The invention relates to a method of recording marks in an information layer of a record carrier by irradiating the information layer by a pulsed radiation beam, said information layer having a phase reversibly changeable between a crystal phase and an amorphous phase, wherein an even mark having a time length of nT, where n is representing an integer value equal to 4, 6, 8, or 10 and T is representing the length of one period of a reference clock, is written by a sequence of n/2 pulses, and wherein an odd mark having a time length of nT, where n is representing an integer value equal to 5, 7, 9 or 11, is written by as sequence of (n−1)/2 pulses.
The invention also relates to a recording device for recording marks in an information layer of a record carrier, said record carrier comprising an information layer having a phase reversibly changeable between a crystal phase and an amorphous phase, capable of carrying out the above method.
An information layer having a phase reversibly changeable between a crystal phase and an amorphous phase is generally known as a phase-change layer. Such a phase-change layer is often applied in optical record carriers of the rewritable type, such as for example CD-ReWritable (CD-RW) discs. A recording operation of optical signals is performed in such a manner that the recording material on the layer is changed in phase reversibly between an amorphous phase and a crystalline phase by changing the irradiation conditions of a radiation beam thereby to record the signals in the phase-change layer, while a playback operation of the recorded signals is performed by detecting differences in optical properties between the amorphous and crystalline phase of the phase-change layer thereby to reproduce the signals. Such a phase-change layer allows information to be recorded and erased by modulating the power of the radiation beam between a write power level and an erase power level.
A method according to the preamble for recording information in a phase-change layer of a record carrier is known from the U.S. Pat. No. 5,732,062. A mark is recorded by a sequence of pulses having a write power level and having a bias power level in between the pulses. The previously recorded marks between the marks being recorded are erased by applying an erase power level in between the sequences of pulses thus allowing this method to be used in a direct-overwrite (DOW) mode, that is recording information to be recorded in the information layer of the record carrier and at the same time erasing information previously recorded in the information layer.
A sequence of pulses for writing a mark having a time length of nT consists of (n/2) pulses when n is an even integer (these marks are referred to as even marks), while the sequence consists of (n−1)/2 pulses when n is an odd integer (these marks are referred to as odd marks). Because one pulse is generated every two cycles of the reference clock, this method of recording marks is often referred to as 2T write strategy. This in contrast to known methods of recording a mark in which a pulse is generated every single cycle of the reference clock, such as for example the method also described in U.S. Pat. No. 5,732,062 in which a mark is written by a sequence of (n−1) pulses. The latter methods are often referred to as 1T write strategies.
In order to distinguish an odd mark from an even mark while both are being written by an identical number of pulses in a 2T write strategy, the patterns of pulses and gaps between the pulses in a sequence of pulses, that is the shapes of the pulse-trains, are different in shape between odd-number T length marks and even-number T length marks. This shape of a pulse-train for writing an odd mark may be different from the shape of a pulse-train for writing an even marks in, for example, the duration of one or more pulses in the sequence of pulses and/or in the duration of one or more gaps in between the pulses in a sequence of pulses.
Such a 2T write strategy is specified in the Ultra-Speed Compact Disc Rewritable specification (Recordable Compact Disc Systems, Part III: CD-RW, Volume 3: Ultra-Speed, Version 1.0). Here a write strategy is specified which is divided into even and odd mark lengths and a separately specified 3T mark length. An even mark is written by applying a sequence of n/2 pulses. The first pulse in a sequence for writing an even mark starts on the clock edge of the reference clock at 1T after the start of the EFM signal. The last pulse in the sequence for writing an even mark has a duration of Tp and is succeeded by a cooling gap having a duration of Tc. An odd mark is written by applying a sequence of (n−1)/2 pulses. The first pulse in a sequence for writing an odd mark also starts on the clock edge of the reference clock at 1T after the start of the EFM signal. The last pulse in the sequence for writing an odd mark has a duration of Tp+Δ1 and is succeeded by a cooling gap having a duration of Tc+Δ2. Moreover, the gap preceding the last pulse in the sequence of pulses for writing an odd mark is a period Δ1 longer than the gap preceding the last pulse in the sequence of pulses for writing an even mark. It is noted that, according to the above mentioned Ultra-speed Compact Disc Rewritable specification, all pulses in a sequence of pulses before the last pulse of each sequence have a duration which is equal to the duration of the last pulse in a sequence of pulses for writing an even mark, that is a duration of Tp.
A mark having a time length of 3T is written by a single pulse and a subsequent cooling gap. The single pulse has a duration of Tp+Δ3 and is delayed by ΔT3 relative to the start of the first pulse in a sequence of pulses for writing an even mark. The cooling gap after the single pulse has a duration of Tc+Δ4.
The power level of a pulse in a sequence of pulses is referred to as the write power level (Pw), while the power level between the pulses in a sequence is referred to as the bias power level (Pb). Furthermore, the power level between each sequence of pulses is referred to as erase power level (Pe).
In order for the recorded marks to be of a good quality, that is to have a jitter below a prescribed value, the write parameters for the 2T write strategy (Tp, Tc, Δ1, Δ2, Tp+Δ3=T3, ΔT3, and Tc+Δ4=TC3) should at least be within prescribed ranges as specified in the Ultra-Speed Compact Disc Rewritable specification. However, the actual values for these write parameters depend strongly on the specific type and manufacturer of the record carrier.
For the previously used 1T write strategy the optimal values of its write parameters were prerecorded on each individual record carrier. Before recording information, these optimal values were read from the record carrier by a recording device and used for setting the appropriate 1T write strategy in the recording device. However, for the current 2T write strategy there are no optimum values of its write parameters prerecorded in the record carriers. Instead, a recording device has to determine the manufacturer and media type of the record carrier from a media identifier on the record carrier. When a record carrier is inserted into the recording device, the record carrier is identified by its media identifier and the appropriate settings of the write parameters are selected from a look-up table located in the recording device itself. Such a look-up table is provided by the manufacturer of the disk drive and contains the optimal settings of the write parameters for each individual type of record carrier known to the drive manufacturer. When new record carriers are introduced, the look-up tables in the recording devices should be updated.
However, when a record carrier is inserted into a recording device which can not be identified by the recording device, or which write parameters setting are not available in the look-up table, the recording device is not capable of recording information on the record carrier because it can not set an appropriate 2T write strategy.
It is an object of the present invention to provide a method and a recording device of the kind described in the opening paragraph which result in recorded marks of good quality (that is, having a jitter within the prescribed range), even when the record carrier can not be identified or when its write parameters setting are not available.
This object is achieved by providing a method according to claim 1 and a recording device according to claim 7 in which the sum of the periods Δ1p, Δ1g, and Δ2 is within a range from 0.7T to 1.1T. It appears that when the sequence for writing an mT even mark is prolonged by a total period having a duration close to 1T, a good sequence for writing an (m+1)T odd marks is obtained. This is realized by setting the periods Δ1p, Δ1g, and Δ2 such that their sum is within a range from 0.7T to 1.1T.
It is noted that according to the above-mentioned Ultra-speed Compact Disc Rewritable specification the periods Δ1p and Δ1g have an equal duration (denoted as Δ1). However, by allowing these periods to have an unequal duration a more flexible write strategy is obtained in which two write parameters can be optimized independently such that marks of good quality are obtained.
In an embodiment of the invention the sum of the periods Δ1p and Δ1g is within a range from 0.25T to 0.75T. When the period Δ1p is too long, the last pulse in the sequence of pulses induces too much heat in the record carrier resulting in a recrystallization effect (that is, recrystallization of an amorphous area) near the end of the mark being written and subsequently in a recorded mark which is too short. When the period Δ1g is too long, this results in a mark having an irregular width (that is, a shape in the direction perpendicular to the scanning direction; for example, the radial direction on a disc shaped record carrier), caused by excessive cooling. It appears that good quality marks are obtained when the sum of the periods Δ1p and Δ1g is within a range from 0.25T to 0.75T.
In a preferred embodiment of the invention the period Δ1p is substantially equal to the period Δ1g. The additional heat induced by the prolonged last pulse in a sequence of pulses appears to be especially well balanced by the prolonged gap before the last pulse in a sequence when the periods Δ1p and Δ1g are selected to be of substantially equal duration. Especially good quality marks are obtained without significant recrystallization at the end of the mark being written and without significant irregularities in the width of the mark being written.
In an embodiment according to the invention a mark having a time length of 3T is written by a single pulse and a subsequent cooling gap. It appears that when this sequence for writing an 3T mark is prolonged by a time period having a duration close to 1T compared to the duration of a single pulse and a subsequent cooling gap in the sequence of pulses for writing an even mark, a good sequence for writing a 3T marks is obtained. This is realized when the single pulse is a period Δ3 longer than the last pulse in the sequence of pulses for writing an even mark and the subsequent cooling gap is a period Δ4 longer than the cooling gap succeeding the last pulse in the sequence of pulses for writing an even mark, where the sum of the periods Δ3 and Δ4 is within a range from 0.7T to 1.1T.
In a preferred embodiment of the invention the values for the write parameters for the 2T write strategy are selected to be such that the duration of the last pulse in the sequence of pulses for writing an even mark (Tp) is substantially equal to 7.2 ns, the period Δ1p has a duration substantially equal to 2/8T, the period Δ1g has a duration substantially equal to 2/8T, the duration of the cooling gap succeeding the last pulse in the sequence of pulses for writing an even mark (Tc) is substantially equal to 5/8T, the period Δ2 has a duration substantially equal to 3/8T, the period Δ3 has a duration substantially equal to 7/8T−7.2 ns (=3/8T at 16×), and the period Δ4 has a duration substantially equal to 5/8T. With this selection of write parameters settings, good quality marks are recorded on most record carriers. This is especially so when recording is performed on an Ultra-Speed CD-RW disc at 16×, that is, 16 times the standard recording speed according to the CD-ReWritable specifications. Now, good quality marks are obtained even when the Ultra-Speed CD-RW disc is specified to have a maximum recording speed higher than 16×, such as 24×.
An even further improvement of the quality of the recorded marks is obtained when the start of the single pulse for writing a mark having a time length of 3T relative to the start of a period of the reference clock corresponds to the start of the first pulse in the sequence of pulses for writing an even mark relative to the start of a period of the reference clock.
The object of the invention is alternatively achieved by a recording device according to claim 8 which comprises an identification unit operative for identifying the record carrier, and a selection unit operative for selecting a set of write parameters from a collection of sets of write parameters based on the identification of the record carrier. When a record carrier is inserted into the recording device, the record carrier is identified by the identification unit (for example by its media identifier) and the appropriate settings of the write parameters are selected by the selection unit from a collection of sets of write parameters. The collection of sets of write parameters may, for example, be stored in a look-up table located in the recording device itself. The selection unit now provides a control unit operative for providing the sequences of write pulses with the appropriate settings of the write parameters. However, when the identification unit is incapable of identifying the record carrier or when the selection unit is incapable of selecting an appropriate set of write parameters from the collection of sets of write parameters, for example because no such set for the specific record carrier was stored in the look-up table, the selection unit provides the control unit with settings of the write parameters such that the control unit will provide sequences of pulses according to any of the methods according to the invention. Using these settings, the recording device will now be able to record information on the record carrier even though the record carrier can not be identified or specific write parameters setting are not available.
These and other objects, features and advantages of the invention will be apparent from the following more particular description of an embodiment of the invention, as illustrated in the accompanying drawings where
When a mark having a time length of 4T and a mark having a time length of 5T are to be recorded by a 2T write strategy, both marks are recorded by a sequence of pulses consisting of two pulses.
According to an embodiment of the invention a good selection for the values of the write parameters Tp, Tc, Δ1g, Δ1p, and Δ2 appears to be Tp=7.2 ns, Tc=5/8T, Δ1g=2/8T, Δ1p=2/8T, and Δ2=3/8T.
The start of the single pulse for writing a mark having a time length of 3T is delayed by a period ΔT3 relative to the start of the first pulse in a sequence of pulses for writing an even mark.
According to an embodiment of the invention a good selection for the values of the write parameters Δ3, and Δ4 appears to be Δ3=7/8T−7.2 ns and Δ4=5/8T.
It is noted that the periods Δ1g and Δ1p may have different durations. However, according to an embodiment of the invention they may alternatively have substantially equal durations (Δ1g=Δ1p=Δ1). This allows for simplified electronic circuitry in the recording device. Furthermore, all pulses in the sequences of pulses for writing the even and the odd marks except for the last pulse in the sequences of pulses for writing an odd marks may have equal durations Tp, again allowing for simplified electronic circuitry in the recording device.
The power of the radiation beam 32 generated by the radiation source 31 is controlled by a control signal SC provided by a control unit 62, where it is assumed that the power of the radiation beam 32 is proportional to the corresponding level of the control signal SC. Examples of such a control signal SC can be found in
The control unit 62 converts a digital data signal SD representing the length of a mark to be recorded in the information layer 301 of a record carrier 30 into a corresponding control signal SC. This conversion is based on a so-called write strategy. In the 2T write strategy according to the invention a digital data signal SD representing an even mark having a time length of nT, where n is representing an integer value equal to 4, 6, 8, or 10 and T is representing the length of one period of a reference clock, is converted into a control signal SC comprising a sequence of n/2 pulses, while a digital data signal SD representing an odd mark having a time length of nT, where n is representing an integer value equal to 3, 5, 7, 9 or 11, is converted into a control signal SC comprising a sequence of (n−1)/2 pulses. As an example,
The patterns of the pulses and the gaps between the pulses in a control signal SC are based on a set of write parameters related to the 2T write strategy, which write parameters are provided to the control unit 62 by a selection unit 61.
However, when the identification unit 63 is incapable of identifying the record carrier 30 or when the selection unit 61 is incapable of selecting an appropriate set of write parameters from the collection of sets of write parameters, for example because no such set for the specific record carrier was stored in the look-up table 611, the selection unit 61 provides the control unit 62 with a default set of write parameters, for example stored in a default write parameters table 612, such that the control unit 62 will provide control signals SD according to one of the methods according to the invention.
Number | Date | Country | Kind |
---|---|---|---|
02080394 | Dec 2002 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB03/05739 | 12/4/2003 | WO | 00 | 6/15/2005 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/057582 | 7/8/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5732062 | Yokoi et al. | Mar 1998 | A |
6411579 | Nobukuni et al. | Jun 2002 | B2 |
6469968 | Van Den Enden et al. | Oct 2002 | B1 |
6482493 | Kim | Nov 2002 | B1 |
6515949 | Masaki et al. | Feb 2003 | B2 |
6963527 | Ohkura et al. | Nov 2005 | B2 |
20030086345 | Ueki | May 2003 | A1 |
20040248036 | Ohno et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
1197530 | Oct 1998 | CN |
1361571 | Nov 2003 | EP |
1385157 | Jan 2004 | EP |
09134525 | May 1997 | JP |
2001331936 | Nov 2001 | JP |
2002264506 | Sep 2002 | JP |
03069602 | Aug 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20060209657 A1 | Sep 2006 | US |