The present invention, in some embodiments thereof, relates to hyper-fast cooling of samples. More specifically, the present invention relates to the cryogenic preservation of biological cells via cooling down to the liquid nitrogen temperature in medicine, animal husbandry, and biomedical science. Some embodiments relate to fast cooling of certain electronic equipments such as computer apparatuses, to fields in metallurgy for achieving the glassy state of metals and metals alloys, and to other related fields where hyper-fast cooling of small samples is desirable. More particularly, the invention relates to, but not limited to, devices and methods for hyper-fast cooling for vitrification of biological cells, which will be the major field discussed in the Application.
Vitrification is a process when a liquid or semi-liquid biological sample becomes highly viscous, avoiding intracellular and intercellular ice formation and thus, increasing chances for survival; an amorphous vitreous (glassy) phase is formed. This glassy state may be achieved in most liquids by means of very fast cooling. Thus, for example, pure water vitrification is achieved at the cooling rate of about 108 K/min. Utilization of cryoprotective agents (CPAs) significantly increases these extremely high cooling rates to rapid (higher 10,000° C./min) or ultra-rapid (ultra-fast) cooling rates (above 10,000° C./min but below 100,000° C./min). This method is very attractive for cryopreservation of biological samples. High concentrations of permeable CPAs must be used for the most widely used methods of equilibrium (slow) and quasi-kinetic vitrification with relatively more rapid rates of cooling, including ultra-rapid (higher than 100,000° C./min but below 250,000° C./min) vitrifcation. Those CPAs, used in equilibrium or quasi-kinetic vitrification, which comprise, but are not limited to, glycerol, dimethyl sulfox-ide (DMSO), ethylene glycol (EG), or propylene glycol (1,2-propane diol, PG) [Katkov et al., 2012], can substantially damage the cells even without vitrification due to either osmotic damage or specific chemical toxicity [Katkov & Pogorelov, 2007; Katkov, 2011].
The Leidenfrost effect (LFE) is a vapor film formation (film boiling) on the site of the contact between the coolant/heater and heated/cooled sample. In the former case, there is heating LFE, which can be observed when a droplet of water is placed on overheated metallic pan. In the latter case, there is cryogenic LFE, when a liquid coolant boils and forms a vapor coating around the cooling sample (which can be both liquid or solid). It is the major factor that substantially impedes the rate of the surface cooling. All the devices referenced above where the samples are immersed into liquid nitrogen or other coolant, have substantially lower cooling rates than as claimed because of the cryogenic LFE.
It would therefore be advantageous to reduce the LFE effect, to improve the efficiency of cooling, and to simultaneously reduce the need for toxic CPAs. Some embodiments of the present invention can achieve these goals with hyper-fast cooling rates (250,000° C./min and higher) by reducing the LEF effect, and by totally eliminating or substantially decrease the use of potentially toxic permeable CPAs mentioned above.
(1) The present invention relates to, a method for fast cooling of samples comprises: pressurizing a liquid coolant source; securing a sample in a sample container; securing the sample container onto an insertion mechanism; with the insertion mechanism outside a cryogenic cooling chamber, inserting the sample container into the cryogenic cooling chamber through an opening of the cooling chamber; locking the insertion mechanism and securing the sample container in place some distance away from a cooling head, but within range of a continuous stream of pressurized liquid coolant; cooling the sample by spraying the sample container with a continuous stream of pressurized liquid coolant; and retrieving the sample container after cooling.
(2) In a variant, the method for fast cooling of samples comprises obscuring the opening with a barrier to prevent splashing of the liquid coolant.
(3) In a further variant, the barrier comprises a shutter, and the insertion mechanism comprises a swivel arm, and the method for fast cooling of samples comprises synchronizing the opening of the shutter with moving the swivel arm through the opening of the cooling chamber.
(4) In a variant, the method for fast cooling of samples comprises removing gaseous vapor of the liquid coolant and collecting liquid coolant spent in the cooling chamber.
(5) The present invention relates to an apparatus for fast cooling of samples, comprising: a pressurized liquid coolant source; a suction mechanism; a cooling head configured with an inlet connected to the pressurized liquid coolant source, and an outlet connected to the suction mechanism; a cryogenic cooling chamber having an opening, inside which the cooling head is disposed; a sample container, in which samples are secured; and an insertion mechanism, configured to insert the sample container through an opening into the cryogenic cooling chamber, to secure the sample container at some distance from the cooling head during a cooling process, and to retract the sample container after the cooling process is completed.
(6) In a variant, the apparatus comprises a control mechanism, configured to operate the insertion mechanism, the pressurized coolant source and the suction mechanism according to a predetermined sequence.
(7) In another variant, the apparatus comprises a plurality of inlet branches and a plurality of outlet branches in the cooling head. The cooling head comprises a cooling end portion. The cooling end portion defining a region where the inlet branches terminate and the outlet branches commence. The inlet branches and outlet branches each form an angle of between 25 degrees and 75 degrees with a plane defined by where the outermost extent of where either of the inlet branches and outlet branches terminate and commence respectively.
(8) In a further variant, the sample container comprises a planar surface, and the apparatus being configured to position the planar surface of the sample container in close proximity to the cooling head.
(9) In still another variant, the cooling head comprises a plurality of inlet branches and outlet branches that each terminate and commence respectively at a cooling end of the cooling head. The inlet branches are configured in a row comprising a zigzag pattern, and the outlet branches configured in a row comprising a zigzag pattern. The zigzag rows of inlet and outlet branches are spaced apart from one another and individual inlet and outlet branches are paired with each pair oriented toward a reflection point in space, wherein the outlet branch is oriented to receive coolant emitted from the inlet and reflected off the point.
(10) In yet a further variant, the cooling head comprises a plurality of inlet branches and outlet branches that each terminate and commence respectively at a cooling end of the cooling head, the inlet and outlet branches alternating in a circular pattern, with each outlet oriented in the path of a reflection of emitted coolant from an inlet.
(11) In another variant, the cooling head is removable and is attachable to the inlet and outlet fitting. The inlet fitting is connected to the pressurized liquid coolant source and the outlet fitting is connected to the suction mechanism. The cooling head has a network of inlet branches that are configured in fluid communication with the inlet fitting when the cooling head is attached to the inlet fitting. When connected to the inlet fitting, the inlet branches spray coolant away from the cooling head towards the planar surface of the sample container. The cooling head has a network of outlet branches that are configured in fluid communication with the outlet fitting when the cooling head is attached to the outlet fitting, and when connected to the outlet fitting, the outlet branches suck gaseous coolant out of the chamber.
(12) In a further variant, the pressurized coolant source comprises a pressure vessel, comprising a heating element disposed inside the vessel for adjusting the pressure inside of the vessel.
(13) In still another variant, the apparatus comprises a control mechanism, configured to monitor and adjust the pressure to allow for continuous stream of coolant to be discharged through the inlet of the cooling head.
(14) In yet a further variant, the insertion mechanism comprises an swivelable L-shaped arm, configured for holding the sample container in a fixed orientation. The L-shaped arm positioned outside the cooling chamber such that the arm is configured to reach through the opening of the chamber when it is swiveled, and secure the sample container in close proximity to the cooling head.
(15) In a variant, the apparatus comprises first and second cooling heads, each having a plurality of inlets branches connected to the pressurized liquid coolant source, and a plurality of outlets branches connected to the suction mechanism. The first and second cooling heads comprise a cooling end portion. The cooling end portion defines a cooling plane where the inlet branches terminate and the outlet branches commence, wherein the inlet and outlet branches form an acute angle of between 25 degrees and 75 degrees with the cooling plane defined by where the inlet and outlet branches terminate and commence respectively. The cooling plane of the second cooling head is disposed opposite and parallel to the cooling plane of the first cooling head, defining a gap between the planes of the first and second cooling heads, the gap sized and shaped to receive the sample container.
(16) In another variant, an insulating barrier is connected to the opening in the cryogenic cooling chamber, and is biased in a position to cover the opening of the chamber.
(17) In a further variant, the insulating barrier comprises a shutter, having two sections adjacent to one another. A first section is configured to be displaced during the insertion of the sample container, and a second section is configured to secure the L-shaped arm in place after the sample container is inserted into the cooling chamber.
(18) In still another variant, a control mechanism is configured to synchronize the insertion mechanism and the insulating shutter.
(19) In yet a further variant, a secondary coolant vessel collects any overflow of the liquid coolant from the cooling head. The overflow liquid coolant is subsequently recycled back into the pressurized coolant vessel.
(20) In another variant, an apparatus for fast cooling of samples, comprises: a pressurized liquid coolant source; a cooling head configured with a plurality of inlet branches connected to the pressurized liquid coolant source, configured to deliver a continuous laminar flow of coolant out of the inlet branches; a cryogenic cooling chamber having an opening, inside which the cooling head is disposed; a sample container, in which samples are secured; an insertion mechanism, configured to insert the sample container through the opening and into the cryogenic cooling chamber, and secure the sample container at some distance from the cooling head during a cooling process, within the continuous flow of the coolant, and to retract the sample container after the cooling process is completed.
Other features and aspects of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the features in accordance with embodiments of the invention. The summary is not intended to limit the scope of the invention, which is defined solely by the claims attached hereto.
The present invention, in accordance with one or more various embodiments, is described in detail with reference to the following figures. The drawings are provided for purposes of illustration only and merely depict typical or example embodiments of the invention. These drawings are provided to facilitate the reader's understanding of the invention and shall not be considered limiting of the breadth, scope, or applicability of the invention. It should be noted that for clarity and ease of illustration these drawings are not necessarily made to scale.
Some of the figures included herein illustrate various embodiments of the invention from different viewing angles. Although the accompanying descriptive text may refer to such views as “top,” “bottom” or “side” views, such references are merely descriptive and do not imply or require that the invention be implemented or used in a particular spatial orientation unless explicitly stated otherwise.
The figures are not intended to be exhaustive or to limit the invention to the precise form disclosed. It should be understood that the invention can be practiced with modification and alteration, and that the invention be limited only by the claims and the equivalents thereof.
From time-to-time, the present invention is described herein in terms of example environments. Description in terms of these environments is provided to allow the various features and embodiments of the invention to be portrayed in the context of an exemplary application. After reading this description, it will become apparent to one of ordinary skill in the art how the invention can be implemented in different and alternative environments.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood by one of ordinary skill in the art to which this invention belongs. All patents, applications, published applications and other publications referred to herein are incorporated by reference in their entirety. If a definition set forth in this section is contrary to or otherwise inconsistent with a definition set forth in applications, published applications and other publications that are herein incorporated by reference, the definition set forth in this document prevails over the definition that is incorporated herein by reference.
The present invention, in some embodiments thereof, relates to hyper-fast cooling of samples. More specifically, the present invention relates to the cryogenic preservation of biological cells via cooling down to the liquid nitrogen temperature in medicine, animal husbandry, and biomedical science. Some embodiments relates to fast cooling of certain electronic equipments such as computer apparatuses, to fields in metallurgy for achieving the glassy state of metals and metals alloys, and to other related fields where hyper-fast cooling of small samples is desirable. More particularly, the invention relates but not limited to devices and methods for hyper-fast cooling with vitrification of biological cells, which will be the major field discussed in the Application.
The following reference numerals are used throughout this document:
1. Biological payload
2. Sample container
3. L-shaped lever
4. Twist knob
5. Stand (vertical or horizontal column)
6. Cryogenic cooling chamber
7. Cooling head
8. Discharge nozzles (Inlet branches)
9. Suction nozzles (Outlet branches)
10. Inlet fitting
11. Inlet valve
12. Outlet fitting
13. Outlet valve
14. Pressurized liquid coolant vessel
15. Depressurized gaseous nitrogen tank
16. Vacuum valve
17. Vacuum pump
18. Vent fitting for the cryogenic cooling chamber
19. Recycle outlet fitting from the cryogenic cooling chamber
20. Valve for 19
21. Assisting or secondary cryostat
22. Vent fitting for the assisting or secondary cryostat
23. Recycle fitting from the assisting or secondary cryostat
24. Valve for 23
25. Vent fitting for the pressurized liquid coolant tank
26. Valve for 25
27. Electric heater
28. Opening along the wall of the cryogenic cooling chamber
29. Master heat insulating shutter
30. Axis around which the master heat insulating shutter turns
31. Secondary shutter
32. Solid bottom of the sample container in contact with liquid coolant
33. Gap between the sample container and the cooling head
34. Liquid coolant, such as nitrogen
35. Valve for 22
36. Room temperature zone
37. Splash shield
38. Cooling plane
39. Angle between the inlet and outlet branches and the cooling plane
In a variant, referring to
Referring to
Nozzles are advantageously arranged in the cooling head 7 in such a manner that liquid nitrogen jets of increased pressure emanate from each discharge nozzle 8, reflect from flat-ended container 2, and then the evaporated flow of gaseous nitrogen is removed via the suction nozzle 9.
Discharge nozzles 8 in the cooling head 7 are connected to the inlet fitting 10, where control valve 11 is installed. Suction nozzles 9 of the cooling head 7 are connected to the outlet fitting 12, where control valve 13 is installed. The inlet fitting 10 is connected to a vessel containing pressurized liquid nitrogen 14, and the outlet fitting 12 is connected to a vessel of decreased pressure 15 for removing gaseous nitrogen. Vessel of decreased pressure 15 is connected to vacuum pump 17 through a valve 16.
In the upper part of cryogenic cooling chamber 6 there is a fitting 18 for outlet of evaporated gaseous nitrogen. In the lower part of the cryogenic cooling chamber, a fitting 19 is installed with a control valve 20 so that overflow liquid nitrogen can drain out of the cooling chamber to a secondary cryostat 21. The secondary cryostat 21 is equipped with a fitting 22 for gaseous nitrogen release to the ambient environment, and with an outlet fitting 23 with a valve 24. The outlet fitting 23 is connected to the vessel containing pressurized liquid nitrogen 14 which has outlet fitting 25 with valve 26. An electric heater 27 is located inside the pressurized liquid nitrogen vessel 14.
Referring to
The heat insulating shutter 29 is made flat, and in the shape of the opening 28 in the wall of cryogenic cooling chamber 6. The shutter 29 is installed with the capability of turning along an axis 30, adjusted on top (shown in
In a variant, referring to
In another variant, referring to
Referring to
Referring to
Optionally, control valves 11, 13, 16, 20, 24, 26 and 35 can be embodied in electromagnetic form with electronic control.
In still another variant, referring to
In yet a further variant, referring to
In operation, the apparatus works as follows. Consider the operation of the device with a horizontally oriented container 2 with biological or other relevant payload 1 in the shape of a very thin layer or monolayer of cells designed for cooling from the lower side, as in
Referring to
Valves 24, 26, 11, 13 are closed and valves 16, 20 and 35 are open. At the same time, vacuum pump 17 is providing decreased pressure in vessel 15, and the electric heater 27 is providing increased pressure in the pressure-tight vessel 14 with liquid nitrogen.
Referring to
Referring to
Referring to
Referring to
As the flow of liquid nitrogen from discharge nozzles 8 is directed at an angle a 39, between 25 degrees and 75 degrees to the flat surface of the container 2, the liquid nitrogen contacts the surface container, then warmed gaseous nitrogen (heated from the warmth from the container) is directed away from each jet (by virtue of being reflected), without interfering with the supply of new liquid nitrogen flowing to the area of the container being cooled. The angle a 39, is also the angle the discharge nozzles and the outlet 9 suctions nozzles make with a cooling plane 38 which is defined as the plane tangent the outmost of nozzles 8, 9.
Given that suction nozzles 9 are directed at the flat surface of container 2 at the same reflection angle as the direction of discharge nozzles, the bulk of vaporized nitrogen is removed (extracted) from the gap 33. In the present cooling method, the vaporized nitrogen film is removed from the surface of container 2 virtually immediately after the beginning of the cooling process. As a consequence, the biological object 1 is subjected to intense cooling in a bubble boiling mode with a high heat transfer coefficient, assuring high cooling rates. Additionally, the high rate of cooling of the biological object 1 is achieved by simultaneous droplet-impact cooling with liquid nitrogen over the entire surface of container 2.
Part of the evaporated gaseous nitrogen from cryogenic cooling chamber 6 will come out through the fitting 18 to the room temperature zone 36, and liquid nitrogen 34 through fitting 19 goes to assisting cryostat 21, where it is accumulated. Evaporated nitrogen also exits to the atmosphere from cryostat 21 through fitting 22.
After cooling of the biological payload 1 to the liquid nitrogen temperature, discharge and suction nozzles are closed by closing the valves 11 and 13.
The L-shaped lever around the vertical upright 5 is turned by the handle 4, and the flat-ended container 2 with biological payload 1 from cryogenic cooling chamber 6 is transferred to room temperature zone 36, as shown in
After transition of container 2 to room temperature zone 36 from the cryogenic cooling chamber 6, a master section 29 and secondary section 31 of the shutter comes back to a vertical position, closing the cryostat and preventing further evaporation of liquid nitrogen.
Valve 26 is opened and excessive pressure releases through fitting 25 from the vessel 14 with liquid nitrogen by releasing gaseous nitrogen into room temperature zone 36. Valves 20 and 35 are closed and excessive pressure in secondary cryostat 21 is generated by outer heat flows. Valve 24 is opened and liquid nitrogen 34 from cryostat 21 through fitting 23 goes to vessel 14 due to a pressure difference.
In another variant, referring to
When top and bottom surfaces of the container 2 are cooled by two cooling heads 7 positioned opposite one another, the cooling rate is faster due to a lowering of the temperature gradient over the cross section of biological payload 1.
The apparatus of the present invention can be constructed with or without electromechanical systems, for ease of use in a laboratory environment with regular cryogenic equipment. Apart from the shutter 29, the cooling chamber can be made from firm foam plastic, which can be manufactured relatively cheaply.
Operation of the device is easily performed with the use of electronic circuit diagram, controlling magnetic valves. Handling of the L-shaped lever can be manual, which is convenient for research purposes, or using an electric motor, which is more efficient in mass production of cooled biological payloads.
The consumption of liquid nitrogen is relatively low, which makes the cooling process inexpensive.
In the apparatus of the present invention, high cooling rates of a biological payload may be provided by:
Contact of an ensemble of points over all surface of cooled biological payload is carried out through thin copper or quartz foil directly with cryogenic liquid, instead of steam gaseous heat insulating film;
A very short period of time is provided for the vapor stage (film boiling) on the border of contact of liquid nitrogen with biological payload.
“Impact” removal of the vapor stage by directed motion (under pressure) of liquid nitrogen flow and vacuum suction of formed gaseous nitrogen;
Droplet-impact cooling by mutual contacts of cryogenic liquid with biological payload surface.
Another similar but somewhat different device is depicted on
The apparatuses described herein can be scaled up and down to various sizes as needed to suit the size of the sample requiring vitrification.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not of limitation Likewise, the various diagrams may depict an example architectural or other configuration for the invention, which is done to aid in understanding the features and functionality that can be included in the invention. The invention is not restricted to the illustrated example architectures or configurations, but the desired features can be implemented using a variety of alternative architectures and configurations. Indeed, it will be apparent to one of skill in the art how alternative functional, logical or physical partitioning and configurations can be implemented to implement the desired features of the present invention. Also, a multitude of different constituent module names other than those depicted herein can be applied to the various partitions. Additionally, with regard to flow diagrams, operational descriptions and method claims, the order in which the steps are presented herein shall not mandate that various embodiments be implemented to perform the recited functionality in the same order unless the context dictates otherwise.
Although the invention is described above in terms of various exemplary embodiments and implementations, it should be understood that the various features, aspects and functionality described in one or more of the individual embodiments are not limited in their applicability to the particular embodiment with which they are described, but instead can be applied, alone or in various combinations, to one or more of the other embodiments of the invention, whether or not such embodiments are described and whether or not such features are presented as being a part of a described embodiment. Thus the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments.
Terms and phrases used in this document, and variations thereof, unless otherwise expressly stated, should be construed as open ended as opposed to limiting. As examples of the foregoing: the term “including” should be read as meaning “including, without limitation” or the like; the term “example” is used to provide exemplary instances of the item in discussion, not an exhaustive or limiting list thereof; the terms “a” or “an” should be read as meaning “at least one,” “one or more” or the like; and adjectives such as “conventional,” “traditional,” “normal,” “standard,” “known” and terms of similar meaning should not be construed as limiting the item described to a given time period or to an item available as of a given time, but instead should be read to encompass conventional, traditional, normal, or standard technologies that may be available or known now or at any time in the future. Likewise, where this document refers to technologies that would be apparent or known to one of ordinary skill in the art, such technologies encompass those apparent or known to the skilled artisan now or at any time in the future.
A group of items linked with the conjunction “and” should not be read as requiring that each and every one of those items be present in the grouping, but rather should be read as “and/or” unless expressly stated otherwise. Similarly, a group of items linked with the conjunction “or” should not be read as requiring mutual exclusivity among that group, but rather should also be read as “and/or” unless expressly stated otherwise. Furthermore, although items, elements or components of the invention may be described or claimed in the singular, the plural is contemplated to be within the scope thereof unless limitation to the singular is explicitly stated.
The presence of broadening words and phrases such as “one or more,” “at least,” “but not limited to” or other like phrases in some instances shall not be read to mean that the narrower case is intended or required in instances where such broadening phrases may be absent. The use of the term “module” does not imply that the components or functionality described or claimed as part of the module are all configured in a common package. Indeed, any or all of the various components of a module, whether control logic or other components, can be combined in a single package or separately maintained and can further be distributed across multiple locations.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination or as suitable in any other described embodiment of the invention. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
Additionally, the various embodiments set forth herein are described in terms of exemplary block diagrams, flow charts and other illustrations. As will become apparent to one of ordinary skill in the art after reading this document, the illustrated embodiments and their various alternatives can be implemented without confinement to the illustrated examples. For example, block diagrams and their accompanying description should not be construed as mandating a particular architecture or configuration.
The present application claims priority from U.S. Provisional Application Ser. No. 61/472,308 filed on Apr. 6, 2011, which is hereby incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61472308 | Apr 2011 | US |