GCCGUUAGGC CGAA IUAAGUAC1873
634CUUACUGC A AUGCUCGC452GCGAGCAU CUGAUGAG GCCGUUAGGC CGAA ICAGUAAG1874
639UGCAAUGC U CGCUGGAG453CUCCAGCG CUGAUGAG GCCGUUAGGC CGAA ICAUUGCA1875
643AUGCUCGC U GGAGAAUU454AAUUCUCC CUGAUGAG GCCGUUAGGC CGAA ICGAGCAU1876
654AGAAUUGC C AUGGGACC455GGUCCCAU CUGAUGAG GCCGUUAGGC CGAA ICAAUUCU1877
655GAAUUGCC A UGGGACCA456UGGUCCCA CUGAUGAG GCCGUUAGGC CGAA IGCAAUUC1878
662CAUGGGAC C AACCCAGU457ACUGGGUU CUGAUGAG GCCGUUAGGC CGAA IUCCCAUG1879
663AUGGGACC A ACCCAGUG458CACUGGGU CUGAUGAG GCCGUUAGGC CGAA IGUCCCAU1880
666GGACCAAC C CAGUGACA459UGUCACUG CUGAUGAG GCCGUUAGGC CGAA IUUGGUCC1881
667GACCAACC C AGUGACAG460CUGUCACU CUGAUGAG GCCGUUAGGC CGAA IGUUGGUC1882
668ACCAACCC A GUGACAGC461GCUGUCAC CUGAUGAG GCCGUUAGGC CGAA IGGUUGGU1883
674CCAGUGAC A GCUGUCAG462CUGACAGC CUGAUGAG GCCGUUAGGC CGAA IUCACUGG1884
677GUGACAGC U GACAGGAG463CUCCUGAC CUGAUGAG GCCGUUAGGC CGAA ICUGUCAC1885
681CAGCUGUC A GGAGUAUU464AAUACUCC CUGAUGAG GCCGUUAGGC CGAA IACAGCUG1886
691GAGUAUUC U GACUGGAA465UUCCAGUC CUGAUGAG GCCGUUAGGC CGAA IAAUACUC1887
695AUUCUGAC U GGAAAGAA466UUCUUUCC CUGAUGAG GCCGUUAGGC CGAA IUCAGAAU1888
712AAAAAAAC A UACCUCAA467UUGAGGUA CUGAUGAG GCCGUUAGGC CGAA IUUUUUUU1889
716AAACAUAC C UCAACCCU468AGGGUUGA CUGAUGAG GCCGUUAGGC CGAA IUAUGUUU1890
717AACAUACC U CAACCCUU469AAGGGUUG CUGAUGAG GCCGUUAGGC CGAA IGUAUGUU1891
719CAUACCUC A ACCCUUGG470CCAAGGGU CUGAUGAG GCCGUUAGGC CGAA IAGGUAUG1892
722ACCUCAAC C CUUGGAAA471UUUCCAAG CUGAUGAG GCCGUUAGGC CGAA IUUGAGGU1893
723CCUCAACC C UUGGAAAA472UUUUCCAA CUGAUGAG GCCGUUAGGC CGAA IGUUGAGG1894
724CUCAACCC U UGGAAAAA473UUUUUCCA CUGAUGAG GCCGUUAGGC CGAA IGGUUGAG1895
742AUCGAUUC U GCUCCUCU474AGAGGAGC CUGAUGAG GCCGUUAGGC CGAA IAAUCGAU1896
745GAUUCUGC U CCUCUAGC475GCUAGAGG CUGAUGAG GCCGUUAGGC CGAA ICAGAAUC1897
747UUCUGCUC C UCUAGCUC476GAGCUAGA CUGAUGAG GCCGUUAGGC CGAA IAGCAGAA1898
748UCUGCUCC U CUAGCUCU477AGAGCUAG CUGAUGAG GCCGUUAGGC CGAA IGAGCAGA1899
750UGCUCCUC U AGCUCUGC478GCAGAGCU CUGAUGAG GCCGUUAGGC CGAA IAGGAGCA1900
754CCUCUAGC U CUGCUGCA479UGCAGCAG CUGAUGAG GCCGUUAGGC CGAA ICUAGAGG1901
756UCUAGCUC U GCUGCAUA480UAUGCAGC CUGAUGAG GCCGUUAGGC CGAA IAGCUAGA1902
759AGCUCUGC U GCAUAAAA481UUUUAUGC CUGAUGAG GCCGUUAGGC CGAA ICAGAGCU1903
762UCUGCUGC A UAAAAUCU482AGAUUUUA CUGAUGAG GCCGUUAGGC CGAA ICAGCAGA1904
770AUAAAAUC U UAGUUGAG483CUCAACUA CUGAUGAG GCCGUUAGGC CGAA IAUUUUAU1905
783UGAGAAUC C AUCAGCAA484UUGCUGAU CUGAUGAG GCCGUUAGGC CGAA IAUUCUCA1906
784GAGAAUCC A UCAGCAAG485CUUGCUGA CUGAUGAG GCCGUUAGGC CGAA IGAUUCUC1907
787AAUCCAUC A GCAAGAAU486AUUCUUGC CUGAUGAG GCCGUUAGGC CGAA IAUGGAUU1908
790CCAUCAGC A AGAAUUAC487GUAAUUCU CUGAUGAG GCCGUUAGGC CGAA ICUGAUGG1909
799AGAAUUAC C AUUCCAGA488UCUGGAAU CUGAUGAG GCCGUUAGGC CGAA IUAAUUCU1910
800GAAUUACC A UUCCAGAC489GUCUGGAA CUGAUGAG GCCGUUAGGC CGAA IGUAAUUC1911
804UACCAUUC C AGACAUCA490UGAUGUCU CUGAUGAG GCCGUUAGGC CGAA IAAUGGUA1912
805ACCAUUCC A GACAUCAA491UUGAUGUC CUGAUGAG GCCGUUAGGC CGAA IGAAUGGU1913
809UUCCAGAC A UCAAAAAA492UUUUUUGA CUGAUGAG GCCGUUAGGC CGAA IUCUGGAA1914
812CAGACAUC A AAAAAGAU493AUCUUUUU CUGAUGAG GCCGUUAGGC CGAA IAUGUCUG1915
830GAUGGUAC A ACAAACCC494GGGUUUGU CUGAUGAG GCCGUUAGGC CGAA IUACCAUC1916
833GGUACAAC A AACCCCUC495GAGGGGUU CUGAUGAG GCCGUUAGGC CGAA IUUGUACC1917
837CAACAAAC C CCUCAAGA496UCUUGAGG CUGAUGAG GCCGUUAGGC CGAA IUUUGUUG1918
838AACAAACC C CUCAAGAA497UUCUUGAG CUGAUGAG GCCGUUAGGC CGAA IGUUUGUU1919
839ACAAACCC C UCAAGAAA498UUUCUUGA CUGAUGAG GCCGUUAGGC CGAA IGGUUUGU1920
840CAAACCCC U CAAGAAAG499CUUUCUUG CUGAUGAG GCCGUUAGGC CGAA IGGGUUUG1921
842AACCCCUC A AGAAAGGG500CCCUUUCU CUGAUGAG GCCGUUAGGC CGAA IAGGGGUU1922
853AAAGGGGC A AAAAGGCC501GGCCUUUU CUGAUGAG GCCGUUAGGC CGAA ICCCCUUU1923
861AAAAAGGC C CCGAGUCA502UGACUCGG CUGAUGAG GCCGUUAGGC CGAA ICCUUUUU1924
862AAAAGGCC C CGAGUCAC503GUGACUCG CUGAUGAG GCCGUUAGGC CGAA IGCCUUUU1925
863AAAGGCCC C GAGUCACU504AGUGACUC CUGAUGAG GCCGUUAGGC CGAA IGGCCUUU1926
869CCCGAGUC A CUUCAGGU505ACCUGAAG CUGAUGAG GCCGUUAGGC CGAA IACUCGGG1927
871CGAGUCAC U UCAGGUGG506CCACCUGA CUGAUGAG GCCGUUAGGC CGAA IUGACUCG1928
874GUCACUUC A GGUGGUGU507ACACCACC CUGAUGAG GCCGUUAGGC CGAA IAAGUGAC1929
886GGUGUGUC A GAGUCUCC508GGAGACUC CUGAUGAG GCCGUUAGGC CGAA IACACACC1930
892UCAGAGUC U CCCAGUGG509CCACUGGG CUGAUGAG GCCGUUAGGC CGAA IACUCUGA1931
894AGAGUCUC C CAGUGGAU510AUCCACUG CUGAUGAG GCCGUUAGGC CGAA IAGACUCU1932
895GAGUCUCC C AGUGGAUU511AAUCCACU CUGAUGAG GCCGUUAGGC CGAA IGAGACUC1933
896AGUCUCCC A GUGGAUUU512AAAUCCAC CUGAUGAG GCCGUUAGGC CGAA IGGAGACU1934
907GGAUUUUC U AAGCACAU513AUGUGCUU CUGAUGAG GCCGUUAGGC CGAA IAAAAUCC1935
912UUCUAAGC A CAUUCAAU514AUUGAAUG CUGAUGAG GCCGUUAGGC CGAA ICUUAGAA1936
914CUAAGCAC A UUCAAUCC515GGAUUGAA CUGAUGAG GCCGUUAGGC CGAA IUGCUUAG1937
918GCACAUUC A AUCCAAUU516AAUUGGAU CUGAUGAG GCCGUUAGGC CGAA IAAUGUGC1938
922AUUCAAUC C AAUUUGGA517UCCAAAUU CUGAUGAG GCCGUUAGGC CGAA IAUUGAAU1939
923UUCAAUCC A AUUUGGAC518GUCCAAAU CUGAUGAG GCCGUUAGGC CGAA IGAUUGAA1940
932AUUUGGAC U UCUCUCCA519UGGAGAGA CUGAUGAG GCCGUUAGGC CGAA IUCCAAAU1941
935UGGACUUC U CUCCAGUA520UACUGGAG CUGAUGAG GCCGUUAGGC CGAA IAAGUCCA1942
937GACUUCUC U CCAGUAAA521UUUACUGG CUGAUGAG GCCGUUAGGC CGAA IAGAAGUC1943
939CUUCUCUC C AGUAAACA522UGUUUACU CUGAUGAG GCCGUUAGGC CGAA IAGAGAAG1944
940UUCUCUCC A GUAAACAG523CUGUUUAC CUGAUGAG GCCGUUAGGC CGAA IGAGAGAA1945
947CAGUAAAC A GUGCUUCU524AGAAGCAC CUGAUGAG GCCGUUAGGC CGAA IUUUACUG1946
952AACAGUGC U UCUAGUGA525UCACUAGA CUGAUGAG GCCGUUAGGC CGAA ICACUGUU1947
955AGUGCUUC U AGUGAAGA526UCUUCACU CUGAUGAG GCCGUUAGGC CGAA IAAGCACU1948
977UGAAGUAC U CCAGUUCU527AGAACUGG CUGAUGAG GCCGUUAGGC CGAA IUACUUCA1949
979AAGUACUC C AGUUCUCA528UGAGAACU CUGAUGAG GCCGUUAGGC CGAA IAGUACUU1950
980AGUACUCC A GUUCUCAG529CUGAGAAC CUGAUGAG GCCGUUAGGC CGAA IGAGUACU1951
985UCCAGUUC U CAGCCAGA530UCUGGCUG CUGAUGAG GCCGUUAGGC CGAA IAACUGGA1952
987CAGUUCUC A GCCAGAAC531GUUCUGGC CUGAUGAG GCCGUUAGGC CGAA IAGAACUG1953
990UUCUCAGC C AGAACCCC532GGGGUUCU CUGAUGAG GCCGUUAGGC CGAA ICUGAGAA1954
991UCUCAGCC A GAACCCCG533CGGGGUUC CUGAUGAG GCCGUUAGGC CGAA IGCUGAGA1955
996GCCAGAAC C CCGCACAG534CUGUGCGG CUGAUGAG GCCGUUAGGC CGAA IUUCUGGC1956
997CCAGAACC C CGCACAGG535CCUGUGCG CUGAUGAG GCCGUUAGGC CGAA IGUUCUGG1957
998CAGAACCC C GCACAGGU536ACCUGUGC CUGAUGAG GCCGUUAGGC CGAA IGGUUCUG1958
1001AACCCCGC A CAGGUCUU537AAGACCUG CUGAUGAG GCCGUUAGGC CGAA ICGGGGUU1959
1003CCCCGCAC A GGUCUUUC538GAAAGACC CUGAUGAG GCCGUUAGGC CGAA IUGCGGGG1960
1008CACAGGUC U UUCCUUAU539AUAAGGAA CUGAUGAG GCCGUUAGGC CGAA IACCUGUG1961
1012GGUCUUUC C UUAUGGGA540UCCCAUAA CUGAUGAG GCCGUUAGGC CGAA IAAAGACC1962
1013GUCUUUCC U UAUGGGAU541AUCCCAUA CUGAUGAG GCCGUUAGGC CGAA IGAAAGAC1963
1024UGGGAUAC C AGCCCCUC542GAGGGGCU CUGAUGAG GCCGUUAGGC CGAA IUAUCCCA1964
1025GGGAUACC A GCCCCUCA543UGAGGGGC CUGAUGAG GCCGUUAGGC CGAA IGUAUCCC1965
1028AUACCAGC C CCUCAUAC544GUAUGAGG CUGAUGAG GCCGUUAGGC CGAA ICUGGUAU1966
1029UACCAGCC C CUCAUACA545UGUAUGAG CUGAUGAG GCCGUUAGGC CGAA IGCUGGUA1967
1030ACCAGCCC C UCAUACAU546AUGUAUGA CUGAUGAG GCCGUUAGGC CGAA IGGCUGGU1968
1031CCAGCCCC U CAUACAUU547AAUGUAUG CUGAUGAG GCCGUUAGGC CGAA IGGGCUGG1969
1033AGCCCCUC A UACAUUGA548UCAAUGUA CUGAUGAG GCCGUUAGGC CGAA IAGGGGCU1970
1037CCUCAUAC A UUGAUAAA549UUUAUCAA CUGAUGAG GCCGUUAGGC CGAA IUAUGAGG1971
1053AUUGGUAC A AGGGAUCA550UGAUCCCU CUGAUGAG GCCGUUAGGC CGAA IUACCAAU1972
1061AAGGGAUC A GCUUUUCC551GGAAAAGC CUGAUGAG GCCGUUAGGC CGAA IAUCCCUU1973
1064GGAUCAGC U UUUCCCAG552CUGGGAAA CUGAUGAG GCCGUUAGGC CGAA ICUGAUCC1974
1069AGCUUUUC C CAGCCCAC553GUGGGCUG CUGAUGAG GCCGUUAGGC CGAA IAAAAGCU1975
1070GCUUUUCC C AGCCCACA554UGUGGGCU CUGAUGAG GCCGUUAGGC CGAA IGAAAAGC1976
1071CUUUUCCC A GCCCACAU555AUGUGGGC CUGAUGAG GCCGUUAGGC CGAA IGGAAAAG1977
1074UUCCCAGC C CACAUGUC556GACAUGUG CUGAUGAG GCCGUUAGGC CGAA ICUGGGAA1978
1075UCCCAGCC C ACAUGUCC557GGACAUGU CUGAUGAG GCCGUUAGGC CGAA IGCUGGGA1979
1076CCCAGCCC A CAUGUCCU558AGGACAUG CUGAUGAG GCCGUUAGGC CGAA IGGCUGGG1980
1078CAGCCCAC A UGUCCUGA559UCAGGACA CUGAUGAG GCCGUUAGGC CGAA IUGGGCUG1981
1083CACAUGUC C UGAUCAUA560UAUGAUCA CUGAUGAG GCCGUUAGGC CGAA IACAUGUG1982
1084ACAUGUCC U GAUCAUAU561AUAUGAUC CUGAUGAG GCCGUUAGGC CGAA IGACAUGU1983
1089UCCUGAUC A UAUGCUUU562AAAGCAUA CUGAUGAG GCCGUUAGGC CGAA IAUCAGGA1984
1095UCAUAUGC U UUUGAAUA563UAUUCAAA CUGAUGAG GCCGUUAGGC CGAA ICAUAUGA1985
1107GAAUAGUC A GUUACUUG564CAAGUAAC CUGAUGAG GCCGUUAGGC CGAA IACUAUUC1986
1113UCAGUUAC U UGGCACCC565GGGUGCCA CUGAUGAG GCCGUUAGGC CGAA IUAACUGA1987
1118UACUUGGC A CCCCAGGA566UCCUGGGG CUGAUGAG GCCGUUAGGC CGAA ICCAAGUA1988
1120CUUGGCAC C CCAGGAUC567GAUCCUGG CUGAUGAG GCCGUUAGGC CGAA IUGCCAAG1989
1121UUGGCACC C CAGGAUCC568GGAUCCUG CUGAUGAG GCCGUUAGGC CGAA IGUGCCAA1990
1122UGGCACCC C AGGAUCCU569AGGAUCCU CUGAUGAG GCCGUUAGGC CGAA IGGUGCCA1991
1123GGCACCCC A GGAUCCUC570GAGGAUCC CUGAUGAG GCCGUUAGGC CGAA IGGGUGCC1992
1129CCAGGAUC C UCACAGAA571UUCUGUGA CUGAUGAG GCCGUUAGGC CGAA IAUCCUGG1993
1130CAGGAUCC U CACAGAAC572GUUCUGUG CUGAUGAG GCCGUUAGGC CGAA IGAUCCUG1994
1132GGAUCCUC A CAGAACCC573GGGUUCUG CUGAUGAG GCCGUUAGGC CGAA IAGGAUCC1995
1134AUCCUCAC A GAACCCCU574AGGGGUUC CUGAUGAG GCCGUUAGGC CGAA IUGAGGAU1996
1139CACAGAAC C CCUGGCAG575CUGCCAGG CUGAUGAG GCCGUUAGGC CGAA IUUCUGUG1997
1140ACAGAACC C CUGGCAGC576GCUGCCAG CUGAUGAG GCCGUUAGGC CGAA IGUUCUGU1998
1141CAGAACCC C UGGCAGCG577CGCUGCCA CUGAUGAG GCCGUUAGGC CGAA IGGUUCUG1999
1142AGAACCCC U GGCAGCGG578CCGCUGCC CUGAUGAG GCCGUUAGGC CGAA IGGGUUCU2000
1146CCCCUGGC A GCGGUUGG579CCAACCGC CUGAUGAG GCCGUUAGGC CGAA ICCAGGGG2001
1157GGUUGGUC A AAAGAAUG580CAUUCUUU CUGAUGAG GCCGUUAGGC CGAA IACCAACC2002
1168AGAAUGAC A CGAUUCUU581AAGAAUCG CUGAUGAG GCCGUUAGGC CGAA IUCAUUCU2003
1175CACGAUUC U UUACCAAA582UUUGGUAA CUGAUGAG GCCGUUAGGC CGAA IAAUCGUG2004
1180UUCUUUAC C AAAUUGGA583UCCAAUUU CUGAUGAG GCCGUUAGGC CGAA IUAAAGAA2005
1181UCUUUACC A AAUUGGAU584AUCCAAUU CUGAUGAG GCCGUUAGGC CGAA IGUAAAGA2006
1192UUGGAUGC A GACAAAUC585GAUUUGUC CUGAUGAG GCCGUUAGGC CGAA ICAUCCAA2007
1196AUGCAGAC A AAUCUUAU586AUAAGAUU CUGAUGAG GCCGUUAGGC CGAA IUCUGCAU2008
1201GACAAAUC U UAUCAAUG587CAUUGAUA CUGAUGAG GCCGUUAGGC CGAA IAUUUGUC2009
1206AUCUUAUC A AUGCCUGA588UCAGGCAU CUGAUGAG GCCGUUAGGC CGAA IAUAAGAU2010
1211AUCAAUGC C UGAAAGAG589CUCUUUCA CUGAUGAG GCCGUUAGGC CGAA ICAUUGAU2011
1212UCAAUGCC U GAAAGAGA590UCUCUUUC CUGAUGAG GCCGUUAGGC CGAA IGCAUUGA2012
1222AAAGAGAC U UGUGAGAA591UUCUCACA CUGAUGAG GCCGUUAGGC CGAA IUCUCUUU2013
1238AGUUGGGC U AUCAAUGG592CCAUUGAU CUGAUGAG GCCGUUAGGC CGAA ICCCAACU2014
1242GGGCUAUC A AUGGAAGA593UCUUCCAU CUGAUGAG GCCGUUAGGC CGAA IAUAGCCC2015
1266UAUGAAUC A GGUUACUA594UAGUAACC CUGAUGAG GCCGUUAGGC CGAA IAUUCAUA2016
1273CAGGUUAC U AUAUCAAC595GUUGAUAU CUGAUGAG GCCGUUAGGC CGAA IUAACCUG2017
1279ACUAUAUC A ACAACUGA596UCAGUUGA CUGAUGAG GCCGUUAGGC CGAA IAUAUAGU2018
1282AUAUCAAC A ACUGAUAG597CUAUCAGU CUGAUGAG GCCGUUAGGC CGAA IUUGAUAU2019
1285UCAACAAC U GAUAGGAG598CUCCUAUC CUGAUGAG GCCGUUAGGC CGAA IUUGUUGA2020
1298GGAGAAAC A AUAAACUC599GAGUUUAU CUGAUGAG GCCGUUAGGC CGAA IUUUCUCC2021
1305CAAUAAAC U CAUUUUCA600UGAAAAUG CUGAUGAG GCCGUUAGGC CGAA IUUUAUUG2022
1307AUAAACUC A UUUUCAAA601UUUGAAAA CUGAUGAG GCCGUUAGGC CGAA IAGUUUAU2023
1313UCAUUUUC A AAGUGAAU602AUUCACUU CUGAUGAG GCCGUUAGGC CGAA IAAAAUGA2024
1355UGGUUGAC U UCCGGCUU603AAGCCGGA CUGAUGAG GCCGUUAGGC CGAA IUCAACCA2025
1358UUGACUUC C GGCUUUCU604AGAAAGCC CUGAUGAG GCCGUUAGGC CGAA IAAGUCAA2026
1362CUUCCGGC U UUCUAAGG605CCUUAGAA CUGAUGAG GCCGUUAGGC CGAA ICCGGAAG2027
1366CGGCUUUC U AAGGGUGA606UCACCCUU CUGAUGAG GCCGUUAGGC CGAA IAAAGCCG2028
1388UGGAGUUC A AGAGACAC607GUGUCUCU CUGAUGAG GCCGUUAGGC CGAA IAACUCCA2029
1395CAAGAGAC A CUUCCUGA608UCAGGAAG CUGAUGAG GCCGUUAGGC CGAA IUCUCUUG2030
1397AGAGACAC U UCCUGAAG609CUUCAGGA CUGAUGAG GCCGUUAGGC CGAA IUGUCUCU2031
1400GACACUUC C UGAAGAUU610AAUCUUCA CUGAUGAG GCCGUUAGGC CGAA IAAGUGUC2032
1401ACACUUCC U GAAGAUUA611UAAUCUUC CUGAUGAG GCCGUUAGGC CGAA IGAAGUGU2033
1419AGGGAAGC U GAUUGAUA612UAUCAAUC CUGAUGAG GCCGUUAGGC CGAA ICUUCCCU2034
1436UUGUGAGC A GCCAGAAG613CUUCUGGC CUGAUGAG GCCGUUAGGC CGAA ICUCACAA2035
1439UGAGCAGC C AGAAGGUU614AACCUUCU CUGAUGAG GCCGUUAGGC CGAA ICUGCUCA2036
1440GAGCAGCC A GAAGGUUU615AAACCUUC CUGAUGAG GCCGUUAGGC CGAA IGCUGCUC2037
1452GGUUUGGC U UCCUGCCA616UGGCAGGA CUGAUGAG GCCGUUAGGC CGAA ICCAAACC2038
1455UUGGCUUC C UGCCACAU617AUGUGGCA CUGAUGAG GCCGUUAGGC CGAA IAAGCCAA2039
1456UGGCUUCC U GCCACAUG618CAUGUGGC CUGAUGAG GCCGUUAGGC CGAA IGAAGCCA2040
1459CUUCCUGC C ACAUGAUC619GAUCAUGU CUGAUGAG GCCGUUAGGC CGAA ICAGGAAG2041
1460UUCCUGCC A CAUGAUCG620CGAUCAUG CUGAUGAG GCCGUUAGGC CGAA IGCAGGAA2042
1462CCUGCCAC A UGAUCGGA621UCCGAUCA CUGAUGAG GCCGUUAGGC CGAA IUGGCAGG2043
1472GAUCGGAC C AUCGGCUC622GAGCCGAU CUGAUGAG GCCGUUAGGC CGAA IUCCGAUC2044
1473AUCGGACC A UCGGCUCU623AGAGCCGA CUGAUGAG GCCGUUAGGC CGAA IGUCCGAU2045
1479CCAUCGGC U CUGGGGAA624UUCCCCAG CUGAUGAG GCCGUUAGGC CGAA ICCGAUGG2046
1481AUCGGCUC U GGGGAAUC625GAUUCCCC CUGAUGAG GCCGUUAGGC CGAA IAGCCGAU2047
1490GGGGAAUC C UGGUGAAU626AUUCACCA CUGAUGAG GCCGUUAGGC CGAA IAUUCCCC2048
1491GGGAAUCC U GGUGAAUA627UAUUCACC CUGAUGAG GCCGUUAGGC CGAA IGAUUCCC2049
1506UAUAGUGC U GCUAUGUU628AACAUAGC CUGAUGAG GCCGUUAGGC CGAA ICACUAUA2050
1509AGUGCUGC U AUGUUGAC629GUCAACAU CUGAUGAG GCCGUUAGGC CGAA ICAGCACU2051
1518AUGUUGAC A UUAUUCUU630AAGAAUAA CUGAUGAG GCCGUUAGGC CGAA IUCAACAU2052
1525CAUUAUUC U UCCUAGAG631CUCUAGGA CUGAUGAG GCCGUUAGGC CGAA IAAUAAUG2053
1528UAUUCUUC C UAGAGAAG632CUUCUCUA CUGAUGAG GCCGUUAGGC CGAA IAAGAAUA2054
1529AUUCUUCC U AGAGAAGA633UCUUCUCU CUGAUGAG GCCGUUAGGC CGAA IGAAGAAU2055
1543AGAUUAUC C UGUCCUGC634GCAGGACA CUGAUGAG GCCGUUAGGC CGAA IAUAAUCU2056
1544GAUUAUCC U GUCCUGCA635UGCAGGAC CUGAUGAG GCCGUUAGGC CGAA IGAUAAUC2057
1548AUCCUGUC C UGCAAACU636AGUUUGCA CUGAUGAG GCCGUUAGGC CGAA IACAGGAU2058
1549UCCUGUCC U GCAAACUG637CAGUUUGC CUGAUGAG GCCGUUAGGC CGAA IGACAGGA2059
1552UGUCCUGC A AACUGCAA638UUGCAGUU CUGAUGAG GCCGUUAGGC CGAA ICAGGACA2060
1556CUGCAAAC U GCAAAUAG639CUAUUUGC CUGAUGAG GCCGUUAGGC CGAA IUUUGCAG2061
1559CAAACUGC A AAUAGUAG640CUACUAUU CUGAUGAG GCCGUUAGGC CGAA ICAGUUUG2062
1571AGUAGUUC C UGAAGUGU641ACACUUCA CUGAUGAG GCCGUUAGGC CGAA IAACUACU2063
1572GUAGUUCC U GAAGUGUU642AACACUUC CUGAUGAG GCCGUUAGGC CGAA IGAACUAC2064
1582AAGUGUUC A CUUCCCUG643CAGGGAAG CUGAUGAG GCCGUUAGGC CGAA IAACACUU2065
1584GUGUUCAC U UCCCUGUU644AACAGGGA CUGAUGAG GCCGUUAGGC CGAA IUGAACAC2066
1587UUCACUUC C CUGUUUAU645AUAAACAG CUGAUGAG GCCGUUAGGC CGAA IAAGUGAA2067
1588UCACUUCC C UGUUUAUC646GAUAAACA CUGAUGAG GCCGUUAGGC CGAA IGAAGUGA2068
1589CACUUCCC U GUUUAUCC647GGAUAAAC CUGAUGAG GCCGUUAGGC CGAA IGGAAGUG2069
1597UGUUUAUC C AAACAUCU648AGAUGUUU CUGAUGAG GCCGUUAGGC CGAA IAUAAACA2070
1598GUUUAUCC A AACAUCUU649AAGAUGUU CUGAUGAG GCCGUUAGGC CGAA IGAUAAAC2071
1602AUCCAAAC A UCUUCCAA650UUGGAAGA CUGAUGAG GCCGUUAGGC CGAA IUUUGGAU2072
1605CAAACAUC U UCCAAUUU651AAAUUGGA CUGAUGAG GCCGUUAGGC CGAA IAUGUUUG2073
1608ACAUCUUC C AAUUUAUU652AAUAAAUU CUGAUGAG GCCGUUAGGC CGAA IAAGAUGU2074
1609CAUCUUCC A AUUUAUUU653AAAUAAAU CUGAUGAG GCCGUUAGGC CGAA IGAAGAUG2075
1630UGUUCGGC A UACAAAUA654UAUUUGUA CUGAUGAG GCCGUUAGGC CGAA ICCGAACA2076
1634CGGCAUAC A AAUAAUAC655GUAUUAUU CUGAUGAG GCCGUUAGGC CGAA IUAUGCCG2077
1643AAUAAUAC C UAUAUCUU656AAGAUAUA CUGAUGAG GCCGUUAGGC CGAA IUAUUAUU2078
1644AUAAUACC U AUAUCUUA657UAAGAUAU CUGAUGAG GCCGUUAGGC CGAA IGUAUUAU2079
1650CCUAUAUC U UAAUUGUA658UACAAUUA CUGAUGAG GCCGUUAGGC CGAA IAUAUAGG2080
1662UUGUAAGC A AAACUUUG659CAAAGUUU CUGAUGAG GCCGUUAGGC CGAA ICUUACAA2081
1667AGCAAAAC U UUGGGGAA660UUCCCCAA CUGAUGAG GCCGUUAGGC CGAA IUUUUGCU2082
1692UAGAAUUC A UUUGAUUA661UAAUCAAA CUGAUGAG GCCGUUAGGC CGAA IAAUUCUA2083
1705AUUAUUUC U UCAUGUGU662ACACAUGA CUGAUGAG GCCGUUAGGC CGAA IAAAUAAU2084
1708AUUUCUUC A UGUGUGUU663AACACACA CUGAUGAG GCCGUUAGGC CGAA IAAGAAAU2085
1724UUAGUAUC U GAAUUUGA664UCAAAUUC CUGAUGAG GCCGUUAGGC CGAA IAUACUAA2086
1736UUUGAAAC U CAUCUGGU665ACCAGAUG CUGAUGAG GCCGUUAGGC CGAA IUUUCAAA2087
1738UGAAACUC A UCUGGUGG666CCACCAGA CUGAUGAG GCCGUUAGGC CGAA IAGUUUCA2088
1741AACUCAUC U GGUGGAAA667UUUCCACC CUGAUGAG GCCGUUAGGC CGAA IAUGAGUU2089
1751GUGGAAAC C AAGUUUCA668UGAAACUU CUGAUGAG GCCGUUAGGC CGAA IUUUCCAC2090
1752UGGAAACC A AGUUUCAG669CUGAAACU CUGAUGAG GCCGUUAGGC CGAA IGUUUCCA2091
1759CAAGUUUC A GGGGACAU670AUGUCCCC CUGAUGAG GCCGUUAGGC CGAA IAAACUUG2092
1766CAGGGGAC A UGAGUUUU671AAAACUCA CUGAUGAG GCCGUUAGGC CGAA IUCCCCUG2093
1776GAGUUUUC C AGCUUUUA672UAAAAGCU CUGAUGAG GCCGUUAGGC CGAA IAAAACUC2094
1777AGUUUUCC A GCUUUUAU673AUAAAAGC CUGAUGAG GCCGUUAGGC CGAA IGAAAACU2095
1780UUUCCAGC U UUUAUACA674UGUAUAAA CUGAUGAG GCCGUUAGGC CGAA ICUGGAAA2096
1788UUUUAUAC A CACGUAUC675GAUACGUG CUGAUGAG GCCGUUAGGC CGAA IUAUAAAA2097
1790UUAUACAC A CGUAUCUC676GAGAUACG CUGAUGAG GCCGUUAGGC CGAA IUGUAUAA2098
1797CACGUAUC U CAUUUUUA677UAAAAAUG CUGAUGAG GCCGUUAGGC CGAA IAUACGUG2099
1799CGUAUCUC A UUUUUAUC678GAUAAAAA CUGAUGAG GCCGUUAGGC CGAA IAGAUACG2100
1808UUUUUAUC A AAACAUUU679AAAUGUUU CUGAUGAG GCCGUUAGGC CGAA IAUAAAAA2101
1813AUCAAAAC A UUUUGUUU680AAACAAAA CUGAUGAG GCCGUUAGGC CGAA IUUUUGAU2102
|
Input Sequence = AF016582 Cut Site = CH/.
Stem Length = 8. Core Sequence = CUGAUGAG GCCGUUAGGC CGAA
AF016582 (Homo sapiens checkpoint kinase Chk1 (CHK1) mRNA; 1821 bp)
[0175] Underlined region can be any X sequence or linker as previously defined herein.
[0176] I=Inosine
[0177] 5
5TABLE V
|
|
Human Chk1 G-Cleaver Ribozyme and Substrate Sequence
PosSubstrateSeq IDRibozymeRz Seq ID
|
14GACAGUCC G CCGAGGUG681CACCUCGG UGAUGGCAUGCACUAUGCGCG GGACUGUC2103
17AGUCCGCC G AGGUGCUC682GAGCACCU UGAUGGCAUGCACUAUGCGCG GGCGGACU2104
22GCCGAGGU G CUCGGUGG683CCACCGAG UGAUGGCAUGCACUAUGCGCG ACCUCGGC2105
43AUGGCAGU G CCCUUUGU684ACAAAGGG UGAUGGCAUGCACUAUGCGCG ACUGCCAU2106
50UGCCCUUU G UGGAAGAC685GUCUUCCA UGAUGGCAUGCACUAUGCGCG AAAGGGCA2107
70GACUUGGU G CAAACCCU686AGGGUUUG UGAUGGCAUGCACUAUGCGCG ACCAAGUC2108
89GAGAAGGU G CCUAUGGA687UCCAUAGG UGAUGGCAUGCACUAUGCGCG ACCUUCUC2109
110UUCAACUU G CUGUGAAU688AUUCACAG UGAUGGCAUGCACUAUGCGCG AAGUUGAA2110
113AACUUGCU G UGAAUAGA689UCUAUUCA UGAUGGCAUGCACUAUGCGCG AGCAAGUU2111
115CUUGCUGU G AAUAGAGU690ACUCUAUU UGAUGGCAUGCACUAUGCGCG ACAGCAAG2112
128GAGUAACU G AAGAAGCA691UGCUUCUU UGAUGGCAUGCACUAUGCGCG AGUUACUC2113
140AAGCAGUC G CAGUGAAG692CUUCACUG UGAUGGCAUGCACUAUGCGCG GACUGCUU2114
145GUCGCAGU G AAGAUUGU693ACAAUCUU UGAUGGCAUGCACUAUGCGCG ACUGCGAC2115
152UGAAGAUU G UAGAUAUG694CAUAUCUA UGAUGGCAUGCACUAUGCGCG AAUCUUCA2116
160GUAGAUAU G AAGCGUGC695GCACGCUU UGAUGGCAUGCACUAUGCGCG AUAUCUAC2117
167UGAAGCGU G CCGUAGAC696GUCUACGG UGAUGGCAUGCACUAUGCGCG ACGCUUCA2118
177CGUAGACU G UCCAGAAA697UUUCUGGA UGAUGGCAUGCACUAUGCGCG AGUCUACG2119
204AGAGAUCU G UAUCAAUA698UAUUGAUA UGAUGGCAUGCACUAUGCGCG AGAUCUCU2120
217AAUAAAAU G CUAAAUCA699UGAUUUAG UGAUGGCAUGCACUAUGCGCG AUUUUAUU2121
227UAAAUCAU G AAAAUGUA700UACAUUUU UGAUGGCAUGCACUAUGCGCG AUGAUUUA2122
233AUGAAAAU G AUGUAAAA701UUUUACUA UGAUGGCAUGCACUAUGCGCG AUUUUCAU2123
294GGAGUACU G UAGUGGAG702CUCCACUA UGAUGGCAUGCACUAUGCGCG AGUACUCC2124
314AGCUUUUU G ACAGAAUA703UAUUCUGU UGAUGGCAUGCACUAUGCGCG AAAAAGCU2125
340AUAGGCAU G CCUGAACC704GGUUCAGG UGAUGGCAUGCACUAUGCGCG AUGCCUAU2126
344GCAUGCCU G AACCAGAU705AUCUGGUU UGAUGGCAUGCACUAUGCGCG AGGCAUGC2127
353AACCAGAU G CUCAGAGA706UCUCUGAG UGAUGGCAUGCACUAUGCGCG AUCUGGUU2128
397GUUUAUCU G CAUGGUAU707AUACCAUG UGAUGGCAUGCACUAUGCGCG AGAUAAAC2129
445AAUCUUCU G UUGGAUGA708UCAUCCAA UGAUGGCAUGCACUAUGCGCG AGAAGAUU2130
452UGUUGGAU G AAAGGGAU709AUCCCUUU UGAUGGCAUGCACUAUGCGCG AUCCAACA2131
515AUAAUCGU G AGCGUUUG710CAAACGCU UGAUGGCAUGCACUAUGCGCG ACGAUUAU2132
523GAGCGUUU G UUGAACAA711UUGUUCAA UGAUGGCAUGCACUAUGCGCG AAACGCUC2133
526CGUUUGUU G AACAAGAU712AUCUUGUU UGAUGGCAUGCACUAUGCGCG AACAAACG2134
535AACAAGAU G UGUGGUAC713GUACCACA UGAUGGCAUGCACUAUGCGCG AUCUUGUU2135
537CAAGAUGU G UGGUACUU714AAGUACCA UGAUGGCAUGCACUAUGCGCG ACAUCUUG2136
554UACCAUAU G UUGCUCCA715UGGAGCAA UGAUGGCAUGCACUAUGCGCG AUAUGGUA2137
557CAUAUGUU G CUCCAGAA716UUCUGGAG UGAUGGCAUGCACUAUGCGCG AACAUAUG2138
571GAACUUCU G AAGAGAAG717CUUCUCUU UGAUGGCAUGCACUAUGCGCG AGAAGUUC2139
590AAUUUCAU G CAGAACCA718UGGUUCUG UGAUGGCAUGCACUAUGCGCG AUGAAAUU2140
602AACCAGUU G AUGUUUGG719CCAAACAU UGAUGGCAUGCACUAUGCGCG AACUGGUU2141
605CAGUUGAU G UUUGGUCC720GGACCAAA UGAUGGCAUGCACUAUGCGCG AUCAACUG2142
615UUGGUCCU G UGGAAUAG721CUAUUCCA UGAUGGCAUGCACUAUGCGCG AGGACCAA2143
632UACUUACU G CAAUGCUC722GAGCAUUG UGAUGGCAUGCACUAUGCGCG AGUAAGUA2144
637ACUGCAAU G CUCGCUGG723CCAGCGAG UGAUGGCAUGCACUAUGCGCG AUUGCAGU2145
641CAAUGCUC G CUGGAGAA724UUCUCCAG UGAUGGCAUGCACUAUGCGCG GAGCAUUG2146
652GGAGAAUU G CCAUGGGA725UCCCAUGG UGAUGGCAUGCACUAUGCGCG AAUUCUCC2147
671AACCCAGU G ACAGCUGU726ACAGCUGU UGAUGGCAUGCACUAUGCGCG ACUGGGUU2148
678UGACAGCU G UCAGGAGU727ACUCCUGA UGAUGGCAUGCACUAUGCGCG AGCUGUCA2149
692AGUAUUCU G ACUGGAAA728UUUCCAGU UGAUGGCAUGCACUAUGCGCG AGAAUACU2150
737AAAAAAUC G AUUCUGCU729AGCAGAAU UGAUGGCAUGCACUAUGCGCG GAUUUUUU2151
732UCGAUUCU G CUCCUCUA730UAGAGGAG UGAUGGCAUGCACUAUGCGCG AGAAUCGA2152
757CUAGCUCU G CUGCAUAA731UUAUGCAG UGAUGGCAUGCACUAUGCGCG AGAGCUAG2153
760GCUCUGCU G CAUAAAAU732AUUUUAUG UGAUGGCAUGCACUAUGCGCG AGCAGAGC2154
776UCUUAGUU G AGAAUCCA733UGGAUUCU UGAUGGCAUGCACUAUGCGCG AACUAAGA2155
864AAGGCCCC G AGUCACUU734AAGUGACU UGAUGGCAUGCACUAUGCGCG GGGGCCUU2156
881CAGGUGGU G UGUCAGAG735CUCUGACA UGAUGGCAUGCACUAUGCGCG ACCACCUG2157
883GGUGGUGU G UCAGAGUC736GACUCUGA UGAUGGCAUGCACUAUGCGCG ACACCACC2158
950UAAACAGU G CUUCUAGU737ACUAGAAG UGAUGGCAUGCACUAUGCGCG ACUGUUUA2159
959CUUCUAGU G AAGAAAAU738AUUUUCUU UGAUGGCAUGCACUAUGCGCG ACUAGAAG2160
968AAGAAAAU G UGAAGUAC739GUACUUCA UGAUGGCAUGCACUAUGCGCG AUUUUCUU2161
970GAAAAUGU G AAGUACUC740GAGUACUU UGAUGGCAUGCACUAUGCGCG ACAUUUUC2162
999AGAACCCC G CACAGGUC741GACCUGUG UGAUGGCAUGCACUAUGCGCG GGGGUUCU2163
1040CAUACAUU G AUAAAUUG742CAAUUUAU UGAUGGCAUGCACUAUGCGCG AAUGUAUG2164
1080GCCCACAU G UCCUGAUC743GAUCAGGA UGAUGGCAUGCACUAUGCGCG AUGUGGGC2165
1085CAUGUCCU G AUCAUAUG744CAUAUGAU UGAUGGCAUGCACUAUGCGCG AGGACAUG2166
1093GAUCAUAU G CUUUUGAA745UUCAAAAG UGAUGGCAUGCACUAUGCGCG AUAUGAUC2167
1099AUGCUUUU G AAUAGUCA746UGACUAUU UGAUGGCAUGCACUAUGCGCG AAAAGCAU2168
1165AAAAGAAU G ACACGAUU747AAUCGUGU UGAUGGCAUGCACUAUGCGCG AUUCUUUU2169
1170AAUGACAC G AUUCUUUA748UAAAGAAU UGAUGGCAUGCACUAUGCGCG GUGUCAUU2170
1190AAUUGGAU G CAGACAAA749UUUGUCUG UGAUGGCAUGCACUAUGCGCG AUCCAAUU2171
1209UUAUCAAU G CCUGAAAG750CUUUCAGG UGAUGGCAUGCACUAUGCGCG AUUGAUAA2172
1213CAAUGCCU G AAAGAGAC751GUCUCUUU UGAUGGCAUGCACUAUGCGCG AGGCAUUG2173
1224AGAGACUU G UGAGAAGU752ACUUCUCA UGAUGGCAUGCACUAUGCGCG AAGUCUCU2174
1226AGACUUGU G AGAAGUUG753CAACUUCU UGAUGGCAUGCACUAUGCGCG ACAAGUCU2175
1257GAAAAGUU G UAUGAAUC754GAUUCAUA UGAUGGCAUGCACUAUGCGCG AACUUUUC2176
1261AGUUGUAU G AAUCAGGU755ACCUGAUU UGAUGGCAUGCACUAUGCGCG AUACAACU2177
1286CAACAACU G AUAGGAGA756UCUCCUAU UGAUGGCAUGCACUAUGCGCG AGUUGUUG2178
1318UUCAAAGU G AAUUUGUU757AACAAAUU UGAUGGCAUGCACUAUGCGCG ACUUUGAA2179
1324GUGAAUUU G UUAGAAAU758AUUUCUAA UGAUGGCAUGCACUAUGCGCG AAAUUCAC2180
1337AAAUGGAU G AUAAAAUA759UAUUUUAU UGAUGGCAUGCACUAUGCGCG AUCCAUUU2181
1352UAUUGGUU G ACUUCCGG760CCGGAAGU UGAUGGCAUGCACUAUGCGCG AACCAAUA2182
1373CUAAGGGU G AUGGAUUG761CAAUCCAU UGAUGGCAUGCACUAUGCGCG ACCCUUAG2183
1402CACUUCCU G AAGAUUAA762UUAAUCUU UGAUGGCAUGCACUAUGCGCG AGGAAGUG2184
1420GGGAAGCU G AUUGAUAU763AUAUCAAU UGAUGGCAUGCACUAUGCGCG AGCUUCCC2185
1424AGCUGAUU G AUAUUGUG764CACAAUAU UGAUGGCAUGCACUAUGCGCG AAUCAGCU2186
1430UUGAUAUU G UGAGCAGC765GCUGCUCA UGAUGGCAUGCACUAUGCGCG AAUAUCAA2187
1432GAUAUUGU G AGCAGCCA766UGGCUGCU UGAUGGCAUGCACUAUGCGCG ACAAUAUC2188
1457GGCUUCCU G CCACAUGA767UCAUGUGG UGAUGGCAUGCACUAUGCGCG AGGAAGCC2189
1464UGCCACAU G AUCGGACC768GGUCCGAU UGAUGGCAUGCACUAUGCGCG AUGUGGCA2190
1495AUCCUGGU G AAUAUAGU769ACUAUAUU UGAUGGCAUGCACUAUGCGCG ACCAGGAU2191
1504AAUAUAGU G CUGCUAUG770CAUAGCAG UGAUGGCAUGCACUAUGCGCG ACUAUAUU2192
1507AUAGUGCU G CUAUGUUG771CAACAUAG UGAUGGCAUGCACUAUGCGCG AGCACUAU2193
1512GCUGCUAU G UUGACAUU772AAUGUCAA UGAUGGCAUGCACUAUGCGCG AUAGCAGC2194
1515GCUAUGUU G ACAUUAUU773AAUAAUGU UGAUGGCAUGCACUAUGCGCG AACAUAGC2195
1545AUUAUCCU G UCCUGCAA774UUGCAGGA UGAUGGCAUGCACUAUGCGCG AGGAUAAU2196
1550CCUGUCCU G CAAACUGC775GCAGUUUG UGAUGGCAUGCACUAUGCGCG AGGACAGG2197
1557UGCAAACU G CAAAUAGU776ACUAUUUG UGAUGGCAUGCACUAUGCGCG AGUUUGCA2198
1573UAGUUCCU G AAGUGUUC777GAACACUU UGAUGGCAUGCACUAUGCGCG AGGAACUA2199
1578CCUGAAGU G UUCACUUC778GAAGUGAA UGAUGGCAUGCACUAUGCGCG ACUUCAGG2200
1590ACUUCCCU G UUUAUCCA779UGGAUAAA UGAUGGCAUGCACUAUGCGCG AGGGAAGU2201
1619UUUAUUUU G UUUGUUCG780CGAACAAA UGAUGGCAUGCACUAUGCGCG AAAAUAAA2202
1623UUUUGUUU G UUCGGCAU781AUGCCGAA UGAUGGCAUGCACUAUGCGCG AAACAAAA2203
1656UCUUAAUU G UAAGCAAA782UUUGCUUA UGAUGGCAUGCACUAUGCGCG AAUUAAGA2204
1681GAAAGGAU G AAUAGAAU783AUUCUAUU UGAUGGCAUGCACUAUGCGCG AUCCUUUC2205
1696AUUCAUUU G AUUAUUUC784GAAAUAAU UGAUGGCAUGCACUAUGCGCG AAAUGAAU2206
1710UUCUUCAU G UGUGUUUA785UAAACACA UGAUGGCAUGCACUAUGCGCG AUGAAGAA2207
1712CUUCAUGU G UGUUUAGU786ACUAAACA UGAUGGCAUGCACUAUGCGCG ACAUGAAG2208
1714UCAUGUGU G UUUAGUAU787AUACUAAA UGAUGGCAUGCACUAUGCGCG ACACAUGA2209
1725UAGUAUCU G AAUUUGAA788UUCAAAUU UGAUGGCAUGCACUAUGCGCG AGAUACUA2210
1731CUGAAUUU G AAACUCAU789AUGAGUUU UGAUGGCAUGCACUAUGCGCG AAAUUCAG2211
1768GGGGACAU G AGUUUUCC790GGAAAACU UGAUGGCAUGCACUAUGCGCG AUGUCCCC2212
|
Input Sequence = AF016582. Cut Site = YG/M or UG/U.
Stem Length = 8. Core Sequence = UGAUG GCAUGCACUAUGC GCG
AF016582 (Homo sapiens checkpoint kinase Chk1 (CHK1) mRNA; 1821 bp)
[0178]
6
TABLE VI
|
|
|
Human Chk1 Zinzyme Ribozyme and Substrate Sequence
|
Rz Seq
|
Pos
Substrate
Seq ID
Ribozyme
ID
|
|
10
GCCGGACA G UCCGCCGA
791
UCGGCGGA GCCGAAAGGCGAGUCAAGGUCU UGUCCGGC
2213
|
14
GACAGUCC G CCGAGGUG
792
CACCUCGG GCCGAAAGGCGAGUCAAGGUCU GGACUGUC
2214
|
20
CCGCCGAG G UGCUCGGU
793
ACCGAGCA GCCGAAAGGCGAGUCAAGGUCU CUCGGCGG
2215
|
22
GCCGAGGU G CUCGGUGG
794
CCACCGAG GCCGAAAGGCGAGUCAAGGUCU ACCUCGGC
2216
|
27
GGUGCUCG G UGGAGUCA
795
UGACUCCA GCCGAAAGGCGAGUCAAGGUCU CGAGCACC
2217
|
32
UCGGUGGA G UCAUGGCA
796
UGCCAUGA GCCGAAAGGCGAGUCAAGGUCU UCCACCGA
2218
|
38
GAGUCAUG G CAGUGCCC
797
GGGCACUG GCCGAAAGGCGAGUCAAGGUCU CAUGACUC
2219
|
41
UCAUGGCA G UGCCCUUU
798
AAAGGGCA GCCGAAAGGCGAGUCAAGGUCU UGCCAUGA
2220
|
43
AUGGCAGU G CCCUUUGU
799
ACAAAGGG GCCGAAAGGCGAGUCAAGGUCU ACUGCCAU
2221
|
50
UGCCCUUU G UGGAAGAC
800
GUCUUCCA GCCGAAAGGCGAGUCAAGGUCU AAAGGGCA
2222
|
68
GGGACUUG G UGCAAACC
801
GGUUUGCA GCCGAAAGGCGAGUCAAGGUCU CAAGUCCC
2223
|
70
GACUUGGU G CAAACCCU
802
AGGGUUUG GCCGAAAGGCGAGUCAAGGUCU ACCAAGUC
2224
|
87
GGGAGAAG G UGCCUAUG
803
CAUAGGCA GCCGAAAGGCGAGUCAAGGUCU CUUCUCCC
2225
|
89
GAGAAGGU G CCUAUGGA
804
UCCAUAGG GCCGAAAGGCGAGUCAAGGUCU ACCUUCUC
2226
|
101
AUGGAGAA G UUCAACUU
805
AAGUUGAA GCCGAAAGGCGAGUCAAGGUCU UUCUCCAU
2227
|
110
UUCAACUU G CUGUGAAU
806
AUUCACAG GCCGAAAGGCGAGUCAAGGUCU AAGUUGAA
2228
|
113
AACUUGCU G UGAAUAGA
807
UCUAAUCA GCCGAAAGGCGAGUCAAGGUCU AGCAAGUU
2229
|
122
UGAAUAGA G UAACUGAA
808
UUCAGUUA GCCGAAAGGCGAGUCAAGGUCU UCUAUUCA
2230
|
134
CUGAAGAA G CAGUCGCA
809
UGCGACUG GCCGAAAGGCGAGUCAAGGUCU UUCUUCAG
2231
|
137
AAGAAGCA G UCGCAGUG
810
CACUGCGA GCCGAAAGGCGAGUCAAGGUCU UGCUUCUU
2232
|
140
AAGCAGUC G CAGUGAAG
811
CUUCACUG GCCGAAAGGCGAGUCAAGGUCU GACUGCUU
2233
|
143
CAGUCGCA G UGAAGAUU
812
AAUCUUCA GCCGAAAGGCGAGUCAAGGUCU UGCGACUG
2234
|
152
UGAAGAUU G UAGAUAUG
813
CAUAUCUA GCCGAAAGGCGAGUCAAGGUCU AAUCUUCA
2235
|
163
GAUAUGAA G CGUGCCGU
814
ACGGCACG GCCGAAAGGCGAGUCAAGGUCU UUCAUAUC
2236
|
165
UAUGAAGC G UGCCGUAG
815
CUACGGCA GCCGAAAGGCGAGUCAAGGUCU GCUUCAUA
2237
|
167
UGAAGCGU G CCGUAGAC
816
GUCUACGG GCCGAAAGGCGAGUCAAGGUCU ACGCUUCA
2238
|
170
AGCGUGCC G UAGACUGU
817
ACAGUCUA GCCGAAAGGCGAGUCAAGGUCU GGCACGCU
2239
|
177
CGUAGACU G UCCAGAAA
818
UUUCUGGA GCCGAAAGGCGAGUCAAGGUCU AGUCUACG
2240
|
204
AGAGAUCU G UAUCAAUA
819
UAUUGAUA GCCGAAAGGCGAGUCAAGGUCU AGAUCUCU
2241
|
217
AAUAAAAU G CUAAAUCA
820
UGAUUUAG GCCGAAAGGCGAGUCAAGGUCU AUUUUAUU
2242
|
233
AUGAAAAU G UAGUAAAA
821
UUUUACUA GCCGAAAGGCGAGUCAAGGUCU AUUUUCAU
2243
|
236
AAAAUGUA G UAAAAUUC
822
GAAUUUUA GCCGAAAGGCGAGUCAAGGUCU UACAUUUU
2244
|
249
AUUCUAUG G UCACAGGA
823
UCCUGUGA GCCGAAAGGCGAGUCAAGGUCU CAUAGAAU
2245
|
264
GAGAGAAG G CAAUAUCC
824
GGAUAUUG GCCGAAAGGCGAGUCAAGGUCU CUUCUCUC
2246
|
289
UUUCUGGA G UACUGUAG
825
CUACAGUA GCCGAAAGGCGAGUCAAGGUCU UCCAGAAA
2247
|
294
GGAGUACU G UAGUGGAG
826
CUCCACUA GCCGAAAGGCGAGUCAAGGUCU AGUACUCC
2248
|
297
GUACUGUA G UGGAGGAG
827
CUCCUCCA GCCGAAAGGCGAGUCAAGGUCU UACAGUAC
2249
|
307
GGAGGAGA G CUUUUUGA
828
UCAAAAAG GCCGAAAGGCGAGUCAAGGUCU UCUCCUCC
2250
|
325
AGAAUAGA G CCAGACAU
829
AUGUCUGG GCCGAAAGGCGAGUCAAGGUCU UCUAUUCU
2251
|
336
AGACAUAG G CAUGCCUG
830
CAGGCAUG GCCGAAAGGCGAGUCAAGGUCU CUAUGUCU
2252
|
340
AUAGGCAU G CCUGAACC
831
GGUUCAGG GCCGAAAGGCGAGUCAAGGUCU AUGCCUAU
2253
|
353
AACCAGAU G CUCAGAGA
832
UCUCUGAG GCCGAAAGGCGAGUCAAGGUCU AUCUGGUU
2254
|
380
AACUCAUG G CAGGGGUG
833
CACCCCUG GCCGAAAGGCGAGUCAAGGUCU CAUGAGUU
2255
|
386
UGGCAGGG G UGGUUUAU
834
AUAAACCA GCCGAAAGGCGAGUCAAGGUCU CCCUGCCA
2256
|
389
CAGGGGUG G UUUAUCUG
835
CAGAUAAA GCCGAAAGGCGAGUCAAGGUCU CACCCCUG
2257
|
397
GUUUAUCU G CAUGGUAU
836
AUACCAUG GCCGAAAGGCGAGUCAAGGUCU AGAUAAAC
2258
|
402
UCUGCAUG G UAUUGGAA
837
UUCCAAUA GCCGAAAGGCGAGUCAAGGUCU CAUGCAGA
2259
|
445
AAUCUUCU G UUGGAUGA
838
UCAUCCAA GCCGAAAGGCGAGUCAAGGUCU AGAAGAUU
2260
|
483
AGACUUUG G CUUGGCAA
839
UUGCCAAG GCCGAAAGGCGAGUCAAGGUCU CAAAGUCU
2261
|
488
UUGGCUUG G CAACAGUA
840
UACUGUUG GCCGAAAGGCGAGUCAAGGUCU CAAGCCAA
2262
|
494
UGGCAACA G UAUUUCGG
841
CCGAAAUA GCCGAAAGGCGAGUCAAGGUCU UGUUGCCA
2263
|
502
GUAUUUCG G UAUAAUAA
842
UUAUUAUA GCCGAAAGGCGAGUCAAGGUCU CGAAAUAC
2264
|
513
UAAUAAUC G UGAGCGUU
843
AACGCUCA GCCGAAAGGCGAGUCAAGGUCU GAUUAUUA
2265
|
517
AAUCGUGA G CGUUUGUU
844
AACAAACG GCCGAAAGGCGAGUCAAGGUCU UCACGAUU
2266
|
519
UCGUGAGC G UUUGUUGA
845
UCAACAAA GCCGAAAGGCGAGUCAAGGUCU GCUCACGA
2267
|
523
GAGCGUUU G UUGAACAA
846
UUGUUCAA GCCGAAAGGCGAGUCAAGGUCU AAACGCUC
2268
|
535
AACAAGAU G UGUGGUAC
847
GUACCACA GCCGAAAGGCGAGUCAAGGUCU AUCUUGUU
2269
|
537
CAAGAUGU G UGGUACUU
848
AAGUACCA GCCGAAAGGCGAGUCAAGGUCU ACAUCUUG
2270
|
540
GAUGUGUG G UACUUUAC
849
GUAAAGUA GCCGAAAGGCGAGUCAAGGUCU CACACAUC
2271
|
554
UACCAUAU G UUGCUCCA
850
UGGAGCAA GCCGAAAGGCGAGUCAAGGUCU AUAUGGUA
2272
|
557
CAUAUGUU G CUCCAGAA
851
UUCUGGAG GCCGAAAGGCGAGUCAAGGUCU AACAUAUG
2273
|
590
AAUUUCAU G CAGAACCA
852
UGGUUCUG GCCGAAAGGCGAGUCAAGGUCU AUGAAAUU
2274
|
599
CAGAACCA G UUGAUGUU
853
AACAUCAA GCCGAAAGGCGAGUCAAGGUCU UGGUUCUG
2275
|
605
CAGUUGAU G UUUGGUCC
854
GGACCAAA GCCGAAAGGCGAGUCAAGGUCU AUCAACUG
2276
|
610
GAUGUUUG G UCCUGUGG
855
CCACAGGA GCCGAAAGGCGAGUCAAGGUCU CAAACAUC
2277
|
615
UUGGUCCU G UGGAAUAG
856
CUAUUCCA GCCGAAAGGCGAGUCAAGGUCU AGGACCAA
2278
|
623
GUGGAAUA G UACUUACU
857
AGUAAGUA GCCGAAAGGCGAGUCAAGGUCU UAUUCCAC
2279
|
632
UACUUACU G CAAUGCUC
858
GAGCAUUG GCCGAAAGGCGAGUCAAGGUCU AGUAAGUA
2280
|
637
ACUGCAAU G CUCGCUGG
859
CCAGCGAG GCCGAAAGGCGAGUCAAGGUCU AUUGCAGU
2281
|
641
CAAUGCUC G CUGGAGAA
860
UUCUCCAG GCCGAAAGGCGAGUCAAGGUCU GAGCAUUG
2282
|
652
GGAGAAUU G CCAUGGGA
861
UCCCAUGG GCCGAAAGGCGAGUCAAGGUCU AAUUCUCC
2283
|
669
CCAACCCA G UGACAGCU
862
AGCUGUCA GCCGAAAGGCGAGUCAAGGUCU UGGGUUGG
2284
|
675
CAGUGACA G CUGUCAGG
863
CCUGACAG GCCGAAAGGCGAGUCAAGGUCU UGUCACUG
2285
|
678
UGACAGCU G UCAGGAGU
864
ACUCCUGA GCCGAAAGGCGAGUCAAGGUCU AGCUGUCA
2286
|
685
UGUCAGGA G UAUUCUGA
865
UCAGAAUA GCCGAAAGGCGAGUCAAGGUCU UCCUGACA
2287
|
743
UCGAUUCU G CUCCUCUA
866
UAGAGGAG GCCGAAAGGCGAGUCAAGGUCU AGAAUCGA
2288
|
752
CUCCUCUA G CUCUGCUG
867
CAGCAGAG GCCGAAAGGCGAGUCAAGGUCU UAGAGGAG
2289
|
757
CUAGCUCU G CUGCAUAA
868
UUAUGCAG GCCGAAAGGCGAGUCAAGGUCU AGAGCUAG
2290
|
760
GCUCUGCU G CAUAAAAU
869
AUUUUAUG GCCGAAAGGCGAGUCAAGGUCU AGCAGAGC
2291
|
773
AAAUCUUA G UUGAGAAU
870
AUUCUCAA GCCGAAAGGCGAGUCAAGGUCU UAAGAUUU
2292
|
788
AUCCAUCA G CAAGAAUU
871
AAUUCUUG GCCGAAAGGCGAGUCAAGGUCU UGAUGGAU
2293
|
826
GAUAGAUG G UACAACAA
872
UUGUUGUA GCCGAAAGGCGAGUCAAGGUCU CAUCUAUC
2294
|
851
AGAAAGGG G CAAAAAGG
873
CCUUUUUG GCCGAAAGGCGAGUCAAGGUCU CCCUUUCU
2295
|
859
GCAAAAAG G CCCCGAGU
874
ACUCGGGG GCCGAAAGGCGAGUCAAGGUCU CUUUUUGC
2296
|
866
GGCCCCGA G UCACUUCA
875
UGAAGUGA GCCGAAAGGCGAGUCAAGGUCU UCGGGGCC
2297
|
876
CACUUCAG G UGGUGUGU
876
ACACACCA GCCGAAAGGCGAGUCAAGGUCU CUGAAGUG
2298
|
879
UUCAGGUG G UGUGUCAG
877
CUGACACA GCCGAAAGGCGAGUCAAGGUCU CACCUGAA
2299
|
881
CAGGUGGU G UGUCAGAG
878
CUCUGACA GCCGAAAGGCGAGUCAAGGUCU ACCACCUG
2300
|
883
GGUGGUGU G UCAGAGUC
879
GACUCUGA GCCGAAAGGCGAGUCAAGGUCU ACACCACC
2301
|
889
GUGUCAGA G UCUCCCAG
880
CUGGGAGA GCCGAAAGGCGAGUCAAGGUCU UCUGACAC
2302
|
897
GUCUCCCA G UGGAUUUU
881
AAAAUCCA GCCGAAAGGCGAGUCAAGGUCU UGGGAGAC
2303
|
910
UUUUCUAA G CACAUUCA
882
UGAAUGUG GCCGAAAGGCGAGUCAAGGUCU UUAGAAAA
2304
|
941
UCUCUCCA G UAAACAGU
883
ACUGUUUA GCCGAAAGGCGAGUCAAGGUCU UGGAGAGA
2305
|
948
AGUAAACA G UGCUUCUA
884
UAGAAGCA GCCGAAAGGCGAGUCAAGGUCU UGUUUACU
2306
|
950
UAAACAGU G CUUCUAGU
885
ACUAGAAG GCCGAAAGGCGAGUCAAGGUCU ACUGUUUA
2307
|
957
UGCUUCUA G UGAAGAAA
886
UUUCUUCA GCCGAAAGGCGAGUCAAGGUCU UAGAAGCA
2308
|
968
AAGAAAAU G UGAAGUAC
887
GUACUUCA GCCGAAAGGCGAGUCAAGGUCU AUUUUCUU
2309
|
973
AAUGUGAA G UACUCCAG
888
CUGGAGUA GCCGAAAGGCGAGUCAAGGUCU UUCACAUU
2310
|
981
GUACUCCA G UUCUCAGC
889
GCUGAGAA GCCGAAAGGCGAGUCAAGGUCU UGGAGUAC
2311
|
988
AGUUCUCA G CCAGAACC
890
GGUUCUGG GCCGAAAGGCGAGUCAAGGUCU UGAGAACU
2312
|
999
AGAACCCC G CACAGGUC
891
GACCUGUG GCCGAAAGGCGAGUCAAGGUCU GGGGUUCU
2313
|
1005
CCGCACAG G UCUUUCCU
892
AGGAAAGA GCCGAAAGGCGAGUCAAGGUCU CUGUGCGG
2314
|
1026
GGAUACCA G CCCCUCAU
893
AUGAGGGG GCCGAAAGGCGAGUCAAGGUCU UGGUAUCC
2315
|
1049
AUAAAUUG G UACAAGGG
894
CCCUUGUA GCCGAAAGGCGAGUCAAGGUCU CAAUUUAU
2316
|
1062
AGGGAUCA G CUUUUCCC
895
GGGAAAAG GCCGAAAGGCGAGUCAAGGUCU UGAUCCCU
2317
|
1072
UUUUCCCA G CCCACAUG
896
CAUGUGGG GCCGAAAGGCGAGUCAAGGUCU UGGGAAAA
2318
|
1080
GCCCACAU G UCCUGAUC
897
GAUCAGGA GCCGAAAGGCGAGUCAAGGUCU AUGUGGGC
2319
|
1093
GAUCAUAU G CUUUUGAA
898
UUCAAAAG GCCGAAAGGCGAGUCAAGGUCU AUAUGAUC
2320
|
1104
UUUGAAUA G UCAGUUAC
899
GUAACUGA GCCGAAAGGCGAGUCAAGGUCU UAUUCAAA
2321
|
1108
AAUAGUCA G UUACUUGG
900
CCAAGUAA GCCGAAAGGCGAGUCAAGGUCU UGACUAUU
2322
|
1116
GUUACUUG G CACCCCAG
901
CUGGGGUG GCCGAAAGGCGAGUCAAGGUCU CAAGUAAC
2323
|
1144
AACCCCUG G CAGCGGUU
902
AACCGCUG GCCGAAAGGCGAGUCAAGGUCU CAGGGGUU
2324
|
1147
CCCUGGCA G CGGUUGGU
903
ACCAACCG GCCGAAAGGCGAGUCAAGGUCU UGCCAGGG
2325
|
1150
UGGCAGCG G UUGGUCAA
904
UUGACCAA GCCGAAAGGCGAGUCAAGGUCU CGCUGCCA
2326
|
1154
AGCGGUUG G UCAAAAGA
905
UCUUUUGA GCCGAAAGGCGAGUCAAGGUCU CAACCGCU
2327
|
1190
AAUUGGAU G CAGACAAA
906
UUUGUCUG GCCGAAAGGCGAGUCAAGGUCU AUCCAAUU
2328
|
1209
UUAUCAAU G CCUGAAAG
907
CUUUCAGG GCCGAAAGGCGAGUCAAGGUCU AUUGAUAA
2329
|
1224
AGAGACUU G UGAGAAGU
908
ACUUCUCA GCCGAAAGGCGAGUCAAGGUCU AAGUCUCU
2330
|
1231
UGUGAGAA G UUGGGCUA
909
UAGCCCAA GCCGAAAGGCGAGUCAAGGUCU UUCUCACA
2331
|
1236
GAAGUUGG G CUAUCAAU
910
AUUGAUAG GCCGAAAGGCGAGUCAAGGUCU CCAACUUC
2332
|
1254
GAAGAAAA G UUGUAUGA
911
UCAUACAA GCCGAAAGGCGAGUCAAGGUCU UUUUCUUC
2333
|
1257
GAAAAGUU G UAUGAAUC
912
GAUUCAUA GCCGAAAGGCGAGUCAAGGUCU AACUUUUC
2334
|
1268
UGAAUCAG G UUACUAUA
913
UAUAGUAA GCCGAAAGGCGAGUCAAGGUCU CUGAUUCA
2335
|
1316
UUUUCAAA G UGAAUUUG
914
CAAAUUCA GCCGAAAGGCGAGUCAAGGUCU UUUGAAAA
2336
|
1324
GUGAAUUU G UUAGAAAU
915
AUUUCUAA GCCGAAAGGCGAGUCAAGGUCU AAAUUCAC
2337
|
1349
AAAUAUUG G UUGACUUC
916
GAAGUCAA GCCGAAAGGCGAGUCAAGGUCU CAAUAUUU
2338
|
1360
GACUUCCG G CUUUCUAA
917
UUAGAAAG GCCGAAAGGCGAGUCAAGGUCU CGGAAGUC
2339
|
1371
UUCUAAGG G UGAUGGAU
918
AUCCAUCA GCCGAAAGGCGAGUCAAGGUCU CCUUAGAA
2340
|
1384
GGAUUGGA G UUCAAGAG
919
CUCUUGAA GCCGAAAGGCGAGUCAAGGUCU UCCAAUCC
2341
|
1417
AAAGGGAA G CUGAUUGA
920
UCAAUCAG GCCGAAAGGCGAGUCAAGGUCU UUCCCUUU
2342
|
1430
UUGAUAUU G UGAGCAGC
921
GCUGCUCA GCCGAAAGGCGAGUCAAGGUCU AAUAUCAA
2343
|
1434
UAUUGUGA G CAGCCAGA
922
UCUGGCUG GCCGAAAGGCGAGUCAAGGUCU UCACAAUA
2344
|
1437
UGUGAGCA G CCAGAAGG
923
CCUUCUGG GCCGAAAGGCGAGUCAAGGUCU UGCUCACA
2345
|
1445
GCCAGAAG G UUUGGCUU
924
AAGCCAAA GCCGAAAGGCGAGUCAAGGUCU CUUCUGGC
2346
|
1450
AAGGUUUG G CUUCCUGC
925
GCAGGAAG GCCGAAAGGCGAGUCAAGGUCU CAAACCUU
2347
|
1457
GGCUUCCU G CCACAUGA
926
UCAUGUGG GCCGAAAGGCGAGUCAAGGUCU AGGAAGCC
2348
|
1477
GACCAUCG G CUCUGGGG
927
CCCCAGAG GCCGAAAGGCGAGUCAAGGUCU CGAUGGUC
2349
|
1493
GAAUCCUG G UGAAUAUA
928
UAUAUUCA GCCGAAAGGCGAGUCAAGGUCU CAGGAUUC
2350
|
1502
UGAAUAUA G UGCUGCUA
929
UAGCAGCA GCCGAAAGGCGAGUCAAGGUCU UAUAUUCA
2351
|
1504
AAUAUAGU G CUGCUAUG
930
CAUAGCAG GCCGAAAGGCGAGUCAAGGUCU ACUAUAUU
2352
|
1507
AUAGUGCU G CUAUGUUG
931
CAACAUAG GCCGAAAGGCGAGUCAAGGUCU AGCACUAU
2353
|
1512
GCUGCUAU G UUGACAUU
932
AAUGUCAA GCCGAAAGGCGAGUCAAGGUCU AUAGCAGC
2354
|
1545
AUUAUCCU G UCCUGCAA
933
UUGCAGGA GCCGAAAGGCGAGUCAAGGUCU AGGAUAAU
2355
|
1550
CCUGUCCU G CAAACUGC
934
GCAGUUUG GCCGAAAGGCGAGUCAAGGUCU AGGACAGG
2356
|
1557
UGCAAACU G CAAAUAGU
935
ACUAUUUG GCCGAAAGGCGAGUCAAGGUCU AGUUUGCA
2357
|
1564
UGCAAAUA G UAGUUCCU
936
AGGAACUA GCCGAAAGGCGAGUCAAGGUCU UAUUUGCA
2358
|
1567
AAAUAGUA G UUCCUGAA
937
UUCAGGAA GCCGAAAGGCGAGUCAAGGUCU UACUAUUU
2359
|
1576
UUCCUGAA G UGUUCACU
938
AGUGAACA GCCGAAAGGCGAGUCAAGGUCU UUCAGGAA
2360
|
1578
CCUGAAGU G UUCACUUC
939
GAAGUGAA GCCGAAAGGCGAGUCAAGGUCU ACUUCAGG
2361
|
1590
ACUUCCCU G UUUAUCCA
940
UGGAUAAA GCCGAAAGGCGAGUCAAGGUCU AGGGAAGU
2362
|
1619
UUUAUUUU G UUUGUUCG
941
CGAACAAA GCCGAAAGGCGAGUCAAGGUCU AAAAUAAA
2363
|
1623
UUUUGUUU G UUCGGCAU
942
AUGCCGAA GCCGAAAGGCGAGUCAAGGUCU AAACAAAA
2364
|
1628
UUUGUUCG G CAUACAAA
943
UUUGUAUG GCCGAAAGGCGAGUCAAGGUCU CGAACAAA
2365
|
1656
UCUUAAUU G UAAGCAAA
944
UUUGCUUA GCCGAAAGGCGAGUCAAGGUCU AAUUAAGA
2366
|
1660
AAUUGUAA G CAAAACUU
945
AAGUUUUG GCCGAAAGGCGAGUCAAGGUCU UUACAAUU
2367
|
1710
UUCUUCAU G UGUGUUUA
946
UAAACACA GCCGAAAGGCGAGUCAAGGUCU AUGAAGAA
2368
|
1712
CUUCAUGU G UGUUUAGU
947
ACUAAACA GCCGAAAGGCGAGUCAAGGUCU ACAUGAAG
2369
|
1714
UCAUGUGU G UUUAGUAU
948
AUACUAAA GCCGAAAGGCGAGUCAAGGUCU ACACAUGA
2370
|
1719
UGUGUUUA G UAUCUGAA
949
UUCAGAUA GCCGAAAGGCGAGUCAAGGUCU UAAACACA
2371
|
1743
CUCAUCUG G UGGAAACC
950
GGUUUCCA GCCGAAAGGCGAGUCAAGGUCU CAGAUGAG
2372
|
1754
GAAACCAA G UUUCAGGG
951
CCCUGAAA GCCGAAAGGCGAGUCAAGGUCU UUGGUUUC
2373
|
1770
GGACAUGA G UUUUCCAG
952
CUGGAAAA GCCGAAAGGCGAGUCAAGGUCU UCAUGUCC
2374
|
1778
GUUUUCCA G CUUUUAUA
953
UAUAAAAG GCCGAAAGGCGAGUCAAGGUCU UGGAAAAC
2375
|
1792
AUACACAC G UAUCUCAU
954
AUGAGAUA GCCGAAAGGCGAGUCAAGGUCU GUGUGUAU
2376
|
|
Input Sequence = AF016582. Cut Site = G/Y
|
Stem Length = 8. Core Sequence = GCcgaaagGCGaGuCaaGGuCu
|
AF016582 (Homo sapiens checkpoint kinase Chk1 (CHK1) mRNA; 1821 bp)
|
[0179]
7
TABLE VII
|
|
|
Human Chk1 DNAzyme and Substrate Sequence
|
Pos
Substrate
Seq ID
DNAzyme
Seq ID
|
|
10
GCCGGACA G UCCGCCGA
791
TCGGCGGA GGCTAGCTACAACGA TGTCCGGC
2377
|
14
GACAGUCC G CCGAGGUG
792
CACCTCGG GGCTAGCTACAACGA GGACTGTC
2378
|
20
CCGCCGAG G UGCUCGGU
793
ACCGAGCA GGCTAGCTACAACGA CTCGGCGG
2379
|
22
GCCGAGGU G CUCGGUGG
794
CCACCGAG GGCTAGCTACAACGA ACCTCGGC
2380
|
27
GGUGCUCG G UGGAGUCA
795
TGACTCCA GGCTAGCTACAACGA CGAGCACC
2381
|
32
UCGGUGGA G UCAUGGCA
796
TGCCATGA GGCTAGCTACAACGA TCCACCGA
2382
|
38
GAGUCAUG G CAGUGCCC
797
GGGCACTG GGCTAGCTACAACGA CATGACTC
2383
|
41
UCAUGGCA G UGCCCUUU
798
AAAGGGCA GGCTAGCTACAACGA TGCCATGA
2384
|
43
AUGGCAGU G CCCUUUGU
799
ACAAAGGG GGCTAGCTACAACGA ACTGCCAT
2385
|
50
UGCCCUUU G UGGAAGAC
800
GTCTTCCA GGCTAGCTACAACGA AAAGGGCA
2386
|
68
GGGACUUG G UGCAAACC
801
GGTTTGCA GGCTAGCTACAACGA CAAGTCCC
2387
|
70
GACUUGGU G CAAACCCU
802
AGGGTTTG GGCTAGCTACAACGA ACCAAGTC
2388
|
87
GGGAGAAG G UGCCUAUG
803
CATAGGCA GGCTAGCTACAACGA CTTCTCCC
2389
|
89
GAGAAGGU G CCUAUGGA
804
TCCATAGG GGCTAGCTACAACGA ACCTTCTC
2390
|
101
AUGGAGAA G UUCAACUU
805
AAGTTGAA GGCTAGCTACAACGA TTCTCCAT
2391
|
110
UUCAACUU G CUGUGAAU
806
ATTCACAG GGCTAGCTACAACGA AAGTTGAA
2392
|
113
AACUUGCU G UGAAUAGA
807
TCTATTCA GGCTAGCTACAACGA AGCAAGTT
2393
|
122
UGAAUAGA G UAACUGAA
808
TTCAGTTA GGCTAGCTACAACGA TCTATTCA
2394
|
134
CUGAAGAA G CAGUCGCA
809
TGCGACTG GGCTAGCTACAACGA TTCTTCAG
2395
|
137
AAGAAGCA G UCGCAGUG
810
CACTGCGA GGCTAGCTACAACGA TGCTTCTT
2396
|
140
AAGCAGUC G CAGUGAAG
811
CTTCACTG GGCTAGCTACAACGA GACTGCTT
2397
|
143
CAGUCGCA G UGAAGAUU
812
AATCTTCA GGCTAGCTACAACGA TGCGACTG
2398
|
152
UGAAGAUU G UAGAUAUG
813
CATATCTA GGCTAGCTACAACGA AATCTTCA
2399
|
163
GAUAUGAA G CGUGCCGU
814
ACGGCACG GGCTAGCTACAACGA TTCATATC
2400
|
165
UAUGAAGC G UGCCGUAG
815
CTACGGCA GGCTAGCTACAACGA GCTTCATA
2401
|
167
UGAAGCGU G CCGUAGAC
816
GTCTACGG GGCTAGCTACAACGA ACGCTTCA
2402
|
170
AGCGUGCC G UAGACUGU
817
ACAGTCTA GGCTAGCTACAACGA GGCACGCT
2403
|
177
CGUAGACU G UCCAGAAA
818
TTTCTGGA GGCTAGCTACAACGA AGTCTACG
2404
|
204
AGAGAUCU G UAUCAAUA
819
TATTGATA GGCTAGCTACAACGA AGATCTCT
2405
|
217
AAUAAAAU G CUAAAUCA
820
TGATTTAG GGCTAGCTACAACGA ATTTTATT
2406
|
233
AUGAAAAU G UAGUAAAA
821
TTTTACTA GGCTAGCTACAACGA ATTTTCAT
2407
|
236
AAAAUGUA G UAAAAUUC
822
GAATTTTA GGCTAGCTACAACGA TACATTTT
2408
|
249
AUUCUAUG G UCACAGGA
823
TCCTGTGA GGCTAGCTACAACGA CATAGAAT
2409
|
264
GAGAGAAG G CAAUAUCC
824
GGATATTG GGCTAGCTACAACGA CTTCTCTC
2410
|
289
UUUCUGGA G UACUGUAG
825
CTACAGTA GGCTAGCTACAACGA TCCAGAAA
2411
|
294
GGAGUACU G UAGUGGAG
826
CTCCACTA GGCTAGCTACAACGA AGTACTCC
2412
|
297
GUACUGUA G UGGAGGAG
827
CTCCTCCA GGCTAGCTACAACGA TACAGTAC
2413
|
307
GGAGGAGA G CUUUUUGA
828
TCAAAAAG GGCTAGCTACAACGA TCTCCTCC
2414
|
325
AGAAUAGA G CCAGACAU
829
ATGTCTGG GGCTAGCTACAACGA TCTATTCT
2415
|
336
AGACAUAG G CAUGCCUG
830
CAGGCATG GGCTAGCTACAACGA CTATGTCT
2416
|
340
AUAGGCAU G CCUGAACC
831
GGTTCAGG GGCTAGCTACAACGA ATGCCTAT
2417
|
353
AACCAGAU G CUCAGAGA
832
TCTCTGAG GGCTAGCTACAACGA ATCTGGTT
2418
|
380
AACUCAUG G CAGGGGUG
833
CACCCCTG GGCTAGCTACAACGA CATGAGTT
2419
|
386
UGGCAGGG G UGGUUUAU
834
ATAAACCA GGCTAGCTACAACGA CCCTGCCA
2420
|
389
CAGGGGUG G UUUAUCUG
835
CAGATAAA GGCTAGCTACAACGA CACCCCTG
2421
|
397
GUUUAUCU G CAUGGUAU
836
ATACCATG GGCTAGCTACAACGA AGATAAAC
2422
|
402
UCUGCAUG G UAUUGGAA
837
TTCCAATA GGCTAGCTACAACGA CATGCAGA
2423
|
445
AAUCUUCU G UUGGAUGA
838
TCATCCAA GGCTAGCTACAACGA AGAAGATT
2424
|
483
AGACUUUG G CUUGGCAA
839
TTGCCAAG GGCTAGCTACAACGA CAAAGTCT
2425
|
488
UUGGCUUG G CAACAGUA
840
TACTGTTG GGCTAGCTACAACGA CAAGCCAA
2426
|
494
UGGCAACA G UAUUUCGG
841
CCGAAATA GGCTAGCTACAACGA TGTTGCCA
2427
|
502
GUAUUUCG G UAUAAUAA
842
TTATTATA GGCTAGCTACAACGA CGAAATAC
2428
|
513
UAAUAAUC G UGAGCGUU
843
AACGCTCA GGCTAGCTACAACGA GATTATTA
2429
|
517
AAUCGUGA G CGUUUGUU
844
AACAAACG GGCTAGCTACAACGA TCACGATT
2430
|
519
UCGUGAGC G UUUGUUGA
845
TCAACAAA GGCTAGCTACAACGA GCTCACGA
2431
|
523
GAGCGUUU G UUGAACAA
846
TTGTTCAA GGCTAGCTACAACGA AAACGCTC
2432
|
535
AACAAGAU G UGUGGUAC
847
GTACCACA GGCTAGCTACAACGA ATCTTGTT
2433
|
537
CAAGAUGU G UGGUACUU
848
AAGTACCA GGCTAGCTACAACGA ACATCTTG
2434
|
540
GAUGUGUG G UACUUUAC
849
GTAAAGTA GGCTAGCTACAACGA CACACATC
2435
|
554
UACCAUAU G UUGCUCCA
850
TGGAGCAA GGCTAGCTACAACGA ATATGGTA
2436
|
557
CAUAUGUU G CUCCAGAA
851
TTCTGGAG GGCTAGCTACAACGA AACATATG
2437
|
590
AAUUUCAU G CAGAACCA
852
TGGTTCTG GGCTAGCTACAACGA ATGAAATT
2438
|
599
CAGAACCA G UUGAUGUU
853
AACATCAA GGCTAGCTACAACGA TGGTTCTG
2439
|
605
CAGUUGAU G UUUGGUCC
854
GGACCAAA GGCTAGCTACAACGA ATCAACTG
2440
|
610
GAUGUUUG G UCCUGUGG
855
CCACAGGA GGCTAGCTACAACGA CAAACATC
2441
|
615
UUGGUCCU G UGGAAUAG
856
CTATTCCA GGCTAGCTACAACGA AGGACCAA
2442
|
623
GUGGAAUA G UACUUACU
857
AGTAAGTA GGCTAGCTACAACGA TATTCCAC
2443
|
632
UACUUACU G CAAUGCUC
858
GAGCATTG GGCTAGCTACAACGA AGTAAGTA
2444
|
637
ACUGCAAU G CUCGCUGG
859
CCAGCGAG GGCTAGCTACAACGA ATTGCAGT
2445
|
641
CAAUGCUC G CUGGAGAA
860
TTCTCCAG GGCTAGCTACAACGA GAGCATTG
2446
|
652
GGAGAAUU G CCAUGGGA
861
TCCCATGG GGCTAGCTACAACGA AATTCTCC
2447
|
669
CCAACCCA G UGACAGCU
862
AGCTGTCA GGCTAGCTACAACGA TGGGTTGG
2448
|
675
CAGUGACA G CUGUCAGG
863
CCTGACAG GGCTAGCTACAACGA TGTCACTG
2449
|
678
UGACAGCU G UCAGGAGU
864
ACTCCTGA GGCTAGCTACAACGA AGCTGTCA
2450
|
685
UGUCAGGA G UAUUCUGA
865
TCAGAATA GGCTAGCTACAACGA TCCTGACA
2451
|
743
UCGAUUCU G CUCCUCUA
866
TAGAGGAG GGCTAGCTACAACGA AGAATCGA
2452
|
752
CUCCUCUA G CUCUGCUG
867
CAGCAGAG GGCTAGCTACAACGA TAGAGGAG
2453
|
757
CUAGCUCU G CUGCAUAA
868
TTATGCAG GGCTAGCTACAACGA AGAGCTAG
2454
|
760
GCUCUGCU G CAUAAAAU
869
ATTTTATG GGCTAGCTACAACGA AGCAGAGC
2455
|
773
AAAUCUUA G UUGAGAAU
870
ATTCTCAA GGCTAGCTACAACGA TAAGATTT
2456
|
788
AUCCAUCA G CAAGAAUU
871
AATTCTTG GGCTAGCTACAACGA TGATGGAT
2457
|
826
GAUAGAUG G UACAACAA
872
TTGTTGTA GGCTAGCTACAACGA CATCTATC
2458
|
851
AGAAAGGG G CAAAAAGG
873
CCTTTTTG GGCTAGCTACAACGA CCCTTTCT
2459
|
859
GCAAAAAG G CCCCGAGU
874
ACTCGGGG GGCTAGCTACAACGA CTTTTTGC
2460
|
866
GGCCCCGA G UCACUUCA
875
TGAAGTGA GGCTAGCTACAACGA TCGGGGCC
2461
|
876
CACUUCAG G UGGUGUGU
876
ACACACCA GGCTAGCTACAACGA CTGAAGTG
2462
|
879
UUCAGGUG G UGUGUCAG
877
CTGACACA GGCTAGCTACAACGA CACCTGAA
2463
|
881
CAGGUGGU G UGUCAGAG
878
CTCTGACA GGCTAGCTACAACGA ACCACCTG
2464
|
883
GGUGGUGU G UCAGAGUC
879
GACTCTGA GGCTAGCTACAACGA ACACCACC
2465
|
889
GUGUCAGA G UCUCCCAG
880
CTGGGAGA GGCTAGCTACAACGA TCTGACAC
2466
|
897
GUCUCCCA G UGGAUUUU
881
AAAATCCA GGCTAGCTACAACGA TGGGAGAC
2467
|
910
UUUUCUAA G CACAUUCA
882
TGAATGTG GGCTAGCTACAACGA TTAGAAAA
2468
|
941
UCUCUCCA G UAAACAGU
883
ACTGTTTA GGCTAGCTACAACGA TGGAGAGA
2469
|
948
AGUAAACA G UGCUUCUA
884
TAGAAGCA GGCTAGCTACAACGA TGTTTACT
2470
|
950
UAAACAGU G CUUCUAGU
885
ACTAGAAG GGCTAGCTACAACGA ACTGTTTA
2471
|
957
UGCUUCUA G UGAAGAAA
886
TTTCTTCA GGCTAGCTACAACGA TAGAAGCA
2472
|
968
AAGAAAAU G UGAAGUAC
887
GTACTTCA GGCTAGCTACAACGA ATTTTCTT
2473
|
973
AAUGUGAA G UACUCCAG
888
CTGGAGTA GGCTAGCTACAACGA TTCACATT
2474
|
981
GUACUCCA G UUCUCAGC
889
GCTGAGAA GGCTAGCTACAACGA TGGAGTAC
2475
|
988
AGUUCUCA G CCAGAACC
890
GGTTCTGG GGCTAGCTACAACGA TGAGAACT
2476
|
999
AGAACCCC G CACAGGUC
891
GACCTGTG GGCTAGCTACAACGA GGGGTTCT
2477
|
1005
CCGCACAG G UCUUUCCU
892
AGGAAAGA GGCTAGCTACAACGA CTGTGCGG
2478
|
1026
GGAUACCA G CCCCUCAU
893
ATGAGGGG GGCTAGCTACAACGA TGGTATCC
2479
|
1049
AUAAAUUG G UACAAGGG
894
CCCTTGTA GGCTAGCTACAACGA CAATTTAT
2480
|
1062
AGGGAUCA G CUUUUCCC
895
GGGAAAAG GGCTAGCTACAACGA TGATCCCT
2481
|
1072
UUUUCCCA G CCCACAUG
896
CATGTGGG GGCTAGCTACAACGA TGGGAAAA
2482
|
1080
GCCCACAU G UCCUGAUC
897
GATCAGGA GGCTAGCTACAACGA ATGTGGGC
2483
|
1093
GAUCAUAU G CUUUUGAA
898
TTCAAAAG GGCTAGCTACAACGA ATATGATC
2484
|
1104
UUUGAAUA G UCAGUUAC
899
GTAACTGA GGCTAGCTACAACGA TATTCAAA
2485
|
1108
AAUAGUCA G UUACUUGG
900
CCAAGTAA GGCTAGCTACAACGA TGACTATT
2486
|
1116
GUUACUUG G CACCCCAG
901
CTGGGGTG GGCTAGCTACAACGA CAAGTAAC
2487
|
1144
AACCCCUG G CAGCGGUU
902
AACCGCTG GGCTAGCTACAACGA CAGGGGTT
2488
|
1147
CCCUGGCA G CGGUUGGU
903
ACCAACCG GGCTAGCTACAACGA TGCCAGGG
2489
|
1150
UGGCAGCG G UUGGUCAA
904
TTGACCAA GGCTAGCTACAACGA CGCTGCCA
2490
|
1154
AGCGGUUG G UCAAAAGA
905
TCTTTTGA GGCTAGCTACAACGA CAACCGCT
2491
|
1190
AAUUGGAU G CAGACAAA
906
TTTGTCTG GGCTAGCTACAACGA ATCCAATT
2492
|
1209
UUAUCAAU G CCUGAAAG
907
CTTTCAGG GGCTAGCTACAACGA ATTGATAA
2493
|
1224
AGAGACUU G UGAGAAGU
908
ACTTCTCA GGCTAGCTACAACGA AAGTCTCT
2494
|
1231
UGUGAGAA G UUGGGCUA
909
TAGCCCAA GGCTAGCTACAACGA TTCTCACA
2495
|
1236
GAAGUUGG G CUAUCAAU
910
ATTGATAG GGCTAGCTACAACGA CCAACTTC
2496
|
1254
GAAGAAAA G UUGUAUGA
911
TCATACAA GGCTAGCTACAACGA TTTTCTTC
2497
|
1257
GAAAAGUU G UAUGAAUC
912
GATTCATA GGCTAGCTACAACGA AACTTTTC
2498
|
1268
UGAAUCAG G UUACUAUA
913
TATAGTAA GGCTAGCTACAACGA CTGATTCA
2499
|
1316
UUUUCAAA G UGAAUUUG
914
CAAATTCA GGCTAGCTACAACGA TTTGAAAA
2500
|
1324
GUGAAUUU G UUAGAAAU
915
ATTTCTAA GGCTAGCTACAACGA AAATTCAC
2501
|
1349
AAAUAUUG G UUGACUUC
916
GAAGTCAA GGCTAGCTACAACGA CAATATTT
2502
|
1360
GACUUCCG G CUUUCUAA
917
TTAGAAAG GGCTAGCTACAACGA CGGAAGTC
2503
|
1371
UUCUAAGG G UGAUGGAU
918
ATCCATCA GGCTAGCTACAACGA CCTTAGAA
2504
|
1384
GGAUUGGA G UUCAAGAG
919
CTCTTGAA GGCTAGCTACAACGA TCCAATCC
2505
|
1417
AAAGGGAA G CUGAUUGA
920
TCAATCAG GGCTAGCTACAACGA TTCCCTTT
2506
|
1430
UUGAUAUU G UGAGCAGC
921
GCTGCTCA GGCTAGCTACAACGA AATATCAA
2507
|
1434
UAUUGUGA G CAGCCAGA
922
TCTGGCTG GGCTAGCTACAACGA TCACAATA
2508
|
1437
UGUGAGCA G CCAGAAGG
923
CCTTCTGG GGCTAGCTACAACGA TGCTCACA
2509
|
1445
GCCAGAAG G UUUGGCUU
924
AAGCCAAA GGCTAGCTACAACGA CTTCTGGC
2510
|
1450
AAGGUUUG G CUUCCUGC
925
GCAGGAAG GGCTAGCTACAACGA CAAACCTT
2511
|
1457
GGCUUCCU G CCACAUGA
926
TCATGTGG GGCTAGCTACAACGA AGGAAGCC
2512
|
1477
GACCAUCG G CUCUGGGG
927
CCCCAGAG GGCTAGCTACAACGA CGATGGTC
2513
|
1493
GAAUCCUG G UGAAUAUA
928
TATATTCA GGCTAGCTACAACGA CAGGATTC
2514
|
1502
UGAAUAUA G UGCUGCUA
929
TAGCAGCA GGCTAGCTACAACGA TATATTCA
2515
|
1504
AAUAUAGU G CUGCUAUG
930
CATAGCAG GGCTAGCTACAACGA ACTATATT
2516
|
1507
AUAGUGCU G CUAUGUUG
931
CAACATAG GGCTAGCTACAACGA AGCACTAT
2517
|
1512
GCUGCUAU G UUGACAUU
932
AATGTCAA GGCTAGCTACAACGA ATAGCAGC
2518
|
1545
AUUAUCCU G UCCUGCAA
933
TTGCAGGA GGCTAGCTACAACGA AGGATAAT
2519
|
1550
CCUGUCCU G CAAACUGC
934
GCAGTTTG GGCTAGCTACAACGA AGGACAGG
2520
|
1557
UGCAAACU G CAAAUAGU
935
ACTATTTG GGCTAGCTACAACGA AGTTTGCA
2521
|
1564
UGCAAAUA G UAGUUCCU
936
AGGAACTA GGCTAGCTACAACGA TATTTGCA
2522
|
1567
AAAUAGUA G UUCCUGAA
937
TTCAGGAA GGCTAGCTACAACGA TACTATTT
2523
|
1576
UUCCUGAA G UGUUCACU
938
AGTGAACA GGCTAGCTACAACGA TTCAGGAA
2524
|
1578
CCUGAAGU G UUCACUUC
939
GAAGTGAA GGCTAGCTACAACGA ACTTCAGG
2525
|
1590
ACUUCCCU G UUUAUCCA
940
TGGATAAA GGCTAGCTACAACGA AGGGAAGT
2526
|
1619
UUUAUUUU G UUUGUUCG
941
CGAACAAA GGCTAGCTACAACGA AAAATAAA
2527
|
1623
UUUUGUUU G UUCGGCAU
942
ATGCCGAA GGCTAGCTACAACGA AAACAAAA
2528
|
1628
UUUGUUCG G CAUACAAA
943
TTTGTATG GGCTAGCTACAACGA CGAACAAA
2529
|
1656
UCUUAAUU G UAAGCAAA
944
TTTGCTTA GGCTAGCTACAACGA AATTAAGA
2530
|
1660
AAUUGUAA G CAAAACUU
945
AAGTTTTG GGCTAGCTACAACGA TTACAATT
2531
|
1710
UUCUUCAU G UGUGUUUA
946
TAAACACA GGCTAGCTACAACGA ATGAAGAA
2532
|
1712
CUUCAUGU G UGUUUAGU
947
ACTAAACA GGCTAGCTACAACGA ACATGAAG
2533
|
1714
UCAUGUGU G UUUAGUAU
948
ATACTAAA GGCTAGCTACAACGA ACACATGA
2534
|
1719
UGUGUUUA G UAUCUGAA
949
TTCAGATA GGCTAGCTACAACGA TAAACACA
2535
|
1743
CUCAUCUG G UGGAAACC
950
GGTTTCCA GGCTAGCTACAACGA CAGATGAG
2536
|
1754
GAAACCAA G UUUCAGGG
951
CCCTGAAA GGCTAGCTACAACGA TTGGTTTC
2537
|
1770
GGACAUGA G UUUUCCAG
952
CTGGAAAA GGCTAGCTACAACGA TCATGTCC
2538
|
1778
GUUUUCCA G CUUUUAUA
953
TATAAAAG GGCTAGCTACAACGA TGGAAAAC
2539
|
1792
AUACACAC G UAUCUCAU
954
ATGAGATA GGCTAGCTACAACGA GTGTGTAT
2540
|
35
GUGGAGUC A UGGCAGUG
955
CACTGCCA GGCTAGCTACAACGA GACTCCAC
2541
|
57
UGUGGAAG A CUGGGACU
956
AGTCCCAG GGCTAGCTACAACGA CTTCCACA
2542
|
63
AGACUGGG A CUUGGUGC
957
GCACCAAG GGCTAGCTACAACGA CCCAGTCT
2543
|
74
UGGUGCAA A CCCUGGGA
958
TCCCAGGG GGCTAGCTACAACGA TTGCACCA
2544
|
93
AGGUGCCU A UGGAGAAG
959
CTTCTCCA GGCTAGCTACAACGA AGGCACCT
2545
|
106
GAAGUUCA A CUUGCUGU
960
ACAGCAAG GGCTAGCTACAACGA TGAACTTC
2546
|
117
UGCUGUGA A UAGAGUAA
961
TTACTCTA GGCTAGCTACAACGA TCACAGCA
2547
|
125
AUAGAGUA A CUGAAGAA
962
TTCTTCAG GGCTAGCTACAACGA TACTCTAT
2548
|
149
CAGUGAAG A UUGUAGAU
963
ATCTACAA GGCTAGCTACAACGA CTTCACTG
2549
|
156
GAUUGUAG A UAUGAAGC
964
GCTTCATA GGCTAGCTACAACGA CTACAATC
2550
|
158
UUGUAGAU A UGAAGCGU
965
ACGCTTCA GGCTAGCTACAACGA ATCTACAA
2551
|
174
UGCCGUAG A CUGUCCAG
966
CTGGACAG GGCTAGCTACAACGA CTACGGCA
2552
|
186
UCCAGAAA A UAUUAAGA
967
TCTTAATA GGCTAGCTACAACGA TTTCTGGA
2553
|
188
CAGAAAAU A UUAAGAAA
968
TTTCTTAA GGCTAGCTACAACGA ATTTTCTG
2554
|
200
AGAAAGAG A UCUGUAUC
969
GATACAGA GGCTAGCTACAACGA CTCTTTCT
2555
|
206
AGAUCUGU A UCAAUAAA
970
TTTATTGA GGCTAGCTACAACGA ACAGATCT
2556
|
210
CUGUAUCA A UAAAAUGC
971
GCATTTTA GGCTAGCTACAACGA TGATACAG
2557
|
215
UCAAUAAA A UGCUAAAU
972
ATTTAGCA GGCTAGCTACAACGA TTTATTGA
2558
|
222
AAUGCUAA A UCAUGAAA
973
TTTCATGA GGCTAGCTACAACGA TTAGCATT
2559
|
225
GCUAAAUC A UGAAAAUG
974
CATTTTCA GGCTAGCTACAACGA GATTTAGC
2560
|
231
UCAUGAAA A UGUAGUAA
975
TTACTACA GGCTAGCTACAACGA TTTCATGA
2561
|
241
GUAGUAAA A UUCUAUGG
976
CCATAGAA GGCTAGCTACAACGA TTTACTAC
2562
|
246
AAAAUUCU A UGGUCACA
977
TGTGACCA GGCTAGCTACAACGA AGAATTTT
2563
|
252
CUAUGGUC A CAGGAGAG
978
CTCTCCTG GGCTAGCTACAACGA GACCATAG
2564
|
267
AGAAGGCA A UAUCCAAU
979
ATTGGATA GGCTAGCTACAACGA TGCCTTCT
2565
|
269
AAGGCAAU A UCCAAUAU
980
ATATTGGA GGCTAGCTACAACGA ATTGCCTT
2566
|
274
AAUAUCCA A UAUUUAUU
981
AATAAATA GGCTAGCTACAACGA TGGATATT
2567
|
276
UAUCCAAU A UUUAUUUC
982
GAAATAAA GGCTAGCTACAACGA ATTGGATA
2568
|
280
CAAUAUUU A UUUCUGGA
983
TCCAGAAA GGCTAGCTACAACGA AAATATTG
2569
|
291
UCUGGAGU A CUGUAGUG
984
CACTACAG GGCTAGCTACAACGA ACTCCAGA
2570
|
315
GCUUUUUG A CAGAAUAG
985
CTATTCTG GGCTAGCTACAACGA CAAAAAGC
2571
|
320
UUGACAGA A UAGAGCCA
986
TGGCTCTA GGCTAGCTACAACGA TCTGTCAA
2572
|
330
AGAGCCAG A CAUAGGCA
987
TGCCTATG GGCTAGCTACAACGA CTGGCTCT
2573
|
332
AGCCAGAC A UAGGCAUG
988
CATGCCTA GGCTAGCTACAACGA GTCTGGCT
2574
|
338
ACAUAGGC A UGCCUGAA
989
TTCAGGCA GGCTAGCTACAACGA GCCTATGT
2575
|
346
AUGCCUGA A CCAGAUGC
990
GCATCTGG GGCTAGCTACAACGA TCAGGCAT
2576
|
351
UGAACCAG A UGCUCAGA
991
TCTGAGCA GGCTAGCTACAACGA CTGGTTCA
2577
|
361
GCUCAGAG A UUCUUCCA
992
TGGAAGAA GGCTAGCTACAACGA CTCTGAGC
2578
|
369
AUUCUUCC A UCAACUCA
993
TGAGTTGA GGCTAGCTACAACGA GGAAGAAT
2579
|
373
UUCCAUCA A CUCAUGGC
994
GCCATGAG GGCTAGCTACAACGA TGATGGAA
2580
|
377
AUCAACUC A UGGCAGGG
995
CCCTGCCA GGCTAGCTACAACGA GAGTTGAT
2581
|
393
GGUGGUUU A UCUGCAUG
996
CATGCAGA GGCTAGCTACAACGA AAACCACC
2582
|
399
UUAUCUGC A UGGUAUUG
997
CAATACCA GGCTAGCTACAACGA GCAGATAA
2583
|
404
UGCAUGGU A UUGGAAUA
998
TATTCCAA GGCTAGCTACAACGA ACCATGCA
2584
|
410
GUAUUGGA A UAACUCAC
999
GTGAGTTA GGCTAGCTACAACGA TCCAATAC
2585
|
413
UUGGAAUA A CUCACAGG
1000
CCTGTGAG GGCTAGCTACAACGA TATTCCAA
2586
|
417
AAUAACUC A CAGGGAUA
1001
TATCCCTG GGCTAGCTACAACGA GAGTTATT
2587
|
423
UCACAGGG A UAUUAAAC
1002
GTTTAATA GGCTAGCTACAACGA CCCTGTGA
2588
|
425
ACAGGGAU A UUAAACCA
1003
TGGTTTAA GGCTAGCTACAACGA ATCCCTGT
2589
|
430
GAUAUUAA A CCAGAAAA
1004
TTTTCTGG GGCTAGCTACAACGA TTAATATC
2590
|
438
ACCAGAAA A UCUUCUGU
1005
ACAGAAGA GGCTAGCTACAACGA TTTCTGGT
2591
|
450
UCUGUUGG A UGAAAGGG
1006
CCCTTTCA GGCTAGCTACAACGA CCAACAGA
2592
|
459
UGAAAGGG A UAACCUCA
1007
TGAGGTTA GGCTAGCTACAACGA CCCTTTCA
2593
|
462
AAGGGAUA A CCUCAAAA
1008
TTTTGAGG GGCTAGCTACAACGA TATCCCTT
2594
|
470
ACCUCAAA A UCUCAGAC
1009
GTCTGAGA GGCTAGCTACAACGA TTTGAGGT
2595
|
477
AAUCUCAG A CUUUGGCU
1010
AGCCAAAG GGCTAGCTACAACGA CTGAGATT
2596
|
491
GCUUGGCA A CAGUAUUU
1011
AAATACTG GGCTAGCTACAACGA TGCCAAGC
2597
|
496
GCAACAGU A UUUCGGUA
1012
TACCGAAA GGCTAGCTACAACGA ACTGTTGC
2598
|
504
AUUUCGGU A UAAUAAUC
1013
GATTATTA GGCTAGCTACAACGA ACCGAAAT
2599
|
507
UCGGUAUA A UAAUCGUG
1014
CACGATTA GGCTAGCTACAACGA TATACCGA
2600
|
510
GUAUAAUA A UCGUGAGC
1015
GCTCACGA GGCTAGCTACAACGA TATTATAC
2601
|
528
UUUGUUGA A CAAGAUGU
1016
ACATCTTG GGCTAGCTACAACGA TCAACAAA
2602
|
533
UGAACAAG A UGUGUGGU
1017
ACCACACA GGCTAGCTACAACGA CTTGTTCA
2603
|
542
UGUGUGGU A CUUUACCA
1018
TGGTAAAG GGCTAGCTACAACGA ACCACACA
2604
|
547
GGUACUUU A CCAUAUGU
1019
ACATATGG GGCTAGCTACAACGA AAAGTACC
2605
|
550
ACUUUACC A UAUGUUGC
1020
GCAACATA GGCTAGCTACAACGA GGTAAAGT
2606
|
552
UUUACCAU A UGUUGCUC
1021
GAGCAACA GGCTAGCTACAACGA ATGGTAAA
2607
|
565
GCUCCAGA A CUUCUGAA
1022
TTCAGAAG GGCTAGCTACAACGA TCTGGAGC
2608
|
583
AGAAGAGA A UUUCAUGC
1023
GCATGAAA GGCTAGCTACAACGA TCTCTTCT
2609
|
588
AGAAUUUC A UGCAGAAC
1024
GTTCTGCA GGCTAGCTACAACGA GAAATTCT
2610
|
595
CAUGCAGA A CCAGUUGA
1025
TCAACTGG GGCTAGCTACAACGA TCTGCATG
2611
|
603
ACCAGUUG A UGUUUGGU
1026
ACCAAACA GGCTAGCTACAACGA CAACTGGT
2612
|
620
CCUGUGGA A UAGUACUU
1027
AAGTACTA GGCTAGCTACAACGA TCCACAGG
2613
|
625
GGAAUAGU A CUUACUGC
1028
GCAGTAAG GGCTAGCTACAACGA ACTATTCC
2614
|
629
UAGUACUU A CUGCAAUG
1029
CATTGCAG GGCTAGCTACAACGA AAGTACTA
2615
|
635
UUACUGCA A UGCUCGCU
1030
AGCGAGCA GGCTAGCTACAACGA TGCAGTAA
2616
|
649
GCUGGAGA A UUGCCAUG
1031
CATGGCAA GGCTAGCTACAACGA TCTCCAGC
2617
|
655
GAAUUGCC A UGGGACCA
1032
TGGTCCCA GGCTAGCTACAACGA GGCAATTC
2618
|
660
GCCAUGGG A CCAACCCA
1033
TGGGTTGG GGCTAGCTACAACGA CCCATGGC
2619
|
664
UGGGACCA A CCCAGUGA
1034
TCACTGGG GGCTAGCTACAACGA TGGTCCCA
2620
|
672
ACCCAGUG A CAGCUGUC
1035
GACAGCTG GGCTAGCTACAACGA CACTGGGT
2621
|
687
UCAGGAGU A UUCUGACU
1036
AGTCAGAA GGCTAGCTACAACGA ACTCCTGA
2622
|
693
GUAUUCUG A CUGGAAAG
1037
CTTTCCAG GGCTAGCTACAACGA CAGAATAC
2623
|
710
AAAAAAAA A CAUACCUC
1038
GAGGTATG GGCTAGCTACAACGA TTTTTTTT
2624
|
712
AAAAAAAC A UACCUCAA
1039
TTGAGGTA GGCTAGCTACAACGA GTTTTTTT
2625
|
714
AAAAACAU A CCUCAACC
1040
GGTTGAGG GGCTAGCTACAACGA ATGTTTTT
2626
|
720
AUACCUCA A CCCUUGGA
1041
TCCAAGGG GGCTAGCTACAACGA TGAGGTAT
2627
|
734
GGAAAAAA A UCGAUUCU
1042
AGAATCGA GGCTAGCTACAACGA TTTTTTCC
2628
|
738
AAAAAUCG A UUCUGCUC
1043
GAGCAGAA GGCTAGCTACAACGA CGATTTTT
2629
|
762
UCUGCUGC A UAAAAUCU
1044
AGATTTTA GGCTAGCTACAACGA GCAGCAGA
2630
|
767
UGCAUAAA A UCUUAGUU
1045
AACTAAGA GGCTAGCTACAACGA TTTATGCA
2631
|
780
AGUUGAGA A UCCAUCAG
1046
CTGATGGA GGCTAGCTACAACGA TCTCAACT
2632
|
784
GAGAAUCC A UCAGCAAG
1047
CTTGCTGA GGCTAGCTACAACGA GGATTCTC
2633
|
794
CAGCAAGA A UUACCAUU
1048
AATGGTAA GGCTAGCTACAACGA TCTTGCTG
2634
|
797
CAAGAAUU A CCAUUCCA
1049
TGGAATGG GGCTAGCTACAACGA AATTCTTG
2635
|
800
GAAUUACC A UUCCAGAC
1050
GTCTGGAA GGCTAGCTACAACGA GGTAATTC
2636
|
807
CAUUCCAG A CAUCAAAA
1051
TTTTGATG GGCTAGCTACAACGA CTGGAATG
2637
|
809
UUCCAGAC A UCAAAAAA
1052
TTTTTTGA GGCTAGCTACAACGA GTCTGGAA
2638
|
819
CAAAAAAG A UAGAUGGU
1053
ACCATCTA GGCTAGCTACAACGA CTTTTTTG
2639
|
823
AAAGAUAG A UGGUACAA
1054
TTGTACCA GGCTAGCTACAACGA CTATCTTT
2640
|
828
UAGAUGGU A CAACAAAC
1055
GTTTGTTG GGCTAGCTACAACGA ACCATCTA
2641
|
831
AUGGUACA A CAAACCCC
1056
GGGGTTTG GGCTAGCTACAACGA TGTACCAT
2642
|
835
UACAACAA A CCCCUCAA
1057
TTGAGGGG GGCTAGCTACAACGA TTGTTGTA
2643
|
869
CCCGAGUC A CUUCAGGU
1058
ACCTGAAG GGCTAGCTACAACGA GACTCGGG
2644
|
901
CCCAGUGG A UUUUCUAA
1059
TTAGAAAA GGCTAGCTACAACGA CCACTGGG
2645
|
912
UUCUAAGC A CAUUCAAU
1060
ATTGAATG GGCTAGCTACAACGA GCTTAGAA
2646
|
914
CUAAGCAC A UUCAAUCC
1061
GGATTGAA GGCTAGCTACAACGA GTGCTTAG
2647
|
919
CACAUUCA A UCCAAUUU
1062
AAATTGGA GGCTAGCTACAACGA TGAATGTG
2648
|
924
UCAAUCCA A UUUGGACU
1063
AGTCCAAA GGCTAGCTACAACGA TGGATTGA
2649
|
930
CAAUUUGG A CUUCUCUC
1064
GAGAGAAG GGCTAGCTACAACGA CCAAATTG
2650
|
945
UCCAGUAA A CAGUGCUU
1065
AAGCACTG GGCTAGCTACAACGA TTACTGGA
2651
|
966
UGAAGAAA A UGUGAAGU
1066
ACTTCACA GGCTAGCTACAACGA TTTCTTCA
2652
|
975
UGUGAAGU A CUCCAGUU
1067
AACTGGAG GGCTAGCTACAACGA ACTTCACA
2653
|
994
CAGCCAGA A CCCCGCAC
1068
GTGCGGGG GGCTAGCTACAACGA TCTGGCTG
2654
|
1001
AACCCCGC A CAGGUCUU
1069
AAGACCTG GGCTAGCTACAACGA GCGGGGTT
2655
|
1015
CUUUCCUU A UGGGAUAC
1070
GTATCCCA GGCTAGCTACAACGA AAGGAAAG
2656
|
1020
CUUAUGGG A UACCAGCC
1071
GGCTGGTA GGCTAGCTACAACGA CCCATAAG
2657
|
1022
UAUGGGAU A CCAGCCCC
1072
GGGGCTGG GGCTAGCTACAACGA ATCCCATA
2658
|
1033
AGCCCCUC A UACAUUGA
1073
TCAATGTA GGCTAGCTACAACGA GAGGGGCT
2659
|
1035
CCCCUCAU A CAUUGAUA
1074
TATCAATG GGCTAGCTACAACGA ATGAGGGG
2660
|
1037
CCUCAUAC A UUGAUAAA
1075
TTTATCAA GGCTAGCTACAACGA GTATGAGG
2661
|
1041
AUACAUUG A UAAAUUGG
1076
CCAATTTA GGCTAGCTACAACGA CAATGTAT
2662
|
1045
AUUGAUAA A UUGGUACA
1077
TGTACCAA GGCTAGCTACAACGA TTATCAAT
2663
|
1051
AAAUUGGU A CAAGGGAU
1078
ATCCCTTG GGCTAGCTACAACGA ACCAATTT
2664
|
1058
UACAAGGG A UCAGCUUU
1079
AAAGCTGA GGCTAGCTACAACGA CCCTTGTA
2665
|
1076
CCCAGCCC A CAUGUCCU
1080
AGGACATG GGCTAGCTACAACGA GGGCTGGG
2666
|
1078
CAGCCCAC A UGUCCUGA
1081
TCAGGACA GGCTAGCTACAACGA GTGGGCTG
2667
|
1086
AUGUCCUG A UCAUAUGC
1082
GCATATGA GGCTAGCTACAACGA CAGGACAT
2668
|
1089
UCCUGAUC A UAUGCUUU
1083
AAAGCATA GGCTAGCTACAACGA GATCAGGA
2669
|
1091
CUGAUCAU A UGCUUUUG
1084
CAAAAGCA GGCTAGCTACAACGA ATGATCAG
2670
|
1101
GCUUUUGA A UAGUCAGU
1085
ACTGACTA GGCTAGCTACAACGA TCAAAAGC
2671
|
1111
AGUCAGUU A CUUGGCAC
1086
GTGCCAAG GGCTAGCTACAACGA AACTGACT
2672
|
1118
UACUUGGC A CCCCAGGA
1087
TCCTGGGG GGCTAGCTACAACGA GCCAAGTA
2673
|
1126
ACCCCAGG A UCCUCACA
1088
TGTGAGGA GGCTAGCTACAACGA CCTGGGGT
2674
|
1132
GGAUCCUC A CAGAACCC
1089
GGGTTCTG GGCTAGCTACAACGA GAGGATCC
2675
|
1137
CUCACAGA A CCCCUGGC
1090
GCCAGGGG GGCTAGCTACAACGA TCTGTGAG
2676
|
1163
UCAAAAGA A UGACACGA
1091
TCGTGTCA GGCTAGCTACAACGA TCTTTTGA
2677
|
1166
AAAGAAUG A CACGAUUC
1092
GAATCGTG GGCTAGCTACAACGA CATTCTTT
2678
|
1168
AGAAUGAC A CGAUUCUU
1093
AAGAATCG GGCTAGCTACAACGA GTCATTCT
2679
|
1171
AUGACACG A UUCUUUAC
1094
GTAAAGAA GGCTAGCTACAACGA CGTGTCAT
2680
|
1178
GAUUCUUU A CCAAAUUG
1095
CAATTTGG GGCTAGCTACAACGA AAAGAATC
2681
|
1183
UUUACCAA A UUGGAUGC
1096
GCATCCAA GGCTAGCTACAACGA TTGGTAAA
2682
|
1188
CAAAUUGG A UGCAGACA
1097
TGTCTGCA GGCTAGCTACAACGA CCAATTTG
2683
|
1194
GGAUGCAG A CAAAUCUU
1098
AAGATTTG GGCTAGCTACAACGA CTGCATCC
2684
|
1198
GCAGACAA A UCUUAUCA
1099
TGATAAGA GGCTAGCTACAACGA TTGTCTGC
2685
|
1203
CAAAUCUU A UCAAUGCC
1100
GGCATTGA GGCTAGCTACAACGA AAGATTTG
2686
|
1207
UCUUAUCA A UGCCUGAA
1101
TTCAGGCA GGCTAGCTACAACGA TGATAAGA
2687
|
1220
UGAAAGAG A CUUGUGAG
1102
CTCACAAG GGCTAGCTACAACGA CTCTTTCA
2688
|
1239
GUUGGGCU A UCAAUGGA
1103
TCCATTGA GGCTAGCTACAACGA AGCCCAAC
2689
|
1243
GGCUAUCA A UGGAAGAA
1104
TTCTTCCA GGCTAGCTACAACGA TGATAGCC
2690
|
1259
AAAGUUGU A UGAAUCAG
1105
CTGATTCA GGCTAGCTACAACGA ACAACTTT
2691
|
1263
UUGUAUGA A UCAGGUUA
1106
TAACCTGA GGCTAGCTACAACGA TCATACAA
2692
|
1271
AUCAGGUU A CUAUAUCA
1107
TGATATAG GGCTAGCTACAACGA AACCTGAT
2693
|
1274
AGGUUACU A UAUCAACA
1108
TGTTGATA GGCTAGCTACAACGA AGTAACCT
2694
|
1276
GUUACUAU A UCAACAAC
1109
GTTGTTGA GGCTAGCTACAACGA ATAGTAAC
2695
|
1280
CUAUAUCA A CAACUGAU
1110
ATCAGTTG GGCTAGCTACAACGA TGATATAG
2696
|
1283
UAUCAACA A CUGAUAGG
1111
CCTATCAG GGCTAGCTACAACGA TGTTGATA
2697
|
1287
AACAACUG A UAGGAGAA
1112
TTCTCCTA GGCTAGCTACAACGA CAGTTGTT
2698
|
1296
UAGGAGAA A CAAUAAAC
1113
GTTTATTG GGCTAGCTACAACGA TTCTCCTA
2699
|
1299
GAGAAACA A UAAACUCA
1114
TGAGTTTA GGCTAGCTACAACGA TGTTTCTC
2700
|
1303
AACAAUAA A CUCAUUUU
1115
AAAATGAG GGCTAGCTACAACGA TTATTGTT
2701
|
1307
AUAAACUC A UUUUCAAA
1116
TTTGAAAA GGCTAGCTACAACGA GAGTTTAT
2702
|
1320
CAAAGUGA A UUUGUUAG
1117
CTAACAAA GGCTAGCTACAACGA TCACTTTG
2703
|
1331
UGUUAGAA A UGGAUGAU
1118
ATCATCCA GGCTAGCTACAACGA TTCTAACA
2704
|
1335
AGAAAUGG A UGAUAAAA
1119
TTTTATCA GGCTAGCTACAACGA CCATTTCT
2705
|
1338
AAUGGAUG A UAAAAUAU
1120
ATATTTTA GGCTAGCTACAACGA CATCCATT
2706
|
1343
AUGAUAAA A UAUUGGUU
1121
AACCAATA GGCTAGCTACAACGA TTTATCAT
2707
|
1345
GAUAAAAU A UUGGUUGA
1122
TCAACCAA GGCTAGCTACAACGA ATTTTATC
2708
|
1353
AUUGGUUG A CUUCCGGC
1123
GCCGGAAG GGCTAGCTACAACGA CAACCAAT
2709
|
1374
UAAGGGUG A UGGAUUGG
1124
CCAATCCA GGCTAGCTACAACGA CACCCTTA
2710
|
1378
GGUGAUGG A UUGGAGUU
1125
AACTCCAA GGCTAGCTACAACGA CCATCACC
2711
|
1393
UUCAAGAG A CACUUCCU
1126
AGGAAGTG GGCTAGCTACAACGA CTCTTGAA
2712
|
1395
CAAGAGAC A CUUCCUGA
1127
TCAGGAAG GGCTAGCTACAACGA GTCTCTTG
2713
|
1406
UCCUGAAG A UUAAAGGG
1128
CCCTTTAA GGCTAGCTACAACGA CTTCAGGA
2714
|
1421
GGAAGCUG A UUGAUAUU
1129
AATATCAA GGCTAGCTACAACGA CAGCTTCC
2715
|
1425
GCUGAUUG A UAUUGUGA
1130
TCACAATA GGCTAGCTACAACGA CAATCAGC
2716
|
1427
UGAUUGAU A UUGUGAGC
1131
GCTCACAA GGCTAGCTACAACGA ATCAATCA
2717
|
1460
UUCCUGCC A CAUGAUCG
1132
CGATCATG GGCTAGCTACAACGA GGCAGGAA
2718
|
1462
CCUGCCAC A UGAUCGGA
1133
TCCGATCA GGCTAGCTACAACGA GTGGCAGG
2719
|
1465
GCCACAUG A UCGGACCA
1134
TGGTCCGA GGCTAGCTACAACGA CATGTGGC
2720
|
1470
AUGAUCGG A CCAUCGGC
1135
GCCGATGG GGCTAGCTACAACGA CCGATCAT
2721
|
1473
AUCGGACC A UCGGCUCU
1136
AGAGCCGA GGCTAGCTACAACGA GGTCCGAT
2722
|
1487
UCUGGGGA A UCCUGGUG
1137
CACCAGGA GGCTAGCTACAACGA TCCCCAGA
2723
|
1497
CCUGGUGA A UAUAGUGC
1138
GCACTATA GGCTAGCTACAACGA TCACCAGG
2724
|
1499
UGGUGAAU A UAGUGCUG
1139
CAGCACTA GGCTAGCTACAACGA ATTCACCA
2725
|
1510
GUGCUGCU A UGUUGACA
1140
TGTCAACA GGCTAGCTACAACGA AGCAGCAC
2726
|
1516
CUAUGUUG A CAUUAUUC
1141
GAATAATG GGCTAGCTACAACGA CAACATAG
2727
|
1518
AUGUUGAC A UUAUUCUU
1142
AAGAATAA GGCTAGCTACAACGA GTCAACAT
2728
|
1521
UUGACAUU A UUCUUCCU
1143
AGGAAGAA GGCTAGCTACAACGA AATGTCAA
2729
|
1537
UAGAGAAG A UUAUCCUG
1144
CAGGATAA GGCTAGCTACAACGA CTTCTCTA
2730
|
1540
AGAAGAUU A UCCUGUCC
1145
GGACAGGA GGCTAGCTACAACGA AATCTTCT
2731
|
1554
UCCUGCAA A CUGCAAAU
1146
ATTTGCAG GGCTAGCTACAACGA TTGCAGGA
2732
|
1561
AACUGCAA A UAGUAGUU
1147
AACTACTA GGCTAGCTACAACGA TTGCAGTT
2733
|
1582
AAGUGUUC A CUUCCCUG
1148
CAGGGAAG GGCTAGCTACAACGA GAACACTT
2734
|
1594
CCCUGUUU A UCCAAACA
1149
TGTTTGGA GGCTAGCTACAACGA AAACAGGG
2735
|
1600
UUAUCCAA A CAUCUUCC
1150
GGAAGATG GGCTAGCTACAACGA TTGGATAA
2736
|
1602
AUCCAAAC A UCUUCCAA
1151
TTGGAAGA GGCTAGCTACAACGA GTTTGGAT
2737
|
1610
AUCUUCCA A UUUAUUUU
1152
AAAATAAA GGCTAGCTACAACGA TGGAAGAT
2738
|
1614
UCCAAUUU A UUUUGUUU
1153
AAACAAAA GGCTAGCTACAACGA AAATTGGA
2739
|
1630
UGUUCGGC A UACAAAUA
1154
TATTTGTA GGCTAGCTACAACGA GCCGAACA
2740
|
1632
UUCGGCAU A CAAAUAAU
1155
ATTATTTG GGCTAGCTACAACGA ATGCCGAA
2741
|
1636
GCAUACAA A UAAUACCU
1156
AGGTATTA GGCTAGCTACAACGA TTGTATGC
2742
|
1639
UACAAAUA A UACCUAUA
1157
TATAGGTA GGCTAGCTACAACGA TATTTGTA
2743
|
1641
CAAAUAAU A CCUAUAUC
1158
GATATAGG GGCTAGCTACAACGA ATTATTTG
2744
|
1645
UAAUACCU A UAUCUUAA
1159
TTAAGATA GGCTAGCTACAACGA AGGTATTA
2745
|
1647
AUACCUAU A UCUUAAUU
1160
AATTAAGA GGCTAGCTACAACGA ATAGGTAT
2746
|
1653
AUAUCUUA A UUGUAAGC
1161
GCTTACAA GGCTAGCTACAACGA TAAGATAT
2747
|
1665
UAAGCAAA A CUUUGGGG
1162
CCCCAAAG GGCTAGCTACAACGA TTTGCTTA
2748
|
1679
GGGAAAGG A UGAAUAGA
1163
TCTATTCA GGCTAGCTACAACGA CCTTTCCC
2749
|
1683
AAGGAUGA A UAGAAUUC
1164
GAATTCTA GGCTAGCTACAACGA TCATCCTT
2750
|
1688
UGAAUAGA A UUCAUUUG
1165
CAAATGAA GGCTAGCTACAACGA TCTATTCA
2751
|
1692
UAGAAUUC A UUUGAUUA
1166
TAATCAAA GGCTAGCTACAACGA GAATTCTA
2752
|
1697
UUCAUUUG A UUAUUUCU
1167
AGAAATAA GGCTAGCTACAACGA CAAATGAA
2753
|
1700
AUUUGAUU A UUUCUUCA
1168
TGAAGAAA GGCTAGCTACAACGA AATCAAAT
2754
|
1708
AUUUCUUC A UGUGUGUU
1169
AACACACA GGCTAGCTACAACGA GAAGAAAT
2755
|
1721
UGUUUAGU A UCUGAAUU
1170
AATTCAGA GGCTAGCTACAACGA ACTAAACA
2756
|
1727
GUAUCUGA A UUUGAAAC
1171
GTTTCAAA GGCTAGCTACAACGA TCAGATAC
2757
|
1734
AAUUUGAA A CUCAUCUG
1172
CAGATGAG GGCTAGCTACAACGA TTCAAATT
2758
|
1738
UGAAACUC A UCUGGUGG
1173
CCACCAGA GGCTAGCTACAACGA GAGTTTCA
2759
|
1749
UGGUGGAA A CCAAGUUU
1174
AAACTTGG GGCTAGCTACAACGA TTCCACCA
2760
|
1764
UUCAGGGG A CAUGAGUU
1175
AACTCATG GGCTAGCTACAACGA CCCCTGAA
2761
|
1766
CAGGGGAC A UGAGUUUU
1176
AAAACTCA GGCTAGCTACAACGA GTCCCCTG
2762
|
1784
CAGCUUUU A UACACACG
1177
CGTGTGTA GGCTAGCTACAACGA AAAAGCTG
2763
|
1786
GCUUUUAU A CACACGUA
1178
TACGTGTG GGCTAGCTACAACGA ATAAAAGC
2764
|
1788
UUUUAUAC A CACGUAUC
1179
GATACGTG GGCTAGCTACAACGA GTATAAAA
2765
|
1790
UUAUACAC A CGUAUCUC
1180
GAGATACG GGCTAGCTACAACGA GTGTATAA
2766
|
1794
ACACACGU A UCUCAUUU
1181
AAATGAGA GGCTAGCTACAACGA ACGTGTGT
2767
|
1799
CGUAUCUC A UUUUUAUC
1182
GATAAAAA GGCTAGCTACAACGA GAGATACG
2768
|
1805
UCAUUUUU A UCAAAACA
1183
TGTTTTGA GGCTAGCTACAACGA AAAAATGA
2769
|
1811
UUAUCAAA A CAUUUUGU
1184
ACAAAATG GGCTAGCTACAACGA TTTGATAA
2770
|
1813
AUCAAAAC A UUUUGUUU
1185
AAACAAAA GGCTAGCTACAACGA GTTTTGAT
2771
|
|
Input Sequence = AF016582 Cut Site = R/Y
|
Stem Length = 8. Core Sequence = GGCTAGCTACAACGA
|
AF016582 (Homo sapiens checkpoint kinase Chk1 (CHK1) mRNA; 1821 bp)
|
[0180]
8
TABLE VIII
|
|
|
Human Chk1 Amberzyme Ribozyme and Substrate Sequence
|
Pos
Substrate
Seq ID
Ribozyme
Rz Seq ID
|
|
10
GCCGGACA G UCCGCCGA
791
UCGGCGGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCCGGC
2772
|
14
GACAGUCC G CCGAGGUG
792
CACCUCGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GGACUGUC
2773
|
|
20
CCGCCGAG G UGCUCGGU
793
ACCGAGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUCGGCGG
2774
|
|
22
GCCGAGGU G CUCGGUGG
794
CCACCGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCUCGGC
2775
|
|
27
GGUGCUCG G UGGAGUCA
795
UGACUCCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGAGCACC
2776
|
|
32
UCGGUGGA G UCAUGGCA
796
UGCCAUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCACCGA
2777
|
|
38
GAGUCAUG G CAGUGCCC
797
GGGCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUGACUC
2778
|
|
41
UCAUGGCA G UGCCCUUU
798
AAAGGGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCCAUGA
2779
|
|
43
AUGGCAGU G CCCUUUGU
799
ACAAAGGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUGCCAU
2780
|
|
50
UGCCCUUU G UGGAAGAC
800
GUCUUCCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAGGGCA
2781
|
|
68
GGGACUUG G UGCAAACC
801
GGUUUGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAGUCCC
2782
|
|
70
GACUUGGU G CAAACCCU
802
AGGGUUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCAAGUC
2783
|
|
87
GGGAGAAG G UGCCUAUG
803
CAUAGGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUCUCCC
2784
|
|
89
GAGAAGGU G CCUAUGGA
804
UCCAUAGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCUUCUC
2785
|
|
101
AUGGAGAA G UUCAACUU
805
AAGUUGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUCCAU
2786
|
|
110
UUCAACUU G CUGUGAAU
806
AUUCACAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAGUUGAA
2787
|
|
113
AACUUGCU G UGAAUAGA
807
UCUAUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCAAGUU
2788
|
|
122
UGAAUAGA G UAACUGAA
808
UUCAGUUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUAUUCA
2789
|
|
134
CUGAAGAA G CAGUCGCA
809
UGCGACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUUCAG
2790
|
|
137
AAGAAGCA G UCGCAGUG
810
CACUGCGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCUUCUU
2791
|
|
140
AAGCAGUC G CAGUGAAG
811
CUUCACUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GACUGCUU
2792
|
|
143
CAGUCGCA G UGAAGAUU
812
AAUCUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCGACUG
2793
|
|
152
UGAAGAUU G UAGAUAUG
813
CAUAUCUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUCUUCA
2794
|
|
163
GAUAUGAA G CGUGCCGU
814
ACGGCACG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCAUAUC
2795
|
|
165
UAUGAAGC G UGCCGUAG
815
CUACGGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCAUAUC
2796
|
|
167
UGAAGCGU G CCGUAGAC
816
GUCUACGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACGCUUCA
2797
|
|
170
AGCGUGCC G UAGACUGU
817
ACAGUCUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GGCACGCU
2798
|
|
177
CGUAGACU G UCCAGAAA
818
UUUCUGGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUCUACG
2799
|
|
204
AGAGAUCU G UAUCAAUA
819
UAUUGAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAUCUCU
2800
|
|
217
AAUAAAAU G CUAAAUCA
820
UGAUUUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUUUAUU
2801
|
|
233
AUGAAAAU G UAGUAAAA
821
UUUUACUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUUUCAU
2802
|
|
236
AAAAUGUA G UAAAAUUC
822
GAAUUUUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UACAUUUU
2803
|
|
249
AUUCUAUG G UCACAGGA
823
UCCUGUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUAGAAU
2804
|
|
264
GAGAGAAG G CAAUAUCC
824
GGAUAUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUCUCUC
2805
|
|
289
UUUCUGGA G UACUGUAG
825
CUACAGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCAGAAA
2806
|
|
294
GGAGUACU G UAGUGGAG
826
CUCCACUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUACUCC
2807
|
|
297
GUACUGUA G UGGAGGAG
827
CUCCUCCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UACAGUAC
2808
|
|
307
GGAGGAGA G CUUUUUGA
828
UCAAAAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUCCUCC
2809
|
|
325
AGAAUAGA G CCAGACAU
829
AUGUCUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUAUUCU
2810
|
|
336
AGACAUAG G CAUGCCUG
830
CAGGCAUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUAUGUCU
2811
|
|
340
AUAGGCAU G CCUGAACC
831
GGUUCAGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGCCUAU
2812
|
|
353
AACCAGAU G CUCAGAGA
832
UCUCUGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCUGGUU
2813
|
|
380
AACUCAUG G CAGGGGUG
833
CACCCCUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUGAGUU
2814
|
|
386
UGGCAGGG G UGGUUUAU
834
AUAAACCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCCUGCCA
2815
|
|
389
CAGGGGUG G UUUAUCUG
835
CAGAUAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACCCCUG
2816
|
|
397
GUUUAUCU G CAUGGUAU
836
AUACCAUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAUAAAC
2817
|
|
402
UCUGCAUG G UAUUGGAA
837
UUCCAAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUGCAGA
2818
|
|
445
AAUCUUCU G UUGGAUGA
838
UCAUCCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAGAUU
2819
|
|
483
AGACUUUG G CUUGGCAA
839
UUGCCAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAAGUCU
2820
|
|
488
UUGGCUUG G CAACAGUA
840
UACUGUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAGCCAA
2821
|
|
494
UGGCAACA G UAUUUCGG
841
CCGAAAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUUGCCA
2822
|
|
502
GUAUUUCG G UAUAAUAA
842
UUAUUAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGAAAUAC
2823
|
|
513
UAAUAAUC G UGAGCGUU
843
AACGCUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAUUAUUA
2824
|
|
517
AAUCGUGA G CGUUUGUU
844
AACAAACG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGU UCACGAUU
2825
|
|
519
UCGUGAGC G UUUGUUGA
845
UCAACAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GCUCACGA
2826
|
|
523
GAGCGUUU G UUGAACAA
846
UUGUUCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAACGCUC
2827
|
|
535
AACAAGAU G UGUGGUAC
847
GUACCACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCUUGUU
2828
|
|
537
CAAGAUGU G UGGUACUU
848
AAGUACCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAUCUUG
2829
|
|
540
GAUGUGUG G UACUUUAC
849
GUAAAGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACACAUC
2830
|
|
554
UACCAUAU G UUGCUCCA
850
UGGAGCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUAUGGUA
2831
|
|
557
CAUAUGUU G CUCCAGAA
851
UUCUGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACAUAUG
2832
|
|
590
AAUUUCAU G CAGAACCA
852
UGGUUCUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGAAAUU
2833
|
|
599
CAGAACCA G UUGAUGUU
853
AACAUCAA GGAGGAAACUCC CU UCAACGACAUCGUCCGGG UGGUUCUG
2834
|
|
605
CAGUUGAU G UUUGGUCC
854
GGACCAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCAACUG
2835
|
|
610
GAUGUUUG G UCCUGUGG
855
CCACAGGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAACAUC
2836
|
|
615
UUGGUCCU G UGGAAUAG
856
CUAUUCCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGACCAA
2837
|
|
623
GUGGAAUA G UACUUACU
857
AGUAAGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCCAC
2838
|
|
632
UACUUACU G CAAUGCUC
858
GAGCAUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUAAGUA
2839
|
|
637
ACUGCAAU G CUCGCUGG
859
CCAGCGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGCAGU
2840
|
|
641
CAAUGCUC G CUGGAGAA
860
UUCUCCAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAGCAUUG
2841
|
|
652
GGAGAAUU G CCAUGGGA
861
UCCCAUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUCUCC
2842
|
|
669
CCAACCCA G UGACAGCU
862
AGCUGUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGUUGG
2843
|
|
675
CAGUGACA G CUGUCAGG
863
CCUGACAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCACUG
2844
|
|
676
UGACAGCU G UCAGGAGU
864
ACUCCUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCUGUCA
2845
|
|
685
UGUCAGGA G UAUUCUGA
865
UCAGAAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCUGACA
2846
|
|
743
UCGAUUCU G CUCCUCCA
866
UAGAGGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUCGA
2847
|
|
752
CUCCUCUA G CUCUGCUG
867
CAGCAGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAGGAG
2848
|
|
757
CUAGCUCU G CUGCAUAA
868
UUAUGCAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGUAGC
2849
|
|
760
GCUCUGCU G CAUAAAAU
869
AUUUUAUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCAGAGC
2850
|
|
773
AAAUCUUA G UUGAGAAU
870
AUUCUCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAGAUUU
2851
|
|
788
AUCCAUCA G CAAGAAUU
871
AAUUCUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAUGGAU
2852
|
|
826
GAUAGAUG G UACAACAA
872
UUGUUGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUCUAUC
2853
|
|
851
AGAAAGGG G CAAAAAGG
873
CCUUUUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCCUUUCU
2854
|
|
859
GCAAAAAG G CCCCGAGU
874
ACUCGGGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUUUUGC
2855
|
|
866
GGCCCCGA G UCACUUCA
875
UGAAGUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCGGGGCC
2856
|
|
876
CACUUCAG G UGGUGUGU
876
ACACACCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGAAGUG
2857
|
|
879
UUCAGGUG G UGUGUCAG
877
CUGACACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACCUGAA
2858
|
|
881
CAGGUGGU G UGUCAGAG
878
CUCUGACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCACCUG
2859
|
|
883
GGUGGUGU G UCAGAGUC
879
GACUCUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACACCACC
2860
|
|
889
GUGUCAGA G UCUCCCAG
880
CUGGGAGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUGACAC
2861
|
|
897
GUCUCCCA G UGGAUUUU
881
AAAAUCCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGAGAC
2862
|
|
910
UUUUCUAA G CACAUUCA
882
UGAAUGUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUAGAAAA
2863
|
|
941
UCUCUCCA G UAAACAGU
883
ACUGUUUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGAGAGA
2864
|
|
948
AGUAAACA G UGCUUCUA
884
UAGAAGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUUUACU
2865
|
|
950
UAAACAGU G CUUCUAGU
885
ACUAGAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUGUUUA
2866
|
|
957
UGCUUCUA G UGAAGAAA
886
UUUCUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGAAGCA
2867
|
|
968
AAGAAAAU G UGAAGUAC
887
GUACUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUUUCUU
2868
|
|
973
AAUGUGAA G UACUCCAG
888
CUGGAGUA GGAGGAAACUCC CU UCAACGACAUCGUCCGGG UUCACAUU
2869
|
|
981
GUACUCCA G UUCUCAGC
889
GCUGAGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGAGUAC
2870
|
|
988
AGUUCUCA G CCAGAACC
890
GGUUCUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAGAACU
2871
|
|
999
AGAACCCC G CACAGGUC
891
GACCUGUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GGGGUUCU
2872
|
|
1005
CCGCACAG G UCUUUCCU
892
AGGAAAGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGUGCGG
2873
|
|
1026
GGAUACCA G CCCCUCAU
893
AUGAGGGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGUAUCC
2874
|
|
1049
AUAAAUUG G UACAAGGG
894
CCCUUGUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAUUUAU
2875
|
|
1062
AGGGAUCA G CUUUUCCC
895
GGGAAAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAUCCCU
2876
|
|
1072
UUUUCCCA G CCCACAUG
896
CAUGUGGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGAAAA
2877
|
|
1080
GCCCACAU G UCCUGAUC
897
GAUCAGGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGUGGGC
2878
|
|
1093
GAUCAUAU G CUUUUGAA
898
UUCAAAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUAUGAUC
2879
|
|
1104
UUUGAAUA G UCAGUUAC
899
GUAACUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCAAA
2880
|
|
1108
AAUAGUCA G UUACUUGG
900
CCAAGUAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGACUAUU
2881
|
|
1116
GUUACUUG G CACCCCAG
901
CUGGGGUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAGUAAC
2882
|
|
1144
AACCCCUG G CAGCGGUU
902
AACCGCCG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGGGGUU
2883
|
|
1147
CCCUGGCA G CGGUUGGU
903
ACCAACCG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCCAGGG
2884
|
|
1150
UGGCAGCG G UUGGUCAA
904
UUGACCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGCUGCCA
2885
|
|
1154
AGCGGUUG G UCAAAAGA
905
UCUUUUGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAACCGCU
2886
|
|
1190
AAUUGGAU G CAGACAAA
906
UUUGUCUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCCAAUU
2887
|
|
1209
UUAUCAAU G CCUGAAAG
907
CUUUCAGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGAUAA
2888
|
|
1224
AGAGACUU G UGAGAAGU
908
ACUUCUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAGUCUCU
2889
|
|
1231
UGUGAGAA G UUGGGCUA
909
UAGCCCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUCACA
2890
|
|
1236
GAAGUUGG G CUAUCAAU
910
AUUGAUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCAACUUC
2891
|
|
1254
GAAGAAAA G UUGUAUGA
911
UCAUACAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUUCUUC
2892
|
|
1257
GAAAAGUU G UAUGAAUC
912
GAUUCAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACUUUUC
2893
|
|
1268
UGAAUCAG G UUACUAUA
913
UAUAGUAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGAUUCA
2894
|
|
1316
UUUUCAAA G UGAAUUUG
914
CAAAUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUGAAAA
2895
|
|
1324
GUGAAUUU G UUAGAAAU
915
AUUUCUAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAUUCAC
2896
|
|
1349
AAAUAUUG G UUGACUUC
916
GAAGUCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAUAUUU
2897
|
|
1360
GACUUCCG G CUUUCUAA
917
UUAGAAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGGAAGUC
2898
|
|
1371
UUCUAAGG G UGAUGGAU
918
AUCCAUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUUAGAA
2899
|
|
1384
GGAUUGGA G UUCAAGAG
919
CUCUUGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCAAUCC
2900
|
|
1417
AAAGGGAA G CUGAUUGA
920
UCAAUCAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCCCUUU
2901
|
|
1430
UUGAUAUU G UGAGCAGC
921
GCUGCUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUAUCAA
2902
|
|
1434
UAUUGUGA G CAGCCAGA
922
UCUGGCUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCACAAUA
2903
|
|
1437
UGUGAGCA G CCAGAAGG
923
CCUUCUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCUCACA
2904
|
|
1445
GCCAGAAG G UUUGGCUU
924
AAGCCAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUCUGGC
2905
|
|
1450
AAGGUUUG G CUUCCUGC
925
CCAGGAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAACCUU
2906
|
|
1457
GGCUUCCU G CCACAUGA
926
UCAUGUGG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGAAGCC
2907
|
|
1477
GACCAUCG G CUCUGGGG
927
CCCCAGAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGAUGGUC
2908
|
|
1493
GAAUCCUG G UGAAUAUA
928
UAUAUUCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGGAUUC
2909
|
|
1502
UGAAUAUA G UGCUGCUA
929
UAGCAGCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUAUUCA
2910
|
|
1504
AAUAUAGU G CUGCUAUG
930
CAUAGCAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUAUAUU
2911
|
|
1507
AUAGUGCU G CUAUGUUG
931
CAACAUAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCACUAU
2912
|
|
1512
GCUGCUAU G UUGACAUU
932
AAUGUCAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUAGCAGC
2913
|
|
1545
AUUAUCCU G UCCUGCAA
933
UUGCAGGA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGAUAAU
2914
|
|
1550
CCUGUCCU G CAAACUGC
934
GCAGUUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCCGG AGGACAGG
2915
|
|
1557
UGCAAACU G CAAAUAGU
935
ACUAUUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCCGG AGUUUGCA
2916
|
|
1564
UGCAAAUA G UAGUUCCU
936
AGGAACUA GGAGGAAACUCC CU UCAAGGACAUCGUCCCGG UAUUUGCA
2917
|
|
1567
AAAUAGUA G UUCCUGAA
937
UUCAGGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UACUAUUU
2918
|
|
1576
UUCCUGAA G UGUUCACU
938
AGUGAACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCAGGAA
2919
|
|
1578
CCUGAAGU G UUCACUUC
939
GAAGUGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUUCAGG
2920
|
|
1590
ACUUCCCU G UUUAUCCA
940
UGGAUAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGGAAGU
2921
|
|
1619
UUUAUUUU G UUUGUUCG
941
CGAACAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAAUAAA
2922
|
|
1623
UUUUGUUU G UUCGGCAU
942
AUGCCGAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAACAAAA
2923
|
|
1628
UUUGUUCG G CAUACAAA
943
UUUGUAUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGAACAAA
2924
|
|
1656
UCUUAAUU G UAAGCAAA
944
UUUGCUUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUAAGA
2925
|
|
1660
AAUUGUAA G CAAAACUU
945
AAGUUUUG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUACAAUU
2926
|
|
1710
UUCUUCAU G UGUGUUUA
946
UAAACACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGAAGAA
2927
|
|
1712
CUUCAUGU G UGUUUAGU
947
ACUAAACA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAUGAAG
2928
|
|
1714
UCAUGUGU G UUUAGUAU
948
AUACUAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACACAUGA
2929
|
|
1719
UGUGUUUA G UAUCUGAA
949
UUCAGAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAAACACA
2930
|
|
1743
CUCAUCUG G UGGAAACC
950
GGUUUCCA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGAUGAG
2931
|
|
1754
GAAACCAA G UUUCAGGG
951
CCCUGAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUGGUUUC
2932
|
|
1770
GGACAUGA G UUUUCCAG
952
CUGGAAAA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCAUGUCC
2933
|
|
1778
GUUUUCCA G CUUUUAUA
953
UAUAAAAG GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGAAAAC
2934
|
|
1792
AUACACAC G UAUCUCAU
954
AUGAGAUA GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GUGUGUAU
2935
|
|
17
AGUCCGCC G AGGUGCUC
1186
GAGCACCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GGCGACUG
2936
|
|
19
UCCGCCGA G GUGCUCGG
1187
CCGAGCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCGGCGGA
2937
|
|
26
AGGUGCUC G GUGGAGUC
1188
GACUCCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAGCACCU
2938
|
|
29
UGCUCGGU G GAGUCAUG
1189
CAUGACUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCGAGCA
2939
|
|
30
GCUCGGUG G AGUCAUGG
1190
CCAUGACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACCGAGC
2940
|
|
37
GGAGUCAU G GCAGUGCC
1191
GGCACUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGACUCC
2941
|
|
52
CCCUUUGU G GAAGACUG
1192
CAGUCUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAAAGGG
2942
|
|
53
CCUUUGUG G AAGACUGG
1193
CCAGUCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACAAAGG
2943
|
|
56
UUGUGGAA G ACUGGGAC
1194
GUCCCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCCACAA
2944
|
|
60
GGAAGACU G GGACUUGG
1195
CCAAGUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUCUUCC
2945
|
|
61
GAAGACUG G GACUUGGU
1196
ACCAAGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGUCUUC
2946
|
|
62
AAGACUGG G ACUUGGUG
1197
CACCAAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCAGUCUU
2947
|
|
67
UGGGACUU G GUGCAAAC
1198
GUUUGCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAGUCCCA
2948
|
|
79
CAAACCCU G GGAGAAGG
1199
CCUUCUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGGUUUG
2949
|
|
80
AAACCCUG G GAGAAGGU
1200
ACCUUCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGGGUUU
2950
|
|
81
AACCCUGG G AGAAGGUG
1201
CACCUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCAGGGUU
2951
|
|
83
CCCUGGGA G AAGGUGCC
1202
GGCACCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCCAGGG
2952
|
|
86
UGGGAGAA G GUGCCUAU
1203
AUAGGCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUCCCA
2953
|
|
95
GUGCCUAU G GAGAAGUU
1204
AACUUCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUAGGCAC
2954
|
|
96
UGCCUAUG G AGAAGUUC
1205
GAACUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUAGGCA
2955
|
|
98
CCUAUGGA G AAGUUCAA
1206
UUGAACUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCAUAGG
2956
|
|
115
CUUGCUGU G AAUAGAGU
1207
ACUCUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAGCAAG
2957
|
|
120
UGUGAAUA G AGUAACUG
1208
CAGUUACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCACA
2958
|
|
128
GAGUAACU G AAGAAGCA
1209
UGCUUCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUUACUC
2959
|
|
131
UAACUGAA G AAGCAGUC
1210
GACUGCUU GGAUUAAACUCC CU UCAAGGACAUCGUCCGGG UUCAGUUA
2960
|
|
145
GUCGCAGU G AAGAUUGU
1211
ACAAUCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUGCGAC
2961
|
|
148
GCAGUGAA G AUUGUAGA
1212
UCUACAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCACUGC
2962
|
|
155
AGAUUGUA G AUAUGAAG
1213
CUUCAUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UACAAUCU
2963
|
|
160
GUAGAUAU G AAGCGUGC
1214
GCACGCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGCG AUAUCUAC
2964
|
|
173
GUGCCGUA G ACUGUCCA
1215
UGGACAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UACGGCAC
2965
|
|
182
ACUGUCCA G AAAAUAUU
1216
AAUAUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGACAGU
2966
|
|
193
AAUAUUAA G AAAGAGAU
1217
AUCUCUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUAAUAUU
2967
|
|
197
UUAAGAAA G AGAUCUGU
1218
ACAGAUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUCUUAA
2968
|
|
199
AAGAAAGA G AUCUGUAU
1219
AUACAGAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUUUCUU
2969
|
|
227
UAAAUCAU G AAAAUGUA
1220
UACAUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGAUUUA
2970
|
|
248
AAUUCUAU G GUCACAGG
1221
CCUGUGAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUAGAAUU
2971
|
|
255
UGGUCACA G GAGAGAAG
1222
CUUCUCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUGACCA
2972
|
|
256
GGUCACAG G AGAGAAGG
1223
CCUUCUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGUGACC
2973
|
|
258
UCACAGGA G AGAAGGCA
1224
UGCCUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCUGUGA
2974
|
|
260
ACAGGAGA G AAGGCAAU
1225
AUUGCCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUCCUGU
2975
|
|
263
GGAGAGAA G GCAAUAUC
1226
GAUAUUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUCUCC
2976
|
|
286
UUAUUUCU G GAGUACUG
1227
CAGUACUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAAUAA
2977
|
|
287
UAUUUCUG G AGUACUGU
1228
ACAGUACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGAAAUA
2978
|
|
299
ACUGUAGU G GAGGAGAG
1229
CUCUCCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUACAGU
2979
|
|
300
CUGUAGUG G AGGAGAGC
1230
GCUCUCCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACUACAG
2980
|
|
302
GUAGUGGA G GAGAGCUU
1231
AAGCUCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCACUAC
2981
|
|
303
UAGUGGAG G AGAGCUUU
1232
AAAGCUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUCCACUA
2982
|
|
305
GUGGAGGA G AGCUUUUU
1233
AAAAAGCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCUCCAC
2983
|
|
314
AGCUUUUU G ACAGAAUA
1234
UAUUCUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAAAGCU
2984
|
|
318
UUUUGACA G AAUAGAGC
1235
GCUCUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUCAAAA
2985
|
|
323
ACAGAAUA G AGCCAGAC
1236
GUCUGGCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCUGU
2986
|
|
329
UAGAGCCA G ACAUAGGC
1237
GCCUAUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGCUCUA
2987
|
|
335
CAGACAUA G GCAUGCCU
1238
AGGCAUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUGUCUG
2988
|
|
344
GCAUGCCU G AACCAGAU
1239
AUCUGGUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGCAUGC
2989
|
|
350
CUGAACCA G AUGCUCAG
1240
CUGAGCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGUUCAG
2990
|
|
358
GAUGCUCA G AGAUUCUU
1241
AAGAAUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAGCAUC
2991
|
|
360
UGCUCAGA G AUUCUUCC
1242
GGAAGAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUGAGCA
2992
|
|
379
CAACUCAU G GCAGGGGU
1243
ACCCCUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGAGUUG
2993
|
|
383
UCAUGGCA G GGGUGGUU
1244
AACCACCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCCAUGA
2994
|
|
384
CAUGGCAG G GGUGGUUU
1245
AAACCACC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGCCAUG
2995
|
|
385
AUGGCAGG G GUGGUUUA
1246
UAAACCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUGCCAU
2996
|
|
388
GCAGGGGU G GUUUAUCU
1247
AGAUAAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCCCUGC
2997
|
|
401
AUCUGCAU G GUAUUGGA
1248
UCCAAUAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGCAGAU
2998
|
|
407
AUGGUAUU G GAAUAACU
1249
AGUUAUUC GGAGGANXCUCC CU UCAAGGACAUCGUCCGGG AAUACCAU
2999
|
|
408
UGGUAUUG G AAUAACUC
1250
GAGUUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAUACCA
3000
|
|
420
AACUCACA G GGAUAUUA
1251
UAAUAUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUGAGUU
3001
|
|
421
ACUCACAG G GAUAUUAA
1252
UUAAUAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGUGAGU
3002
|
|
422
CUCACAGG G AUAUUAAA
1253
UUUAAUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUGUGAG
3003
|
|
434
UUAAACCA G AAAAUCUU
1254
AAGAUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGUUUAA
3004
|
|
448
CUUCUGUU G GAUGAAAG
1255
CUUUCAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACAGAAG
3005
|
|
449
UUCUGUUG G AUGAAAGG
1256
CCUUUCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAACAGAA
3006
|
|
452
UGUUGGAU G AAAGGGAU
1257
AUCCCUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCCAACA
3007
|
|
456
GGAUGAAA G GGAUAACC
1258
GGUUAUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUCAUCC
3008
|
|
457
GAUGAAAG G GAUAACCU
1259
AGGUUAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUUCAUC
3009
|
|
458
AUGAAAGG G AUAACCUC
1260
GAGGUUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUUUCAU
3010
|
|
476
AAAUCUCA G ACUUUGGC
1261
GCCAAAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAGAUUU
3011
|
|
482
CAGACUUU G GCUUGGCA
1262
UGCCAAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAGUCUG
3012
|
|
487
UUUGGCUU G GCAACAGU
1263
ACUGUUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAGCCAAA
3013
|
|
501
AGUAUUUC G GUAUAAUA
1264
UAUUAUAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAAAUACU
3014
|
|
515
AUAAUCGU G AGCGUUUG
1265
CAAACGCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACGAUUAU
3015
|
|
526
CGUUUGUU G AACAAGAU
1266
AUCUUGUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACAAACG
3016
|
|
532
UUGAACAA G AUGUGUGG
1267
CCACACAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUGUUCAA
3017
|
|
539
AGAUGUGU G GUACUUUA
1268
UAAAGUAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACACAUCU
3018
|
|
563
UUGCUCCA G AACUUCUG
1269
CAGAAGUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGAGCAA
3019
|
|
571
GAACUUCU G AAGAGAAG
1270
CUUCUCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAGUUC
3020
|
|
574
CUUCUGAA G AGAAGAGA
1271
UCUCUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCAGAAG
3021
|
|
576
UCUGAAGA G AAGAGAAU
1272
AUUCUCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUUCAGA
3022
|
|
579
GAAGAGAA G AGAAUUUC
1273
GAAAUUCU GGAGGAAACUCC CU UCAACGACAUCGUCCGGG UUCUCUUC
3023
|
|
581
AGAGAAGA G AAUUUCAU
1274
AUGAAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUUCUCU
3024
|
|
593
UUCAUGCA G AACCAGUU
1275
AACUGGUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCAUGAA
3025
|
|
602
AACCAGUU G AUGUUUGG
1276
CCAAACAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACUGGUU
3026
|
|
609
UGAUGUUU G GUCCUGUG
1277
CACAGGAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAACAUCA
3027
|
|
617
GGUCCUGU G GAAUAGUA
1278
UACUAUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAGGACC
3028
|
|
618
GUCCUGUG G AAUAGUAC
1279
GUACUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACAGGAC
3029
|
|
644
UGCUCGCU G GAGAAUUG
1280
CAAUUCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCGAGCA
3030
|
|
645
GCUCGCUG G AGAAUUGC
1281
GCAAUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGCGAGC
3031
|
|
647
UCGCUGGA G AAUUGCCA
1282
UGGCAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCAGCGA
3032
|
|
657
AUUGCCAU G GGACCAAC
1283
GUUGGUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGGCAAU
3033
|
|
658
UUGCCAUG G GACCAACC
1284
GGUUGGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUGGCAA
3034
|
|
659
UGCCAUGG G ACCAACCC
1285
GGGUUGGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCAUGGCA
3035
|
|
671
AACCCAGU G ACAGCUGU
1286
ACAGCUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUGGGUU
3036
|
|
682
AGCUGUCA G GAGUAUUC
1287
GAAUACUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGACAGCU
3037
|
|
683
GCUGUCAG G AGUAUUCU
1288
AGAAUACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGACAGC
3038
|
|
692
AGUAUUCU G ACUGGAAA
1289
UUUCCAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAAUACU
3039
|
|
696
UUCUGACU G GAAAGAAA
1290
UUUCUUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUCAGAA
3040
|
|
697
UCUGACUG G AAAGAAAA
1291
UUUUCUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGUCAGA
3041
|
|
701
ACUGGAAA G AAAAAAAA
1292
UUUUUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUCCAGU
3042
|
|
726
CAACCCUU G GAAAAAAA
1293
UUUUUUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAGGGUUG
3043
|
|
727
AACCCUUG G AAAAAAAU
1294
AUUUUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAGGGUU
3044
|
|
737
AAAAAAUC G AUUCUGCU
1295
AGCAGAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAUUUUUU
3045
|
|
776
UCUUAGUU G AGAAUCCA
1296
UGGAUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACUAAGA
3046
|
|
778
UUAGUUGA G AAUCCAUC
1297
GAUGGAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCAACUAA
3047
|
|
792
AUCAGCAA G AAUUACCA
1298
UGGUAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUGCUGAU
3048
|
|
806
CCAUUCCA G ACAUCAAA
1299
UUUGAUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGAAUGG
3049
|
|
818
UCAAAAAA G AUAGAUGG
1300
CCAUCUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUUUUGA
3050
|
|
822
AAAAGAUA G AUGGUACA
1301
UGUACCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUCUUUU
3051
|
|
825
AGAUAGAU G GUACAACA
1302
UGUUGUAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCUAUCU
3052
|
|
844
CCCCUCAA G AAAGGGGC
1303
GCCCCUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUGAGGGG
3053
|
|
848
UCAAGAAA G GGGCAAAA
1304
UUUUGCCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUCUUGA
3054
|
|
849
CAAGAAAG G GGCAAAAA
1305
UUUUUGCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUUCUUG
3055
|
|
850
AAGAAAGG G GCAAAAAG
1306
CUUUUUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUUUCUU
3056
|
|
858
GGCAAAAA G GCCCCGAG
1307
CUCGGGGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUUUGCC
3057
|
|
864
AAGGCCCC G ACUCACUU
1308
AAGUGACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GGGGCCUU
3058
|
|
875
UCACUUCA G GUGGUGUG
1309
CACACCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAAGUGA
3059
|
|
878
CUUCAGGU G GUGUGUCA
1310
UGACACAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCUGAAG
3060
|
|
887
GUGUGUCA G AGUCUCCC
1311
GGGAGACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGACACAC
3061
|
|
899
CUCCCAGU G GAUUUUCU
1312
AGAAAAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUGGGAG
3062
|
|
900
UCCCAGUG G AUUUUCUA
1313
UAGAAAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACUGGGA
3063
|
|
928
UCCAAUUU G GACUUCUC
1314
GAGAAGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAUUGGA
3064
|
|
929
CCAAUUUG G ACUUCUCU
1315
AGAGAAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAAUUGG
3065
|
|
959
CUUCUAGU G AAGAAAAU
1316
AUUUUCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUAGAAG
3066
|
|
962
CUAGUGAA G AAAAUGUG
1317
CACAUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCACUAG
3067
|
|
970
GAAAAUGU G AAGUACUC
1318
GAGUACUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAUUUUC
3068
|
|
992
CUCAGCCA G AACCCCGC
1319
GCGGGGUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGCUGAG
3069
|
|
1004
CCCGCACA G GUCUUUCC
1320
GGAAAGAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUGCGGG
3070
|
|
1017
UUCCUUAU G GGAUACCA
1321
UGGUAUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUAAGGAA
3071
|
|
1018
UCCUUAUG G GAUACCAG
1322
CUGGUAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUAAGGA
3072
|
|
1019
CCUUAUGG G AUACCAGC
1323
GCUGGUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCAUAAGG
3073
|
|
1040
CAUACAUU G AUAAAUUG
1324
CAAUUUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUGUAUG
3074
|
|
1048
GAUAAAUU G GUACAAGG
1325
CCUUGUAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUUAUC
3075
|
|
1055
UGGUACAA G GGAUCAGC
1326
GCUGAUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUGUACCA
3076
|
|
1056
GGUACAAG G GAUCAGCU
1327
AGCUGAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUGUACC
3077
|
|
1057
GUACAAGG G AUCAGCUU
1328
AAGCUGAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUUGUAC
3078
|
|
1085
CAUGUCCU G AUCAUAUG
1329
CAUAUGAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGACAUG
3079
|
|
1099
AUGCUUUU G AAUAGUCA
1330
UGACUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAAGCAU
3080
|
|
1115
AGUUACUU G GCACCCCA
1331
UGGGGUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAGUAACU
3081
|
|
1124
GCACCCCA G GAUCCUCA
1332
UGAGGAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGGGUGC
3082
|
|
1125
CACCCCAG G AUCCUCAC
1333
GUGAGGAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGGGGUG
3083
|
|
1135
UCCUCACA G AACCCCUG
1334
CAGGGGUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGUGAGGA
3084
|
|
1143
GAACCCCU G GCAGCGGU
1335
ACCGCUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGGGUUC
3085
|
|
1149
CUGGCAGC G GUUGGUCA
1336
UGACCAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGCG GCUGCCAG
3086
|
|
1153
CAGCGGUU G GUCAAAAG
1337
CUUUUGAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACCGCUG
3087
|
|
1161
GGUCAAAA G AAUGACAC
1338
GUGUCAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUUGACC
3088
|
|
1165
AAAAGAAU G ACACGAUU
1339
AAUCGUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGCG AUUCUUUU
3089
|
|
1170
AAUGACAC G AUUCUUUA
1340
UAAAGAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GUGUCAUU
3090
|
|
1186
ACCAAAUU G GAUGCAGA
1341
UCUGCAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUUUGGU
3091
|
|
1187
CCAAAUUG G AUGCAGAC
1342
GUCUGCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAUUUGG
3092
|
|
1193
UGGAUGCA G ACAAAUCU
1343
AGAUUUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGCAUCCA
3093
|
|
1213
CAAUGCCU G AAAGAGAC
1344
GUCUCUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGCAUUG
3094
|
|
1217
GCCUGAAA G AGACUUGU
1345
ACAAGUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUCAGGC
3095
|
|
1219
CUGAAAGA G ACUUGUGA
1346
UCACAAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUUUCAG
3096
|
|
1226
AGACUUGU G AGAAGUUG
1347
CAACUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAAGUCU
3097
|
|
1228
ACUUGUGA G AAGUUGGG
1348
CCCAACUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCACAAGU
3098
|
|
1234
GAGAAGUU G GGCUAUCA
1349
UGAUAGCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACUUCUC
3099
|
|
1235
AGAAGUUG G GCUAUCAA
1350
UUGAUAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAACUUCU
3100
|
|
1245
CUAUCAAU G GAAGAAAA
1351
UUUUCUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUGAUAG
3101
|
|
1246
UAUCAAUG G AAGAAAAG
1352
CUUUUCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUUGAUA
3102
|
|
1249
CAAUGGAA G AAAAGUUG
1353
CAACUUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCCAUUG
3103
|
|
1261
AGUUGUAU G AAUCAGGU
1354
ACCUGAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUACAACU
3104
|
|
1267
AUGAAUCA G GUUACUAU
1355
AUAGUAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAUUCAU
3105
|
|
1286
CAACAACU G AUAGGAGA
1356
UCUCCUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGUUGUUG
3106
|
|
1290
AACUGAUA G GAGAAACA
1357
UGUUUCUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUCAGUU
3107
|
|
1291
ACUGAUAG G AGAAACAA
1358
UUGUUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUAUCAGU
3108
|
|
1293
UGAUACGA G AAACAAUA
1359
UAUUGUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCCUAUCA
3109
|
|
1318
UUCAAAGU G AAUUUGUU
1360
AACAAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACUUUGAA
3110
|
|
1328
AUUUGUUA G AAAUGGAU
1361
AUCCAUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAACAAAU
3111
|
|
1333
UUAGAAAU G GAUGAUAA
1362
UUAUCAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUUUCUAA
3112
|
|
1334
UAGAAAUG G AUGAUAAA
1363
UUUAUCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUUUCUA
3113
|
|
1337
AAAUGGAU G AUAAAAUA
1364
UAUUUUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCCAUUU
3114
|
|
1348
AAAAUAUU G GUUGACUU
1365
AAGUCAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUAUUUU
3115
|
|
1352
UAUUGGUU G ACUUCCGG
1366
CCGGAAGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACCAAUA
3116
|
|
1359
UGACUUCC G GCUUUCUA
1367
UAGAAAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GGAAGUCA
3117
|
|
1369
CUUUCUAA G GGUGAUGG
1368
CCAUCACC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUAGAAAG
3118
|
|
1370
UUUCUAAG G GUGAUGGA
1369
UCCAUCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUAGAAA
3119
|
|
1373
CUAAGGGU G AUGGAUUG
1370
CAAUCCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCCUUAG
3120
|
|
1376
AGGGUGAU G GAUUGGAG
1371
CUCCAAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCACCCU
3121
|
|
1377
GGGUGAUG G AUUGGAGU
1372
ACUCCAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAUCACCC
3122
|
|
1381
GAUGGAUU G GAGUUCAA
1373
UUGAACUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUCCAUC
3123
|
|
1382
AUGGAUUG G AGUUCAAG
1374
CUUGAACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAUCCAU
3124
|
|
1390
GAGUUCAA G AGACACUU
1375
AAGUGUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUGAACUC
3125
|
|
1392
GUUCAAGA G ACACUUCC
1376
GGAAGUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUUGAAC
3126
|
|
1402
CACUUCCU G AAGAUUAA
1377
UUAAUCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGAAGUG
3127
|
|
1405
UUCCUGAA G AUUAAAGG
1378
CCUUUAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCAGGAA
3128
|
|
1412
AGAUUAAA G GGAAGCUG
1379
CAGCUUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUAAUCU
3129
|
|
1413
GAUUAAAG G GAAGCUGA
1380
UCAGCUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUUAAUC
3130
|
|
1414
AUUAAAGG G AAGCUGAU
1381
AUCAGCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUUUAAU
3131
|
|
1420
GGGAAGCU G AUUGAUAU
1382
AUAUCAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGCUUCCC
3132
|
|
1424
AGCUGAUU G AUAUUGUG
1383
CACAAUAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAUCAGCU
3133
|
|
1432
GAUAUUGU G AGCAGCCA
1384
UGGCUGCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACAAUAUC
3134
|
|
1441
AGCAGCCA G AAGGUUUG
1385
CAAACCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGGCUGCU
3135
|
|
1444
AGCCAGAA G GUUUGGCU
1386
AGCCAAAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUGGCU
3136
|
|
1449
GAAGGUUU G GCUUCCUG
1387
CAGGAAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAACCUUC
3137
|
|
1464
UGCCACAU G AUCGGACC
1388
GGUCCGAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGUGGCA
3138
|
|
1468
ACAUGAUC G GACCAUCG
1389
CGAUGGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAUCAUGU
3139
|
|
1469
CAUGAUCG G ACCAUCGG
1390
CCGAUGGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CGAUCAUG
3140
|
|
1476
GGACCAUC G GCUCUGGG
1391
CCCAGAGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAUGGUCC
3141
|
|
1482
UCGGCUCU G GGGAAUCC
1392
GGAUUCCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAGCCGA
3142
|
|
1483
CGGCUCUG G GGAAUCCU
1393
AGGAUUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAGAGCCG
3143
|
|
1484
GGCUCUGG G GAAUCCUG
1394
CAGGAUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCAGAGCC
3144
|
|
1485
GCUCUGGG G AAUCCUGG
1395
CCAGGAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCCAGAGC
3145
|
|
1492
GGAAUCCU G GUGAAUAU
1396
AUAUUCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGAUUCC
3146
|
|
1495
AUCCUGGU G AAUAUAGU
1397
ACUAUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCAGGAU
3147
|
|
1515
GCUAUGUU G ACAUUAUU
1398
AAUAAUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AACAUAGC
3148
|
|
1531
UCUUCCUA G AGAAGAUU
1399
AAUCUUCU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAGGAAGA
3149
|
|
1533
UUCCUAGA G AAGAUUAU
1400
AUAAUCUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UCUAGGAA
3150
|
|
1536
CUAGAGAA G AUUAUCCU
1401
AGGAUAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUCUCUAG
3151
|
|
1573
UAGUUCCU G AAGUGUUC
1402
GAACACUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGGAACUA
3152
|
|
1627
GUUUGUUC G GCAUACAA
1403
UUGUAUGC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG GAACAAAC
3153
|
|
1670
AAAACUUU G GGGAAAGG
1404
CCUUUCCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAGUUUU
3154
|
|
1671
AAACUUUG G GGAAAGGA
1405
UCCUUUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CAAAGUUU
3155
|
|
1672
AACUUUGG G GAAAGGAU
1406
AUCCUUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCAAAGUU
3156
|
|
1673
ACUUUGGG G AAAGGAUG
1407
CAUCCUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCCAAAGU
3157
|
|
1677
UGGGGAAA G GAUGAAUA
1408
UAUUCAUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UUUCCCCA
3158
|
|
1678
GGGGAAAG G AUGAAUAG
1409
CUAUUCAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUUUCCCC
3159
|
|
1681
GAAAGGAU G AAUAGAAU
1410
AUUCUAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUCCUUUC
3160
|
|
1686
GAUGAAUA G AAUUCAUU
1411
AAUGAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UAUUCAUC
3161
|
|
1696
AUUCAUUU G AUUAUUUC
1412
GAAAUAAU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAUGAAU
3162
|
|
1725
UAGUAUCU G AAUUUGAA
1413
UUCAAAUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAUACUA
3163
|
|
1731
CUGAAUUU G AAACUCAU
1414
AUGAGUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AAAUUCAG
3164
|
|
1742
ACUCAUCU G GUGGAAAC
1415
GUUUCCAC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AGAUGAGU
3165
|
|
1745
CAUCUGGU G GAAACCAA
1416
UUGGUUUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG ACCAGAUG
3166
|
|
1746
AUCUGGUG G AAACCAAG
1417
CUUGGUUU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CACCAGAU
3167
|
|
1760
AAGUUUCA G GGGACAUG
1418
CAUGUCCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG UGAAACUU
3168
|
|
1761
AGUUUCAG G GGACAUGA
1419
UCAUGUCC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CUGAAACU
3169
|
|
1762
GUUUCAGG G GACAUGAG
1420
CUCAUGUC GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCUGAAAC
3170
|
|
1763
UUUCAGGG G ACAUGAGU
1421
ACUCAUGU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG CCCUGAAA
3171
|
|
1768
GGGGACAU G AGUUUUCC
1422
GGAAAACU GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG AUGUCCCC
3172
|
|
Input Sequence = AF016582. Cut Site = G/.
|
Stem Length = 8. Core Sequence = GGAGGAAACUCC CU UCAAGGACAUCGUCCGGG
|
AF016582 (Homo sapiens checkpoint kinase Chk1 (CHK1) mRNA; 1821 bp)
|
Claims
- 1. A nucleic acid molecule which down regulates expression of a Chk1 gene.
- 2. The nucleic acid of claim 1, wherein said nucleic acid molecule is used to treat cancer.
- 3. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule is an enzymatic nucleic acid molecule.
- 4. The nucleic acid of claim 3, wherein a binding arm of said enzymatic nucleic acid molecule comprise sequences complementary to any of sequences defined as Sequence ID Nos. 1-1422.
- 5. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule comprises any of sequences defined as sequence ID Nos. 1423-3172.
- 6. The nucleic acid molecule of claim 1, wherein said nucleic acid molecule is an antisense nucleic acid molecule.
- 7. The nucleic acid molecule of claim 6, wherein said antisense nucleic acid molecule comprises sequence complementary to any of sequence defined as Sequence ID Nos. 1-1422 and 3173-3180.
- 8. The nucleic acid molecule of claim 6, wherein said antisense nucleic acid molecule comprise any of sequences defined as sequence ID Nos. 3181-3188.
- 9. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule is in a hammerhead (HH) motif.
- 10. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule is in a hairpin, hepatitis Delta virus, group I intron, VS nucleic acid, amberzyme, zinzyme or RNAse P nucleic acid motif.
- 11. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule is in a NCH motif.
- 12. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule is in a G-cleaver motif.
- 13. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule is a DNAzyme.
- 14. The nucleic acid molecule of claim 3, wherein said enzymatic nucleic acid molecule comprises between 12 and 100 bases complementary to the RNA of Chk1 gene.
- 15. The nucleic acid of claim 3, wherein said enzymatic nucleic acid molecule comprises between 14 and 24 bases complementary to the RNA of Chk1 gene.
- 16. The nucleic acid molecule of claim 1, wherein said nucleic acid is chemically synthesized.
- 17. The nucleic acid molecule of claim 1, wherein said nucleic acid comprises at least one 2′-sugar modification.
- 18. The nucleic acid molecule of claim 1, wherein said nucleic acid comprises at least one nucleic acid base modification.
- 19. The nucleic acid molecule of claim 1, wherein said nucleic acid comprises at least one phosphate backbone modification.
- 20. A mammalian cell including the nucleic acid molecule of claim 1.
- 21. The mammalian cell of claim 20, wherein said mammalian cell is a human cell.
- 22. A method of reducing Chk1 activity in a cell, comprising the step of contacting said cell with the nucleic acid molecule of claim 1, under conditions suitable for said reduction of Chk1 activity.
- 23. A method of treatment of a patient having a condition associated with the level of Chk1, comprising contacting cells of said patient with the nucleic acid molecule of claim 1, under conditions suitable for said treatment.
- 24. The method of claim 23 further comprising the use of one or more therapies under conditions suitable for said treatment.
- 25. A method of cleaving RNA of Chk1 gene, comprising, contacting the nucleic acid molecule of claim 1, with said RNA under conditions suitable for the cleavage of said RNA.
- 26. The method of claim 25, wherein said cleavage is carried out in the presence of a divalent cation.
- 27. The method of claim 26, wherein said divalent cation is Mg2+.
- 28. The nucleic acid molecule of claim 1, wherein said nucleic acid comprises a cap structure, wherein the cap structure is at the 5′-end or 3′-end or both the 5′-end and the 3′-end.
- 29. The enzymatic nucleic acid molecule of claim 9, wherein said hammerhead motif comprises sequences complementary to any of sequences shown as Seq ID Nos 1-358.
- 30. The enzymatic nucleic acid molecule of claim 11, wherein said NCH motif comprises sequences complementary to any of sequences shown as Seq ID Nos 359-680.
- 31. The enzymatic nucleic acid molecule of claim 12, wherein said G-cleaver motif comprises sequences complementary to any of sequences shown as Seq ID Nos 681-790.
- 32. The enzymatic nucleic acid molecule of claim 13, wherein said DNAzyme comprises sequences complementary to any of substrate sequences shown as Seq. ID Nos 791-1185.
- 33. The enzymatic nucleic acid molecule of claim 10, wherein said zinzyme comprises sequences complementary to any of substrate sequences shown as Seq. ID Nos 791-954.
- 34. The enzymatic nucleic acid molecule of claim 10, wherein said amberzyme comprises sequences complementary to any of substrate sequences shown as Seq. ID Nos 791-1422.
- 35. An expression vector comprising nucleic acid sequence encoding at least one nucleic acid molecule of claim 1, in a manner which allows expression of that nucleic acid molecule.
- 36. A mammalian cell including an expression vector of claim 35.
- 37. The mammalian cell of claim 36, wherein said mammalian cell is a human cell.
- 38. The expression vector of claim 35, wherein said nucleic acid molecule is an enzymatic nucleic acid molecule.
- 39. The expression vector of claim 35, wherein said expression vector further comprises a sequence for an antisense nucleic acid molecule complementary to the RNA of Chk1 gene.
- 40. The expression vector of claim 35, wherein said expression vector comprises sequence encoding at least two said nucleic acid molecules, which may be same or different.
- 41. The expression vector of claim 40, wherein one said expression vector further comprises sequence encoding antisense nucleic acid molecule complementary to the RNA of Chk1 gene.
- 42. The expression vector of claim 40, wherein one said expression vector further comprises sequence encoding enzymatic nucleic acid molecule complementary to the RNA of Chk1 gene.
- 43. A method for treatment of cancer comprising the step of administering to a patient the nucleic acid molecule of claim 1 under conditions suitable for said treatment.
- 44. The method of claim 43, wherein said cancer is colorectal cancer.
- 45. The method of claim 43, wherein said cancer is lung cancer.
- 46. The method of claim 43, wherein said cancer is breast cancer.
- 47. The method of claim 43, wherein said cancer is prostate cancer.
- 48. A method for treatment of cancer comprising the step of administering to a patient the antisense nucleic acid molecule of claim 7 under conditions suitable for said treatment.
- 49. The method of claim 45, wherein said method further comprises administering to said patient the nucleic acid molecule of claim 1 in conjunction with one or more of other therapies.
- 50. The method of claim 49, wherein said “other therapies” are therapies selected from the group consisting of radiation and chemotherapy treatment.
- 51. The nucleic acid molecule of claim 7, wherein said nucleic acid molecule comprises at least five ribose residues; at least ten 2′-O-methyl modifications, and a 3′-end modification.
- 52. The nucleic acid molecule of claim 51, wherein said nucleic acid molecule further comprises phosphorothioate linkages on at least three of the 5′ terminal nucleotides.
- 53. The nucleic acid molecule of claim 51, wherein said 3′-end modification is 3′-3′ inverted abasic moiety.
- 54. The nucleic acid molecule of claim 3, wherein said nucleic acid molecule comprises at least five ribose residues; at least ten 2′-O-methyl modifications, and a 3′-end modification.
- 55. The nucleic acid molecule of claim 54, wherein said nucleic acid molecule further comprises phosphorothioate linkages on at least three of the 5′ terminal nucleotides.
- 56. The nucleic acid molecule of claim 54, wherein said 3′- end modification is 3′-3′ inverted abasic moiety.
- 57. The enzymatic nucleic acid molecule of claim 13, wherein said DNAzyme comprises at least ten 2′-O-methyl modifications and a 3′-end modification.
- 58. The enzymatic nucleic acid molecule of claim 57, wherein said DNAzyme further comprises phosphorothioate linkages on at least three of the 5′ terminal nucleotides.
- 59. The enzymatic nucleic acid molecule of claim 57, wherein said 3′-end modification is 3′-3′ inverted abasic moiety.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60179983 |
Feb 2000 |
US |